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b Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Professor García González, s/n, 41012, Sevilla, Spain   
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A B S T R A C T   

Coriander oil is a vegetable oil extracted from coriander seed that has about 70% of petroselinic acid, apart from 
anti-inflammatory and anti-aging properties, thus gaining the status of new food ingredient. Due to its properties 
and added value, it can become the target of adulteration as occurs with other edible vegetable oils of high 
market value. Therefore, the objective of this work was to identify the authenticity of coriander oil and adul-
teration with other commercial vegetable oils such as palm olein, canola oil and soybean oil. Principal 
component analysis (PCA) differentiated the matrices of pure oils using 3 principal components, which explained 
87% of the variance. Linear discriminant analysis (LDA) and k-nearest neighbors algorithm (k-NN) were used to 
classify pure oil samples and adulterated coriander oils. Partial Least Squares (PLS) regression models presented 
coefficient of determination (R2) of 0.98, 0.99 and 0.99, for coriander oil adulterated with palm olein soybean oil 
and canola oil, respectively. RPD was between 7.1 and 10, which indicates robust models that can be used for 
quality control during the processing of coriander oil.   

1. Introduction 

Coriander oil is extracted from seeds of Coriandrum sativum L., a plant 
cultivated in several regions worldwide, since its leaves are widely used 
in cooking and as a medicine. The seed contains around 28% of vege-
table oil and approximately 0.9% of essential oils (volatile oils). These 
two oil fractions have important compounds such as petroselinic acid, 
found in the vegetable oil and linalol, which represents roughly 70% of 
these respective oil fractions (Sahib et al., 2013). 

Petroselinic acid is the most abundant fatty acid present in coriander 
vegetable oil, and its importance is related to its chemical properties. 
Although this fatty acid has the same number of carbons and double 
bond number than oleic acid, what makes it unusual is the position of 
the double bond that has made it a positional isomer of oleic acid. The 
different position of the double bond within the carbon chain changes 
the physicochemical properties of petroselinic acid, which has a melting 
point at 30 ◦C at 1 atm, while oleic acid melting point is 14 ◦C at the 
same pressure (Delbeke et al., 2016). In addition, petroselinic acid has 
significant potential for the chemical industry, as oxidative cleavage 
leads to industrially interesting compounds such as lauric acid, a 

commercial surfactant, and adipic acid, a precursor to Nylon 66 (Klei-
man, 1990; Uitterhaegen et al., 2016). 

Besides its chemical interests, fatty acids of coriander oil have 
attractive properties, such as anti-aging and anti-inflammatory activity, 
making them suitable for the cosmetic and functional food industry 
(Sahib et al., 2013; Uitterhaegen et al., 2016). Due to its functional 
properties, coriander oil has recently been labeled as a New Food 
Ingredient (NFI) in the context of Regulation (EC) No 258/97 of the 
European Parliament and up to 600 mg/day consumption by healthy 
adults as a dietary supplement has been considered safe (EFSA, 2013). 
Given the potential for application in the chemical, pharmaceutical and 
food industries, coriander oil is an important raw material that can be 
the target of adulteration to obtain a higher profit margin, as with other 
high-priced vegetable oils. Neem oil (Elzey, Pollard, & Fakayode, 2016), 
avocado (Rohman et al., 2016), sandalwood (Kuriakose, Thankappan, 
Joe, & Venkataraman, 2010), pumpkin seed oil (Van Hoed et al., 2017) 
and rosehip (De Santana et al., 2016) oils have been reported to be liable 
to adulteration with other lower-quality or cheaper oils. 

Oil adulteration presents a global challenge for the production of 
natural oils. The development of food authenticity protocols capable of 
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determining the authenticity of natural products is of great interest for 
financial and safety reasons. Effective analytical methods for determi-
nation of adulteration include gas chromatography and spectroscopic 
techniques (Elzey et al., 2016). However, these techniques are expensive 
and require high investment for implementation. 

Near infrared spectroscopy (NIRS) is a vibrational spectroscopy 
technique that uses electromagnetic radiation in the range of 780–2500 
nm. Among other vibrational techniques (mid infrared spectroscopy, 
RAMAN spectroscopy), NIRS has the advantage of analyzing several 
components simultaneously, most of the times not requiring sample 
preparation, placing itself as a promising tool for rapid or online analysis 
without loss of fundamental chemical information (Armenta, Moros, 
Garrigues, & de la Guardia, 2010; García Martín, 2015; Wang, Sun, 
Zhang, & Liu, 2016). The use of NIRS to obtain information on phar-
macochemical properties and adulteration data for edible vegetable oils 
is well studied due to the low cost required for the acquisition and 
implementation of this technique (Azizian, Mossoba, Reza, Kia, & Del-
monte, 2015; Giovenzana, Beghi, Civelli, & Marai, 2015; Jinkui, Han, 
Tomohiro, Yelian, & C, 2014; Kuligowski, Carrión, Quintás, Garrigues, 
& Guardia, 2012; Laroussi-mezghani et al., 2015; Li et al., 2012; Man & 
Moh, 1998; Zeng et al., 2014). 

Advances in electronic systems have provided innovations for the use 
of portable NIR spectrometers in the processing line. This improvement, 
in addition to making the equipment cheaper, when compared to 
traditional benchtop equipment available in the market, also improved 
speed of response, reduced energy costs and sample preparation time 
(Santos et al., 2021; Teye, Elliott, Sam-Amoah, & Mingle, 2019). 
Portable NIR spectrometers can also be employed to obtain edible 
vegetable oil quality parameters of palm oil adulterated with lard (Basri 
et al., 2017), adulteration of palm oil with Sudan dyes (Teye et al., 
2019), identification and quantification of adulterations in extra virgin 
olive oils (Borghi et al., 2020), etc. 

Generally, methods of vibrational spectroscopy are used in combi-
nation with chemometrics. These mathematical and statistical methods 
are important for obtaining good results, since they facilitate the 
extraction of information from the NIR spectra that most of the times are 
large and overlay bands (Wang et al., 2016). NIRS and chemometrics 
proved to be a powerful tool for identifying adulteration. Generally, 
traditional grading methods were employed to detect whether the target 
oil was adulterated with other oils. Chemometrics such as partial least 
squares (PLS) calibration, have been successfully applied in olive oil 
tampering detection (Zhang et al., 2017), while supervised soft inde-
pendent modeling of class analogy (SIMCA) and linear discriminant 
analysis (LDA) methods were used (Sinelli, Cerretani, Egidio, Bendini, & 
Casiraghi, 2010) to classify olive oil samples by denomination of origin. 

Considering the economic importance of coriander oil and its 
attractiveness to adulteration, this study aims to identify coriander oil 
adulteration using a low-cost, portable NIR spectrometer, in tandem 
with chemometric methods. Several cheaper vegetable oils were tested 
as adulterants, and the results could provide a potential fast and low-cost 
method for inspection agents and producers. 

2. Material and method 

2.1. Oil samples 

Coriander seeds were acquired in two different batches and cold 
pressed for oil extraction in a continuous press. Solid particles were 
removed by press filtering (2.0 kgf/cm2) the oil obtained. Three 
different samples of canola oil and three samples of soybean oil used as 
adulterants were acquired from the local market in Campinas, Brazil, 
while two different samples of palm olein were obtained from an oil 
processing industry (Limeira-SP, Brazil). 

2.2. Sample preparation 

Coriander oil was adulterated in twelve different concentrations 
(1%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% 
(wt.)), in triplicate, of other types of oils. Hence, it was prepared 108 
samples (12 concentrations x 3 samples x 3 repetitions) of coriander oil 
adulterated with canola oil, 108 samples of coriander oil adulterated 
with soybean oil, and 72 samples (12 concentrations x 2 samples x 3 
repetitions) of coriander oil adulterated with palm olein. Also, pure 
samples of coriander oil (0% concentration of adulteration) and pure 
adulterants (100% concentration) were used in the classification and 
prediction models. 

The samples were split into calibration and validation sets for the 
regression models, with different level of adulteration for each dataset, 
to guarantee an external validation. Pure samples were used in the 
calibration set. Hence, the calibration set consisted of pure coriander oil 
(0% adulteration), 3%, 10%, 30%, 50%, 70%, 90% adulteration, and 
pure adulterant (100%), totaling 59 samples. The validation dataset was 
comprised of samples with 1%, 5%, 20%, 40%, 60%, 80% of adulterant, 
totaling 54 samples. 

2.3. Determination of fatty acid (FA) composition 

Pure oils were characterized for their fatty acid (FA) compositions, 
expressed as relative percentage of total oil determined by gas chro-
matography (GC) following the AOCS official method Ce 1–62 (AOCS, 
2009). Conversion of FA to fatty acid methyl esters (FAME) was per-
formed based on the method described by Hartman and Lago (1973). 
Gas chromatography was performed in a (GC) Clarus 600 (PerkinElmer, 
USA) with a flame ionization detector (FID) and a DB-WAX capillary 
column (30m length, 0.25 mm internal diameter, 0.25 μm film thick-
ness) (Agilent Technologies, USA). Helium was used as carrier gas (1.78 
mL/min), FID temperature of 250 ◦C, with 1 μL injection at 250 ◦C, 
column temperature ramp from 50 ◦C to 250 ◦C at 10 ◦C/min. The total 
FA results were verified by comparing the retention times of each 
analysis with the retention peaks of an external standard (FAME mix C8 
– C24; Sigma-Aldrich, USA), using Total Chrom software (version 6.3.2, 
PerkinElmer, USA). 

2.4. NIR spectra acquisition 

Near infrared spectra of the samples at 25 ◦C were obtained using a 
portable NIR equipment (TIDA-00554 DLP NIRScan Nano, Texas In-
struments, Dallas, TE, USA) by diffuse reflectance measurements in the 
range of 900–1700 nm. Oil samples were scanned using a cuvette (2 mm 
optical path), where transflectance was measured with a Spectralon disk 
in the back to avoid light scattering. 

2.5. Chemometric analysis 

NIR spectra were pre-processed with smoothing and 1st Savitzky- 
Golay derivative (15 points). Principal component analysis (PCA) was 
applied as an exploratory and unsupervised method to investigate the 
differences in spectra of pure oil samples. This technique consists of 
linear transformation of the original information, in this case the NIR 
spectra, which are highly correlated with each other into a smaller set of 
non-correlated variables, called principal components (PCs) (Brasil 
et al., 2021). The scores of PCs provide information about the differences 
among samples, while the PC loadings provide information about the 
most important wavelengths related to the given set of samples. 

2.5.1. Classification of adulterated coriander oil 
Linear discriminat analysis (LDA) and k-Nearest Neighbors (k-NN) 

were used for classification of coriander oil samples adulterated with 
soybean, canola and palm oil with concentrations of 3%, 10% and 70%, 
pure adulterant and pure coriander oil. Two different set of samples 
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were prepared for calibration (60% of samples) and validation (40% of 
samples). 

2.5.2. Prediction of coriander oil adulteration 
Partial least squares regression (PLSR) was used for prediction of the 

concentration of adulterant (canola oil, palm olein or soybean oil) in 
coriander oil. Calibration models included samples of pure coriander oil 
(0% adulteration), and samples adulterated with the following concen-
trations: 3%, 10%, 30%, 50%, 70%, 90%, 100% (pure adulterant). Dii-
ferent concentrations were prepared for the validation model, to provide 
an external set of samples, adulterated in the concentrations of 1%, 3%, 
5%, 20%, 40%, 60%, 80% of adulterant. Chemometric analyses were 
performed using PLS Toolbox software from Matlab R2007b (Matlab 
Inc., Natick, MA, USA), and the LDA models were constructed using 
MINITAB Release 14 (Minitab Ltd., Coventry, United Kingdom). 

Variable selection was performed using Interval partial least squares 
(iPLS), forward stepwise, and the PCA loadings with larger absolute 
value, and identification of informative region. iPLS is a variable se-
lection method that fragments the spectrum into smaller information 
intervals and for each interval a PLS regression is performed using the 
parameter of interest. This method can significantly improve the pre-
diction of PLS models (Magwaza et al., 2012). Forward stepwise is a 
variable selection method that eliminates collinearity or highly corre-
lated variables, analyzing the combination of all variables step by step 
(Chen & Xie, 2014). PCA loadings were used to select the most important 
variables for discrimination between coriander oil and adulterant oil. 
The informative region was selected as the region of the spectra with 
peaks and differences among samples. 

Robustness of classification models were assessed by accuracy (Acc, 
Eq. (1)), sensibility (SEN, Eq. (2)), and selectivity (SEL, Eq. (3)). 

Acc=
TP + TN

TP + FN + FP + TN
× 100 (1)  

SEN=
TP

TP + FN
× 100 (2)  

SEL=
TN

FP + TN
× 100 (3)  

Where: TP true positives; TN true negatives; FP false positives; FN false 
negatives. 

Robustness of prediction models was assessed by root mean squared 
errors for calibration (RMSEC, Eq. (4)), cross-validation (RMSECV) and 
prediction (RMSEP, Eq. (5)), and the ratio of performance to deviation 
(RPD, Eq. (6)) (García Martín, 2015; Kaufmann et al., 2019). 

RMSEC=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ycalibration − ymeasured)
2

√

n
(4)  

RMSECV,RMSEP=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑k
i=1(ypredicted − ymeasured)

2
√

k
(5)  

RPD ≈

̅̅̅̅̅̅̅̅̅̅̅̅
1

1 − r2
2

√

(6)  

Where: ypredicted is the value of the property of interest predicted by the 
model; ymeasured is the value of the measured property of interest for the 
sample by the reference method (in this case GC); n is the number of 
samples used in the calibration set and k is the number of samples used 
in the external validation set. 

In order to obtain adequate PLS models, the balance of the rela-
tionship between the bias and the variance explained by the model must 
be studied. With the increase in the number of latent variables (LV), the 
complexity of the model increases, so the best prediction model is the 
one that has the least prediction error. The ideal model should have bias 
equal to zero, models with values less than zero are under-adjusted and 

models with bias greater than zero are over-adjusted (Kalivas & Palmer, 
2014; Mas, Rubio, Valverde-Som, Sarabia, & Ortiz, 2020). 

3. Results and discussion 

3.1. Characterization of pure oils 

All samples investigated presented fatty acid (FA) profiles (Table 1) 
similar to those reported in the literature (Chowdhury, Banu, Khan, & 
Latif, 1970; Farhoosh, Esmaeilzadeh Kenari, & Poorazrang, 2009; 
Sampaio et al., 2017). Petroselinic acid (68–84%) and linolenic acid 
(13–16%) were the predominant FA for coriander oil (Sahib et al., 
2013). As illustrated in Table 1, the contents of petroselinic and oleic 
acids in coriander oil are noticeably different from the other oils. The 
greatest differences between these oils are in petroselinic acid (higher in 
coriander oil), lineloeic acid (higher in soybean oil) and oleic acid 
(higher in canola oil and palm olein). The major fatty acid component of 
canola oil and palm olein is oleic acid; it is also noticeable that coriander 
oil and palm olein have high palmitic acid content. 

3.2. NIR spectra of oil samples and exploratory analysis 

NIR spectra for different types of oils were acquired (Fig. 1A). It was 
possible to verify that the samples presented peaks in the region at 1200 
nm and 1400 nm, similar to other oil samples previously reported (Basri 
et al., 2017; Teye et al., 2019). Bands of the NIR spectroscopy method 
are wide, which causes overlap, so it is necessary to use multivariate 
analysis to extract the information contained in the spectrum. Spectra 
were pre-treated with Savitzky-Golay smoothing filter (15 points) and 
Savitzky-Golay 1st derivative 2nd order (7 windows, 15 points) 
(Fig. 1B). Principal component analysis was applied to investigate the 
differences in spectral information of samples (Fig. 1C and D). 

Using two principal components (PC), it is possible to observe that 
the matrices of pure oils could be separated in the scores plot (Fig. 1C). 
PC1 accounts for 86.88% of variance, discriminating palm olein and 
coriander oil (both on the positive side of PC1) from canola and soybean 
oils (both on the negative side of PC1, and also separated from each 
other). PC2 is responsible for 7.21% of variance, and is more important 
for discriminating coriander oil (in the positive side of PC2) from the 
other oils (near zero (0) or in the negative side of PC2). 

The differences observed in the PCA could be related to the fatty acid 
composition (Table 1), since the loadings from PC1 and PC2 (Fig. 1D) 
present peaks and valleys related to C–H bonds. It is possible to observe a 
peak in the region of 1185 nm, responsible for the HC––CH stretch in the 
second overtone (Jinkui et al., 2014). Stretching overtone of C–H at 
1225 nm (Teye et al., 2019) is related to oil compositions that have a 
greater number of double bonds, observed in PC2, which separates 
coriander oil from all other oils. 

Table 1 
Fatty acid composition (% wt.) of the assayed oils.  

Fatty Acid Nomenclature Oil 

Coriander Soybean Canola Palm 
olein 

Palmitic Acid C16:0 3.7 11.13 4.75 24.73 
Palmitoleic Acid C16:1 0.07 – 0.26 – 
Stearic acid C18:0 0 3.49 2.53 3.04 
Petroselinic Acid C18:1 (6)ω12 79.79 – – – 
Oleic Acid 

(Omega 9) 
C18:1 (9)ω9 0.62 26.07 62.82 47.27 

Linoleic Acid 
(Omega 6) 

C18:2 14.87 52,89 18.51 14.63 

Linolenic Acid 
(Omega 3) 

C18:3 – 4.55 7.77 – 

Araquic Acid C20:0 – – 0.95 – 
Eicosanoic Acid C20:1 – – 0.78 – 
Eicosadiene acid C20:2 – – 1.08 –  
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3.3. Classification models 

3.3.1. Variable selection 
In this study, we compared five different inputs for prediction, i. e, 

full spectra, using the informative region, and applying variable selec-
tion (iPLS, forward stepwise and PCA loadings. The wavelengths 
selected for each method are presented in Table 2, and further prediction 
models using the selected wavelengths from each method are reported. 

Variable selection are used to remove uninformative variables and 
noise, providing more robust models with less influence from external 
variation, mainly in investigations of adulteration that have raw spectra 
very similar to each other (Heise, Damm, Lampen, Davies, & Mcintyre, 
2005). Variable selection methods were applied to verify the improve-
ment of the classification obtained by the models. These results can be 
seen in Table 3 and Table 4. 

3.3.2. Supervised classification models 
Supervised classification methods LDA and k-NN were developed 

using coriander oil adulterated with canola oil, soybean oil and palm 
olein, (Table 3). 

The k-NN model was evaluated for different variable selections using 
3 nearest neighbors: informative region (1100–1450 nm), forward 
stepwise and PCA loadings. For LDA models, the same variable selec-
tions were used except for informative region, because for the analysis of 

LDA it is necessary to eliminate highly correlated variables and the 
number of variables cannot be higher than the number of samples. 

LDA models using variables selected by stepwise showed better re-
sults for both calibration and validation than models with variables 
selected in the PCA loadings. The LDA-stepwise showed 99% accuracy of 
calibration and validation in the models used to classify coriander oil 
adulterated with palm olein, compared to 91% accuracy obtained by k- 
NN in the validation set. For samples of coriander oil adulterated with 
soybean oil, the best results were obtained for LDA using stepwise var-
iable selection (93% accuracy) and k-NN using informative region (95% 
accuracy). For the models using canola oil as an adulteration source, 
accuracy was slightly lower when compared to classification models for 
samples adulterated with soybean oil and palm olein. Better results were 
obtained using stepwise as a variable selection method, reaching accu-
racy higher than 90% for both LDA and KNN models. Previous appli-
cations of LDA for classification of oil samples using NIR spectra have 
been previously reported (Sinelli et al., 2010; Yang, Irudayaraj, & Par-
adkar, 2005; Zhou, Liu, Li, & Chen, 2015), with accuracy around 70%, 
depending on the complexity and differences among the samples 
evaluated. 

It was observed that the lowest accuracy for classification was ob-
tained using canola oil as adulterants. It was observed that canola oil has 
a higher content of oleic acid (Table 1), which is the positional isomer of 
petroselinic acid, found in larger amount in coriander oil. As a result, the 
similarity between the major fatty acids present in canola oil and in 
coriander oil could be responsible for the models’ lower accuracy. 

The identification of samples of coriander oil adulterated with soy-
bean oil, canola and palm oil can be explained mainly by the difference 
in the composition of major fatty acids. For soybean oil the major 
compound is linoleic acid with two double bonds and for canola oil and 
palm olein it is oleic acid with a double bond. Although petroselinic acid 
also has a double bond, the position of the double bond in the chain is 
different, and this variation influenced the results. Regarding palm olein 
has the high content of palmitic acid, that is saturated, may explain the 
better results obtained. 

Classification models using k-NN with 3 neighbors (k) were applied 

(a) (b)

(c) (d)

Fig. 1. (a) Raw spectra of vegetable oil samples; (b) Pre-processed spectra of pure vegetable oil samples (1st derivative plus symbol smoothing); (c) PCA scores of 
pure vegetable oil samples; (d) PCA loadings of pure vegetable oils samples. 

Table 2 
Variables selected from samples spectra using different methods.  

Method selection Variables (nm) 

Full spectrum 900–1700 
Informative region 1100–1450 
Stepwise (15 

variables) 
1102; 117; 1132; 1151; 1174; 1215; 1254; 1270; 1283; 
1340; 1375; 1378; 1413; 1447; 1500 

PCA Loadings (8 
variables) 

1131; 1181; 1221; 1228; 1365; 1388; 1402,1443 

iPLS (10 variables) 1208; 1215; 1389; 1523; 1571; 1624; 1634; 1648; 1677; 
1692  
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to FTIR spectra to classify olive oils, (Jiménez-Carvelo, Osorio, Koidis, 
González-Casado, & Cuadros-Rodríguez, 2017), and FT-NIR spectra to 
evaluate oil storage time (He, Jiang, & Chen, 2020). Although they 
presented good classification results, the performance of k-NN was 
inferior to models with LDA and SVM. Results presented in this work 
(Table 3) show that k-NN models can present high accuracy depending 
on the variables selection method and the complexity of the samples 
analysed. 

3.4. PLS-regression 

Partial least squares regression models were built to quantify the 
percentage of adulterant (canola oil, soybean oil or palm olein) in 
coriander oil. Calibration models were built using the full spectrum 
(900–1700 nm), informative region (1100–1450 nm), forward stepwise 
and iPLS for each method of variable selection. Previously, smoothing 
filter treatments and 1st Savitzky-Golay derivative were used (Table 4). 

The PLS models with the lowest RMSECV and RMSEP and the highest 
R2 were the models for prediction of adulteration of coriander oil with 
palm olein using the spectra between 1100 and 1450 nm pre-processed 
with smoothing and 1st derivative, with R2 of 0.98 and RMSEP of 4.12% 
(wt.) using only 2 latent variables (LV). Notwithstanding, for the full 
spectrum it was possible to reach R2 of 0.99 using 6 LV, and the RMSEP 
presented a higher value (4.26% wt.), indicating that the use of the full 
spectrum can increase the complexity of the model without bringing 
results that justify the increase in the number of wavelengths. However, 
when the number of wavelengths used to build the PLS model was 
reduced with stepwise and iPLS, the models presented worse values of 
RMSEP and R2 in addition to increasing the number of LV. 

The PLS models for quantification of soybean oil added to coriander 
oil showed better results using smoothing and 1st derivative, reaching 
RMSEP of 5.4% (wt.) and R2 of 0.98 using 3 LV. Although the PLS 
models for the prediction of the amount of palm olein and soybean oil 
have similar R2 for all pre-processing methods investigated, a higher 
number of LV was needed for palm olein, with a higher RMSEP, in 
comparison to models for prediction of coriander oil adulterated with 
soybean oil. Prediction of coriander oil adulterated with canola oil 
showed higher values of RMSEP, with lower R2 and RPD, which could be 
related to the similarity between the chains of major fatty acids in canola 
oil and coriander oil when compared to the other adulterants. 

These results show that the models provide good results to identify 
the percentages of different adulterants. The use of the selection of 
variables from the informative region, eliminating wavelengths that do 
not contain useful information about the samples, are widely used for 
regression models to identify the adulteration of edible vegetable oils 
(Heise et al., 2005). Literature data using a portable NIR spectrometer 
and PLS to predict palm oil adulteration (Basri et al., 2018), and quan-
tification of copaiba oil adulteration (de Oliveira Moreira, de Lira 

Machado, de Almeida, & Braga, 2018) presented R2 = 0.99, similar to 
the best results presented in this work. 

PLS regression models concentrate the most important spectral data 
for determining the predicted data (Elzey et al., 2016). Therefore, the 
number of latent variables (LV) was chosen according to the reduction of 
the BIAS and the RMSEP (Table 4). When more latent variables are used, 
BIAS and RMSEP increase, while if a lower LV number is used, the 
models can exclude important information. Good predictive models 
have low BIAS and small errors, thus increasing the accuracy of the 
prediction model implies minimizing the RMSEP. 

RPD (Table 4) is an important quality parameter for PLS models 
using NIR spectra. Calibration models that show values between 2.5 and 
5 can be used as a screening, whereas RPD values in the range between 5 
and 10 range are robust models that can be used for quality control (Du 
et al., 2012; García Martín, López Barrera, Torres García, Zhang, & 
Álvarez Mateos, 2019). All regression models presented have RPD above 
2.5 with values up to 7.07, indicating that they can be used for sample 
screening and quality analysis. 

4. Conclusion 

The results obtained demonstrate that a portable NIR spectrometer 
can identify pure coriander oil among other samples of soybean oil, 
canola oil and palm olein. Supervised classification models LDA and k- 
NN can be used to assess the authenticity of coriander oil and the choice 
of the most appropriate method depends on the type of oil used as 
adulterant. LDA-stepwise presented better results to identify coriander 
oil adulterated with palm olein, canola oil and soybean oil. 

For the quantification of the adulterants in coriander oil, the PLS 
models with Savitzky-Golay smoothing and 1st derivative presented the 
best results for all types of adulterants investigated. As for variable se-
lection, the informative region (1100–1450 nm) showed better results, 
compared to models using the full spectra or few wavelengths selected 
by stepwise and iPLS methods. The results obtained indicate that 
portable NIR spectrometers are promising tools for identification of 
coriander oil adulteration, and could be used for fast authentication and 
quality control in the oil processing industry. 
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Table 3 
Results for supervised classification methods with different variable selection methods for coriander oil adulterated with palm olein, canola oil, and soybean oil.  

Calibration  

LDA k-NN  

Stepwise PCA Loadings Informative region Stepwise PCA Loadings  

Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean 

Selectivity 0.99 0.97 0.98 0.92 0.95 0.96 0.99 0.83 0.97 0.92 0.94 0.91 0.92 0.89 0.90 
Sensitivity 0.98 0.93 0.91 0.73 0.83 0.81 0.98 0.52 0.90 0.75 0.81 0.55 0.73 0.63 0.55 
Accuracy 0.99 0.96 0.97 0.89 0.92 0.93 0.99 0.77 0.96 0.88 0.92 0.85 0.88 0.84 0.84 
Validation  

Stepwise PCA Loadings Informative region Stepwise PCA Loadings  
Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean Palm Canola Soybean 

Selectivity 0.99 0.94 0.95 0.93 0.89 0.96 0.98 0.92 0.97 0.94 0.94 0.91 0.86 0.89 0.91 
Sensitivity 0.98 0.78 0.83 0.75 0.68 0.84 0.93 0.64 0.86 0.76 0.77 0.63 0.61 0.64 0.67 
Accuracy 0.99 0.90 0.93 0.88 0.84 0.93 0.97 0.88 0.95 0.91 0.91 0.86 0.80 0.84 0.86 
Palm is coriander oil adulterated with palm olein; Canola is coriander oil adulterated with canola oil; Soybean is coriander oil adulterated with soybean oil.  
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