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Abstract

This paper addresses the main challenges to the security constrained op-
timal power flow (SCOPF) computations. We first discuss the issues related
to the SCOPF problem formulation such as the use of a limited number of
corrective actions in the post-contingency states and the modeling of volt-
age and transient stability constraints. Then we deal with the challenges to
the techniques for solving the SCOPF, focusing mainly on: approaches to
reduce the size of the problem by either efficiently identifying the binding
contingencies and including only these contingencies in the SCOPF or by
using approximate models for the post-contingency states, and the handling
of discrete variables. We finally address the current trend of extending the
SCOPF formulation to take into account the increasing levels of uncertainty
in the operation planning. For each such topic we provide a review of the
state of the art, we identify the advances that are needed, and we indicate
ways to bridge the gap between the current state of the art and these needs.
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1. Motivation

The SCOPF [1, 2] is an extension of the OPF problem [3, 4] which takes
into account constraints arising from the operation of the system under a
set of postulated contingencies. The SCOPF problem is a nonlinear, non-
convex, large-scale optimization problem, with both continuous and discrete
variables [1, 2]. The SCOPF belongs therefore to the class of optimization
problems called Mixed Integer Non-Linear Programming (MINLP).

The SCOPF has become an essential tool for many Transmission System
Operators (TSOs) for the planning, operational planning, and real time oper-
ation of their system [5, 6, 7, 8]. Furthermore, in several electricity markets
(e.g. PJM, New-England, California, etc.) the locational marginal prices
calculated using a DC SCOPF are used to price electricity. This approach is
also under consideration in other systems [9, 10, 11].

Several papers discussing the challenges to the OPF problem were pub-
lished during the 90’s [5, 6, 7, 8]. Since then several important changes have
taken place not only in power systems operation and control but also in
mathematical programming:

e Power systems operate today in conditions that are more “stressed”
and were not foreseen at the planning stage. In particular the increase
in load has not been supported by an adequate upgrade of the genera-
tion and transmission systems. Furthermore the creation of electricity
markets has led to the trading of significant amounts of electrical energy
over long distances.

e These operating conditions are also more uncertain, because of the
development of distributed generation based on renewable sources, and
the introduction of intra-day electricity markets.

e To counteract these trends an increasing number of complex control
devices (e.g. HVDC links, and FACTS devices) is being installed.

e Consequently, it can be argued that the level of security of power sys-
tems has been weakened to the point where in some systems the “N-1”



security criterion cannot be met without resorting to corrective ac-
tions. This is partly due to market pressures which discourage from
interfering in the market and thus favour the use of corrective control
over preventive rescheduling. Furthermore, the trend towards smarter
grid operation requires satisfying the “just-in-time” control principle
according to which (day-ahead planned) preventive control is no longer
sustainable while interruptible load curtailment becomes a more im-
portant option of corrective control [9)].

e Day-ahead operational planning by the TSOs has become an exercise
in managing uncertainty in which the SCOPF plays an important role.

e Optimization theory has progressed significantly since the 90’s and the
performance of solver engines has improved considerably. In particu-
lar, mature engines, mainly based on interior-point methods are now
able to solve Non-Linear Programming (NLP) problems, while the per-
formance of Mixed Integer Linear Programming (MILP) engines has
improved by several order of magnitudes.

A number of issues make the SCOPF much more challenging than the
OPF problem: the significantly larger problem size, the need to handle more
discrete variables describing control actions (e.g. the start up of generating
units and network switching) and the variety of corrective control strategies
in the post-contingency states.

These factors encouraged the authors to address the delicate problem of
challenges to the SCOPF computations.

This paper is based on the work of the PEGASE project [12] which
brought together SCOPF specialists from academia, software providers, and
utilities. Questionnaires and interviews conducted with ten European TSOs
both within and outside the PEGASE consortium have helped us to clarify
and define their needs in terms of SCOPF computations [13].

The remaining of the paper is organized as follows. Section II presents
the formulation of the conventional SCOPF problem and Section III discusses
the challenges arising from this formulation. Section IV focuses on SCOPF
solution methods, with a particular emphasis on how to reduce the size of the
problem size and handle discrete variables. Section V discusses new formu-
lations of the SCOPF problem more suitable for an uncertain environment.
Section VI concludes.



2. Formulation of the conventional SCOPF problem

The conventional SCOPF problem can be compactly formulated as follows

[2]:

xm___’){l;l’iuf(l)mucfo(xo, ug) (1)
s.t. go(Xo,ug) =0 (2)
hy(xp, up) < L (3)

g (xz,u9) =0 k=1,...,c (4)

hi(x;,ug) < L; k=1,...,c (5)

gr(xg, ug) =0 k=1,...,c (6)

hy (xg, ux) < Ly, k=1,...,c (7)

lu, — ug| < Auy, k=1,...,c (8)

where fy is the objective function, and for the k-th system configuration
(k = 0 corresponds to the pre-contingency configuration, while k = 1,... ¢
correspond to the ¢ post-contingency configurations), x; is the vector of state
variables (i.e. magnitude and angle of voltage at all buses), x} is the vector
of state variables in short-term time frame (i.e. before the operator has had
time to modify the control variables following a contingency), uy is the vec-
tor of control variables (e.g. generators’ active power, generators’ terminal
voltage, ratio of controllable transformers, reactance of the shunt elements,
angle of the phase shifters, status of the breakers), Ay, = T} duy/dt is the
vector of maximal allowed adjustments of the control variables between the
base case and the k-th post-contingency state, T is the interval of time avail-
able for corrective actions to ensure the feasibility of the post-contingency
state and duy/dt is the rate of change of the control variables in response
to a contingency. Finally Lg, L,,, and L; denote respectively the short-term
(emergency) limits, the medium-term limits, and the long-term (normal) op-
erating limits.

Constraints (2,3), (4,5), and (6,7) enforce the feasibility of the pre-contingency
state, the short-term post-contingency state (denoted by the superscript s),
and the medium-term post-contingency state, respectively. Equality con-
straints (2,4,6) represent the AC power flow equations. Inequality constraints
(3,5,7) include physical limits on the equipments (e.g. bounds on the gen-
erators’ active and reactive power output, ratio of controllable transformers,
reactance of shunts) as well as operational limits on the branch currents and
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voltage magnitudes. Inequalities (8) are “coupling” constraints aimed at pre-
venting unrealistic adjustments of the control variables between the base case
and the post-contingency states.

Some TSOs define several limits for a given equipment depending on
the amount of time frame during which a limit violation can be endured.
These limits must satisfy L; < L,,, < L. For example, there may be several
limits on the current or power flowing through a branch. Indeed, three line
current limits are defined in the French EHV network, with line disconnection
delays of respectively 1, 5 and 20 minutes [14]. The operational rules assume
that the operator is unable to react within one minute and the first limit
must therefore be satisfied by preventive actions only. Furthermore, in this
state the use of a typical constant power load model might be not realistic,
especially if significant voltage drop took place [15]. It is expected that the
operator can take a single corrective action (usually a pre-defined topology
change) to satisfy the second limit within 5 minutes. Satisfying the third limit
may require more corrective actions of different types, such as redispatching
generation or starting up fast units.

The “preventive” SCOPF [1] (denoted hereafter PSCOPF) is a particu-
lar formulation of the SCOPF that does not consider the possibility of cor-
rective actions in post-contingency states, other than those that take place
automatically (e.g., active power of generators participating in frequency
control, automatic tap-changers, capacitor and reactor bank switching, sec-
ondary voltage control, SPS). Therefore, in the PSCOPF the values of the
non-automatic control variables are thus the same in all system states, i.e.
u, =uy,vk=1,... c.

3. Issues related to the SCOPF problem formulation

3.1. Modelling of a limited number of post-contingency control actions

A drawback of the conventional SCOPF problem relates to the choice of
the corrective actions to be used for each contingency [8, 16, 17]. Typically,
system operating companies define for each contingency a list of possible
corrective actions that could be taken within a given period of time after the
occurrence of the contingency. Because the most efficient corrective actions
for each contingency may change due to the increasing amount of day-ahead
uncertainty, this approach may lead to sub-optimal results i.e. higher cost of
preventive actions.



Emulating how human operators react under such conditions is a chal-
lenge for OPF tools that has long been recognized but not yet properly solved
[5, 6, 8, 16, 18]. Operators are able to implement only a limited number of
controls actions and will typically choose the ones that they perceive as being
the most “effective”. However, ranking control actions is not easy because
the effectiveness of an action is not necessarily related to its magnitude and
because almost every control variable contributes in a non separable way to
both improving the objective and satisfying the constraints [18].

A few papers have proposed techniques for limiting the number of control
actions implemented by the OPF. They rely on the following approaches:
prior specification of the controls participating in the OPF [5, 18], sensitivity
of the objective and constraints to control actions [19], approximation of the
integer constraint on the maximal number of controls allowed to move using
a nonlinear constraint [20, 21], mathematical programming with equilibrium
constraints [21], embedding the DC approximation of the OPF in a MILP
formulation and focusing on topological actions [22], and combination of first
order sensitivities and MILP [23], respectively.

However, as opposed to the OPF, no results appear to have been re-
ported on techniques to limit the number of corrective actions used in post-
contingency states by a SCOPF. These approaches are designed for one sys-
tem state and could possibly be extended to the SCOPF problem but it is
difficult to predict how this might affect computational performance when
dealing with a large number of postulated contingencies.

A rigurous way to limit the number of corrective actions in the SCOPF
formulation (1)-(8) is by directly including a set of constraints limiting the
number of corrective actions allowed in each post-contingency state. Con-
ceptually this can be formulated as follows:

—skﬂkguk—uogskﬂk ]{3:1,...,6 (9)
17s, < N, k=1,...,c (10)
sp € {0,1} k=1,...,c (11)

where, for contingency k, N is the maximum number of corrective actions
allowed and s; is a vector of statuses of corrective actions. If the status of
the corrective action uy; is equal to 1 (resp. 0) it means that this action is
(resp. not) allowed, i.e. —Augj < ugj — ug; < Auy; (resp. ug; = ug;).

Since SCOPF computation model both very fast (or quasi-instantaneous)
controls, such as load curtailment, shunt reactive power, transformer ratio,



and comparatively slower controls, such as generation redispatch, the con-
straint (10) can be expressed alternatively in terms of the time needed for
controls implementation (e.g. sftk < T}, where t; is the vector of times
needed to implement the control actions).

Solving the conventional SCOPF augmented with constraints (9)-(11) for
several values of Ny makes it possible to determine: (i) the best trade-off
between the objective function and the number of control actions used in the
optimization and (ii) to assess the degree of sub-optimality that results from
a limit on the number of controls and whether there is enough room for
manoeuvre in the case where some control actions would fail.

3.1.1. Determining the minimum number of control actions

Determining the minimum number of control actions required to rescue
the system from an emergency state! or an insecure state? to a normal state
is a very important information for system operators because they need to
assess whether there is enough time to implement the planned control actions
5, 6, 16, 24].

This objective function can be expressed as:

min 17's, (12)

where s( is a vector of statuses of preventive actions. To solve this problem
the conventional SCOPF constraints (6)-(8) are augmented with the con-
straints:

—Somo <uy—1uy < Soﬂo, So € {O, 1} (13)

where g is the vector of current values of preventive actions. The constraints
(9)-(11) may also have to be considered.

3.1.2. Determining the sequence of control actions

Once a limited number of corrective actions sufficient to ensure a viable
state of the system after the inception of any postulated contingency has been
determined, the TSOs need to know in what sequence these control actions
must be taken. This information is very important to avoid exacerbating

LAn emergency state is a current or predicted state where some branch current or
voltage magnitude limits are severely violated.

2An insecure state is a state where the available corrective actions are insufficient to
secure the system with respect to some credible contingencies.



already violated limits or causing significant violations of other limits [6, 24].
This requires a dynamic simulation of the sequence of control actions (see
section 3.2) [25].

3.2. Handling voltage and transient stability in SCOPF

The preventive and corrective actions identified by the SCOPF must be
validated using time-domain simulation in order to ensure that they will not
cause any instability [8, 25, 26].

An implicit assumption of the conventional SCOPF formulation is that,
after the occurrence of a contingency, the system will not lose stability and
(with or without post-contingency corrective actions) will reach a viable
steady-state. The validity of this assumption depends on the system dy-
namics which are not modeled in the conventional SCOPF. Therefore, the
SCOPF problem is often formulated in a conservative way by imposing strong
constraints on the amount of usable post-contingency controls and the target
feasible region. However, this may lead to sub-optimality and an undetected
risk of instability.

Due to their different time frames transient stability and voltage stability
are handled separately in the SCOPF.

Two classes of approaches to handle transient and voltage stability con-
straints in SCOPF can be distinguished:

e class A: include stability constraints in the form of the algebraic equa-
tions stemming from the various time steps of time domain simulation.
This approach provides an optimal benchmark solution but it requires
onerous computations and its practical feasibility remains to be proven.

e class B: include simpler (mostly linear) heuristic stability constraints
that are derived after running time domain simulation. They generally
lead to a smaller and acceptable increase in the size of the SCOPF but
may lead to sub-optimal solutions. These approaches generally require
several iterations to refine the heuristic constraints.

Most Transient Stability Constrained Optimal Power Flow (TSCOPF)
approaches belongs to the class A [27, 28, 29, 30]. Approaches belonging
to class B rely on the single machine equivalent method and either build
simple heuristic constraints [31, 32] or merely modify the active power limits
of “critical” generators [33].



Furthermore, most TSCOPF methods compute preventive actions that
stabilize only one contingency at a time [27, 28, 31, 32|. Fewer TSCOPF
methods consider several contingencies simultaneously [29, 30].

Voltage stability constrained SCOPF approaches belonging to class A
either incorporate the discretized system trajectory as constraints into the
SCOPF itself [34, 35] or include only simpler static constraints ensuring either
the existence of a post-contingency long-term equilibrium [36, 37], or the
existence and viability of both the post-contingency long-term equilibrium
after the corrective actions have act and the post-contingency short-term
equilibrium before corrective actions can start e.g. in the form of constraints
(4,5) [15]. On the other hand, approaches of class B rely on: the modification
of the right-hand-side term of the coupling constraints (8) as an output of
the combination between: SCOPF, post-contingency optimal power flow,
and quasi-steady state time domain simulation [25], maintaining adequate
reactive power reserves in the area prone to instability [38], or including in
PSCOPF linear voltage stability constraints derived separately using quasi-
steady state dynamic simulation [39].

4. Issues related to the SCOPF problem solution

4.1. Reducing the size of the SCOPF problem

4.1.1. Motiwation

The major challenge of the SCOPF is the size of the problem, espe-
cially for large systems and caser where many contingencies are considered
[5, 6, 7, 8]. Trying to solve this problem directly for a large power system,
by imposing simultaneously all post-contingency constraints, would lead to
prohibitive memory and CPU times requirements. Moreover, because in real
life applications most contingencies do not constrain the optimum, including
them all into the SCOPF problem is unnecessary and may lead to numerical
problems. This is especially true under stressed operating conditions, i.e.
when the SCOPF is most useful.

We discuss hereafter several approaches to reduce the size of the SCOPF
problem [40]. They rely on reducing the number of contingencies to be in-
cluded in the SCOPF, on reducing the size of the post-contingency states, or
both.



4.1.2. SCOPF approach using the full model for post-contingency states

This approach essentially aims to identify efficiently an as small as possi-
ble subset including all binding contingencies (i.e. the smallest subset of the
full postulated contingency set which provides the same optimal objective
value as the full set) at the SCOPF optimum.

This approach iterates four modules until all post-contingency constraints
are met: a SCOPF which considers only a subset of potentially binding
contingencies, a steady-state security analysis (SSSA) based on a classical
power flow software, a contingency filter (CF), and a post-contingency OPF
to check whether contingencies can be secured by corrective actions® [1, 41,
42, 43, 44, 45].

The performance of iterative modular SCOPF approaches strongly de-
pend on the quality of the contingency filtering. Most CF techniques rank
contingencies using a severity index (SI) and select those yielding a SI above
some threshold [1, 5, 41, 42, 43, 46]. These Sls are typically computed from
post-contingency quantities obtained with various load flow models, except
for [44, 46] which exploit the Lagrange multipliers of a relaxed PSCOPF
solution. The main shortcomings of Sl-based techniques are that parame-
ters such as the number of top ranked contingencies selected, SI thresholds,
and weights relative to different types of constraint violations require tuning.
Another CF approach that avoids these drawbacks is the non-dominated con-
tingency (NDC) technique [44, 45]. The latter is a parameter-free technique
and relies on the comparison (at each iteration of the SCOPF procedure)
of the constraints violations between postulated contingencies. The NDC
approach generally outperforms SI-based techniques in the context of both
SCOPF [45] and PSCOPF [44], providing slightly better results for the latter
problem. Furthermore, the iterative SCOPF approach using NDC filtering
technique has generally outperformed the Benders decomposition approach
[45].

Note that if the size of the SCOPF problem after including the full model
of binding contingencies exceeds the available computer memory*, this ap-

3This is due to the power flow program in the SSSA does not take into account some
time-varying control actions (e.g., generation rescheduling, shunt reactance change, etc.)
to check whether the violated constraints can be removed by corrective actions. This
module is not needed in the particular case of the PSCOPF, where the SSSA decides
whether the current optimal base case is the optimum of the SCOPF.

4In the PEGASE project the size of the European EHV system to be optimized is about
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proach cannot be applied. One therefore has to rely on approaches using
simplified models for contingency constraints, as explained hereafter.

4.1.83. SCOPF approaches using simplified models for post-contingency states
Benders decomposition approach. Since the seminal paper [2], generalized
Benders Decomposition (BD) [48, 49] has been widely used to solve various
SCOPF problems for optimizing of operational cost, reactive power planning,
computation of available transfer capability, and other power system issues
2,36, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58]. The SCOPF problem is considered
either as such [2, 36, 45, 50, 51, 52, 53, 54, 55|, or is embedded in a more
general formulation such as unit commitment [56, 57, 58]. In the context of
the unit commitment problem most SCOPF approaches use simplified linear
(dc) formulation, in order to reduce problem complexity, except for [57].

In the BD approach the original SCOPF problem is decomposed into a
master problem and several slave sub-problems which interact iteratively. It
is very appealing due to the possibility of keeping the size of both the master
and slave problems very tractable, i.e. at almost the same as optimizing
a system pre- or post-contingency state only. It also makes it possible to
distribute computations among several processors, which can considerably
speed-up computations [2]. On the other hand, BD requires (theoretically)
the convexity of the feasible region, which cannot be guaranteed in an ac
SCOPEF. Consequently BD must be used with great care [2, 51].

Linearization of relevant post-contingency constraints. The SCOPF problem
can also be simplified by adding to the base case constraints only the rele-
vant post-contingency inequalities, linearized around the optimized base case,
while dropping all post-contingency equality constraints (which are however
checked at the optimal solution) [1, 5, 7, 41, 42, 43, 53, 59, 60]. Further-
more, some approaches also use a linear model for the base case leading to
a linearized SCOPF problem. The latter is solved by successive linear pro-
gramming techniques [41]. The main advantage of LP-based methods is that
their convergence to the global optimum of the linearized problem is guaran-
teed and very fast. Robust solvers are available for this class of optimization
problems [41, 61]. In particular the dc power flow model is sometimes used for

13.000 buses and the number of “N-1” contingencies is about 30.000 [47]. The model of
the North American Eastern Interconnection includes about 43.000 buses and considers
about 70.000 contingencies [11].
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the active power re-dispatch SCOPF problems [41, 62]. However, the linear
approximation may be questionable under highly loaded conditions or when
using “reactive power” control variables (e.g. LTC ratio, shunt reactance,
generator terminal voltage).

Network compression approach. This approach relies on the “compression”
of post-contingency states [63]. It consists in keeping the exact model of
a “direct” area, where the contingency has a significant impact, and of an
“indirect” area, comprising control variables which have an important effect
on the constraints of the direct area. The external network of these two areas
is then compressed using a REI-Dimo equivalent. The compression parameter
is adaptively chosen to comply with the limits on computer memory. The
more contingencies one has to include in the SCOPF, the more compressed
will be the post-contingency states.

Consequences of using simplified post-contingency models. When using ap-
proaches that rely on simplified post-contingency models, it is possible that,
at the solution, either the objective is sub-optimal or some original post-
contingency constraints are still violated. Consequently, the post-contingency
constraints must be checked at the solution. If some constraints are violated
to an unacceptable extent, the problem is re-solved using an improved lin-
earizations of the violated constraints or even using the complete model of
the corresponding contingencies.

4.1.4. PEGASE approach

Approaches using simplified post-contingency models are generally mutu-
ally exclusive but complementary with the modular approach using the full
model.

When dealing with very large SCOPF problems it could be of interest, if
not mandatory due to the problem size, to use jointly exact and approximate
approaches to reduce the size of the problem.

For instance the approach adopted in the PEGASE project consists in
using a modular iterative SCOPF approach jointly with the “network com-
pression” technique, with the former technique looking for the subset of po-
tentially binding contingencies, and the latter technique further compressing
the size of the post-contingency states corresponding to the potentially bind-
ing contingencies [47].
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4.2. Efficient algorithms for continuous SCOPF relazation solution

When optimizing the continuous variables of the SCOPF while freezing
the values of discrete variables or treating them as continuous, the SCOPF
becomes a NLP problem.

NLP is an optimization field that has reached maturity over the last
decade. It is commonly agreed that two main classes of methods are best
suited for solving general NLP, namely: barrier methods (mainly the interior
point method) and active set methods (e.g. sequential quadratic program-
ming, trust regions). Consequently, most state of the art NLP solvers use
algorithms based on either Interior Point Method (IPM) or active set sequen-
tial quadratic programming.

The advent of IPM constituted a breakthrough for the OPF solution and
since the 90’s it has become a standard approach to the OPF solution. IPM
has been applied to a large variety of OPF problems such as: minimization
of generation cost [60, 64, 65], minimization of active power losses [64, 66],
minimization of load shedding [67], computation of loadability margin [68].
The “higher-order” algorithms (e.g. the predictor-corrector [64, 66, 69] and
the multiple centrality corrections [70]) exhibit the best behaviour. IPM has
been applied successfully to OPF problems not only for test systems but also
to models of actual systems.

On the other hand, trust regions approaches have not received much at-
tention in the OPF context until very recently [71, 72, 73, 74]. They focus
more on algorithm robustness and global convergence than on computational
speed. They have been applied generally to small systems and while the
results obtained are promising, these approaches clearly require further in-
vestigations.

Several generic solvers for NLP problems have reached maturity and could
be used as an engine for solving the SCOPF: KNITRO [75], IPOPT [76],
LOQO [77], to mention just a few.

Although several SCOPF packages are available on the market, for ob-
vious commercial reasons but with some exceptions [41, 42, 73], the details
of the algorithms that have been implemented have not been disclosed in
scientific papers. Since the only information available is usually a list of
the features, a rigorous comparison of these packages is not feasible and will
therefore not be attempted in this paper. Furthermore, whereas the perfor-
mances of generic NLP solvers can be compared directly using public test
data sets of various sizes (e.g. on platforms such as GAMS or NEOS), such
test data is unfortunately not available for OPF problems.
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4.8. Handling of discrete variables

The efficient handling of discrete variables in the OPF has been recog-
nized as a challenging problem and has received significant attention since
the late 80’s [5, 8, 18, 78]. However the SCOPF problem is a very large
MINLP problem. Despite the significant progress achieved recently on the
development of general purpose engines to handle such problems, a rigorous
solution of the SCOPF problem by means of classical MINLP methods (e.g.
branch and bound, outer approximation, etc.) remains intractable for very
large systems with very large number of discrete variables, especially for ap-
plications close to real-time. Therefore fast and robust heuristic techniques
are needed to deal with the discrete variables in the SCOPF.

4.8.1. Classification of discrete variables
From the perspective of methods used to handle discrete variables which
appear in the SCOPF it is convenient to divide them in two categories:

1. variables with small discrete steps (e.g. ratio of LTCs, angle of phase
shifters, reactive power of some shunts);

2. variables with large discrete steps (e.g. reactive power of some shunts,
binary variables representing network switching, connection of initially
non-dispatched generators, connection or disconnection of shunt com-
pensation, non-differentiable discrete piece-wise cost curves for bids in
market-based OPF [74] or in market-based congestion management).

4.83.2. Handling of discrete variables with small steps

The simplest, fastest, and for a long time widely used approach for han-
dling discrete variables is based on the round-off strategy. The round-off is
performed in one shot [18, 78] or progressively in several steps [73]. These
round-off approaches act “blindly” because they do not consider the conse-
quences of the discretization on the objective or the constraints. They thus
have two drawbacks: the feasibility of the solution is not guaranteed if no
method to restore feasibility is implemented, and the objective value may be
unacceptably sub-optimal.

To overcome these drawbacks a large spectrum of heuristic approaches
have been proposed. These methods include the use of penalty functions
within NLP or LP solvers [79, 80], ordinal optimization [81], recursive mixed-
integer linear programming [82], interior point cutting plane [83, 84|, consid-
eration of the sensitivities of the objective function and inequality constraints
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with respect to discrete variables change [85], global optimization methods
(e.g. genetic algorithms [86], simulated annealing [87], tabu search [88], or
hybrid approaches coupling genetic algorithms and local search NLP solvers
[39)).

Most of these techniques have been proposed and tested for the basic
OPF problem and not for the SCOPF, where the number of discrete vari-
ables is significantly larger. Their performance on large systems in terms of
robustness and computational time remains to be assessed.

4.8.3. Handling of discrete variables with large steps

Network switching actions. Because they have a very low cost and are gen-
erally very effective, network switching operations, such as the connection or
disconnection of transmission lines and transformers, or the splitting of bus-
bars, are often the first post-contingency corrective action to be implemented
[13, 40].

System operators usually know which switching operation is most effective
for a given overload or a voltage problem and many of these are incorporated
in the written operational rules. On the other hand, considering the increas-
ing amount of uncertainty that affects system operation, finding the sequence
of switching actions that achieves the best trade-off between optimality and
number of control actions is very far from being trivial.

Since the early 80’s [90, 91] the use of switching actions has been ex-
tensively studied in the context of OPF for various purposes: line overload
alleviation [42, 90, 91, 92, 93, 94, 95, 96, 97], undervoltages/overvoltages mit-
igation [94, 96, 98, 99], system security enhancement [100, 101], generation
dispatch cost reduction [22, 42, 62, 101], power loss reduction [102, 103], or
a combination of these objectives [62, 96, 101].

The approaches dealing with switching actions proposed in the litera-
ture focus on the reduction of the search space of possible switching actions
[99]. These rely on one of the following techniques: heuristic techniques (e.g.
considering as switching candidates only the lines electrically close to the
overload [90]), simulating the switching by using compensated current/flow
injection [92, 102], distribution factors to relate the flow in the switched el-
ement to the other lines [93], maximal flow - minimal cost algorithm [100],
sensitivities of power flows in overloaded branches with respect to the flows
on branches candidate to be opened and MILP [95], ranking of candidate
switching actions according to a performance index and simulation of the
top candidates in a branch and bound fashion [92, 94, 96, 98|, dc power flow
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model and MILP [22, 62, 97, 101, 103], genetic algorithms [97], mathematical
programming with equilibrium constraints [47], etc.

Comprehensive reviews of techniques used for dealing with switching ac-
tions until the mid 80’s and the end of the 90’s can be found in [104] and
[99], respectively.

Very little efforts have been made to incorporate network switching in
SCOPF [42, 62, 101]. These approaches use a dc power flow model. In or-
der to limit the number of possible network configurations to be analyzed,
switching actions are implemented as corrective control actions but not as
preventive actions. Corrective switching as an operational rule should be
properly modeled in SCOPF| so as it is activated when the monitored con-
straint is violated.

Connecting of initially non-dispatched units. In order to remove post-contingency
violated constraints some system operators consider the start-up of fast gen-
erating units among the possible corrective actions [13, 17, 40, 105]. However,
none of the existing SCOPF program reports being able to handle this type
of corrective action.

Also no SCOPF formulation considers the connection of initially non-
dispatched units as a preventive action for instance when the SCOPF problem
is infeasible with the available set of preventive and corrective actions [13, 17,
40, 105]. This stems from the fact that in the day-ahead operational planning
the SCOPF is typically performed on the basis of the generation schedule
provided by a Security Constrained Unit Commitment (SCUC) program.
Since most SCUC approaches include network constraints within the UC
using a dc power flow model [56, 105, 106], they can handle branch current
constraints but do not address properly voltage constraints. Nevertheless,
notable progress has been achieved recently by embedding an ac SCOPF
model into the SCUC [57, 58] or coupling the linear sensitivity-based SCOPF
solutions [105], to consider voltage constraints and SCOPF infeasibility due
to inadequate units commitment. If the SCOPF problem is infeasible, the
SCUC must be performed again to modify the initial units commitment.
However, because operation uncertainty is usually not considered in the day-
ahead SCUC, if the system does not follow closely the forecast assumed in the
SCUC, performing the SCOPF close to real time may lead to an infeasible
problem unless some units are started up in order to satisfy post-contingency
constraints. Since performing the SCUC close to real time is computationally
onerous, the modelling of units start up as preventive action is a required
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development in SCOPF.

4.8.4. Unified handling of both types of discrete variables

Instead of using separate approaches for these two classes of discrete vari-
ables it is also possible to treat them in a unified way. To this end, the MILP
approach applied to the linearization of either the whole SCOPF problem or
each post-contingency state seems an appropriate choice, especially due to
the excellent performance of MILP engines. This is a satisfactory approach
when dealing with the reactive power redispatch problem to remove voltage
problems. When dealing with thermal overloads in the context of optimal
active power dispatch problems, the dc power flow approximation could also
be used, followed however by an ac power flow check.

5. Beyond the classical SCOPF formulations

5.1. Motivation

The SCOPF tools are intended to support decision making in planning,
operation planning, and operation, to determine optimal strategies ensur-
ing that, if events with a significant probability take place, the system will
continue to operate in normal conditions.

The classical SCOPF formulation described in the previous sections is
a two-stage decision making problem. The first stage decisions are called
preventive controls, are applied in real time on a fully known operating state,
and have a direct effect on the cost function. The second stage decisions
corresponds to hypothetical corrective controls which would be applied only
following the occurrence of certain contingencies to ensure viability. These
actions are typically modeled as “zero cost” decisions because they have to be
implemented only rarely. The set of “second stages” is finite and is assumed
known a priori. Its size is roughly proportional to the system size, because
the classical “N-1" security criterion yields one scenario for each possible
element outage.

While this classical formulation is indeed very useful, it does not cover
anymore in a fully satisfactory way the needs encountered in today’s opera-
tion and operational planning environments. Indeed, due to the increasing
penetration of renewable and other uncontrollable generation sources, the
set of contingencies should now also incorporate (possibly large) variations
in power injections in addition to equipment failures. The operators and
planners must anticipate second stage decisions to deal with these “injection
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pattern contingencies” which span complex continuous spaces and are highly
dependent on system conditions and on real-time information gathered about
exogenous variables such as weather forecasts and market prices. Further-
more, because of the geographical extension of electric power markets, the
introduction of closer to real-time markets, and to avoid that control actions
taken by a T'SO do not harm security of other systems reducing thereby the
risk of cascading events, the decisions regarding power system operation and
operational planning have to take into account larger transmission networks.
It is thus essential that control actions taken by one system operator do not
harm the security of neighbouring systems. In very large interconnections,
the probability that more than one element becomes unavailable is no longer
negligible. As the various control areas of an interconnection become more
closely coupled through interchanges, the risk of cascading events therefore
increases and it might become necessary to consider security criteria that go
beyond the classical “N-17 and develop techniques able to quickly identify
harmful N-K (K > 1) events with non negligible probabilities. Static and
equally weighted contingency lists are then no longer appropriate to model
uncertainty and such list should become dynamic to exploit all the informa-
tion available at the moment of taking decisions. In other words, the set
of relevant scenarios and the weight given to each of these scenarios when
taking first-stage decisions should be optimized.

These changes suggest that a larger (in theory uncountable) contingency
sets should be considered to model the uncertainty between successive de-
cision stages. It is also very likely that a two-stage reduction of the opti-
mization problem will no longer be sufficient. Instead, one might have to
define a multistage framework, where the couplings between decisions and
uncertainties induced by adverse scenarios over longer time horizons could
be modeled better.

In terms of problem formulation, the above considerations lead to two
complementary and intertwined directions of research. The first one focuses
on the development of appropriate methods for on-line scenario (i.e. contin-
gency) selection adapted to the optimal control problem formulations taking
into account the uncertainty affecting power system operation and planning.
The second aims at revising the temporal control horizon and its decom-
position into successive decision making stages. These problems could be
addressed in principle using to two different frameworks, namely the robust
optimal control framework [107] and the multistage stochastic programming
framework [108].
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We elaborate on these frameworks below in order to identify the corre-
sponding needs for data collection and for algorithmic developments. Then
we their practical pros-and-cons for power system security management.

5.2. Multistage decision making under uncertainty

The general problem faced by power system engineers in charge of security
management and control can be seen as a multistage decision making problem
under uncertainty [109].

Generically, a (k + 1)-stage decision making problem (see, e.g., [110]) is
defined by a (finite, in practice) time horizon, i.e. an interval [0; 7] together
with a number of time points to =0 < ... <ty =T, such that:

e the system to be controlled is viewed as a dynamic process z;,,, =
[z, ug,, &), where z; denotes the system state at some stage, u; de-
notes the control input (or decision) at this stage, and &, represents an
uncontrollable and exogenous disturbance process making uncertain
the trajectory of the system starting from a known initial state;

e we assume that the initial state xy is known beforehand to the deci-
sion maker, and that at each subsequent stage t; the system state z,
together with the history of previous disturbances &, ..., &, , become
also perfectly known (i.e. &, is observed only once the decision wu;, has
been committed);

e we also assume that the decision maker is allowed to choose control se-
quences [u, . . ., ut, | belonging to a set U* of possible controls (typically
constrained in a dynamical, state and disturbance dependent fashion);

e the objective of the decision maker is to determine a control strategy
[uo, R TP € T TP U } € U* in order to minimize some cost
function depending on the resulting set of possible trajectories induced
by the disturbance process, and possibly including hard constraints on
the system trajectory.

The classical SCOPF formulation fits in this framework: it uses only two
stages, the uncertain process is defined by a finite set of possible contingen-
cies, the objective function depends only on the preventive control wu;, and
hard security constraints are imposed on z;, and x;,. The 3-stage operation
planning problem presented in [111] fits also in this framework: here uy, cor-
responds to the day-ahead decision while u;, and w;, correspond respectively
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to the next-day’s preventive and corrective controls (see also Section 5.4,
below).

In the following two subsections we elaborate on two complementary ap-
proaches already proposed in the optimal control and stochastic programming
literatures to address the generic multistage decision making problem under
uncertainty. We believe that these two frameworks should be further devel-
oped in order to extend SCOPF technology to the current challenges faced
by power system engineers in charge of security management and control.

5.3. The multistage stochastic programming approach

The deterministic security criterion used in the conventional SCOPF to
handle contingencies exhibits three drawbacks:

1. it treats all contingencies as equiprobable disregarding their individual
likelihood of occurrence;

2. it optimizes only the cost of the pre-contingency state controls dis-
regarding the cost of post-contingency corrective actions, assuming
thereby that the likelihood of their use is small and that on the long
run their cost will remain negligible;

3. it also does not model the costs social and economic of brown-outs and
blackouts that may result from the failure of corrective actions. Since
such costs are much bigger than the cost of usual corrective actions the

question whether this assumption is acceptable remains problematic
[116].

Consequently the conventional SCOPF formulation has been questioned
by several authors who argue that, in order to mitigate these drawbacks,
a stochastic security criterion should be adopted [46, 52, 56, 109, 112, 113,
114, 115, 116]. They propose an objective function which trades-off the cost
of preventive actions and the expected cost of corrective actions, which we
write in the following way:

min [ fo(Xo, up) +)\Zpkfk(xkau07uk>]a (14)

X050+, Xe, 10,1, Ue
k=1

where py, is the “probability” of contingency k (with > 7 pr = 1), fr(Xx, uo, uy)
is the cost of corrective actions and/or constraint violations in the state k
induced by contingency k, and A € [0, 00| is a parameter defining the tradeoff
between costs incurred in preventive and corrective control modes. Notice
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that, for the notational simplicity, all hard constraints are here abstracted
away in the cost-functions of equation (14), and also blackout/brownout costs
that would be explicitly modeled would be incorporated in the functions fy.
In this setting, A measures the risk taken by the decision maker, small values
corresponding to a risk-prone behavior while large values correspond to a
risk-adverse behaviors.

As any approach, the stochastic SCOPF formulation also has some limi-
tations:

1. its output relies on the probabilities of disturbance occurrence for which
sufficiently accurate values may not be available. Moreover, the proba-
bility of a contingency may depend on the circumstances (e.g. adverse
weather conditions or terrorist threat).

2. while the cost of preventive actions is rather easy to calculate, getting a
reliable estimate of the cost of corrective actions is a challenging prob-
lem due to the difficulty to anticipate the TSO behavior, especially in
severe cases (e.g. cascading thermal overloads, voltage unstable sce-
narios).

3. in order to extend this approach to more than two decision making
stages and to cover uncertainties about power system injections, further
research on the algorithmic side is needed, in particular to discretize the
set of uncertain scenarios in order to build tractable approximations of
the mother problem [110]°.

However, we believe that the development of appropriate methods to
cope with such stochastic multistage programming approaches in the con-
text of security control are a promising avenue for future research. Indeed,
recent progress in the fields of approximate stochastic dynamic programming,
Monte-Carlo simulation, non-convex optimization, and parallel computation
could be exploited to construct credible and tractable approximations for
these problems.

5Note that the solution of the basic stochastic SCOPF problem requires keeping all pos-
tulated contingencies in the model as in the direct approach (because the cost of corrective
actions intervenes in the objective function). This makes the size of this problem already
intractable for very large systems and hence, even for this basic problem, approximations
will be required.
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5.4. Robust (min-max) worst case optimal control approach

We describe hereafter a new proposal for day-ahead operational plan-
ning (see e.g. [17, 111]) that avoids the use of probabilistic concepts and
substitutes them by concepts from robust control theory.

This approach applies mainly in day-ahead planning, where the focus is on
ascertaining the security of the system by looking whether in the worst cases
(very extreme patterns of uncertain parameters and contingencies that could
show up over the next day) the operator will still have sufficient controlla-
bility of the system by combinations of “conventional” preventive/corrective
actions (i.e. which can be identified and implemented a few tens of minutes
before the real-time e.g. generation re-scheduling, or in real-time after the
inception of a contingency e.g. network switching, generation re-scheduling,
etc.). The concept is a “look-ahead” preventive security assessment dealing
with uncertainty, aimed at determining whether strategic day-ahead plan-
ning decisions (e.g. starting up additional units for the next day, or postpon-
ing/accelerating foreseen maintenance of some equipments), which generally
have to be launched several hours before real time operation, should be taken.

The aim of the worst-case approach is to determine whether, for the as-
sumed range of the uncertain parameters, it is necessary to take such strate-
gic decisions to ensure system controllability over the course of the next day.
Such decisions do not have to be taken on the day ahead but should rather be
re-assessed periodically, at least until the last moment when such decisions
must be implemented, so as to take advantage of the decreasing amount of
uncertainty as time progresses.

The principle of the worst-case approach can be summarized as follows:
choose day-ahead strategic decisions u, such that, for any next-day power
injection scenario i (in the assumed uncertainty set) the best combination
of conventional preventive actions ug and corrective actions uy leads to an
acceptable system performance if contingency k occurs.

We define the worst-case operating scenario for a given contingency k as
the scenario leading to the largest total violation of post-contingency con-
straints (either overloads, or voltage limit violations) in the presence of the
best possible combination of preventive and corrective actions. Formally this
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leads to the following bi-level optimization problem:

max 176 15
1
st it << i 16
0 < &5 17
(67, ug,uy) = arg min 176, 18

(15)
(16)
(17)
(18)
s.t. go(x0,u0,i) =0 (19)
hy(xg,u9,1) <0 (20)
gk(Xk, up, uy,, 1) = 0 (21)

hy (X, g, ug, i) < 0y (22)
(23)

(24)

(25)

‘uo — 1_10| S EO
|uk — l,l0| S Ek
5k 2 Oa

where 1@, is the vector of planned optimal settings of base case controls (e.g.
obtained previously by a conventional SCOPF (1)-(8) which satisfies all con-
tingency constraints relative to the most likely operating scenario forecasted
for the considered period of time of the next day), Aug (resp. Auy) are the
maximal allowed variation of preventive (resp. corrective) actions, dy is a
vector of positive relaxation terms of the post-contingency inequality con-
straints, i is a vector of uncertain bus active/reactive power injections which
may vary between the limits® i™® and i™®*. In this formulation, the strategic
control actions u, have not been made explicit because they are frozen at
this optimization stage.

The solution of this bi-level optimization problem can be interpreted as
follows. For each possible continuous value of the operating uncertainty vec-
tor i lying on the domain limited by the constraints (16), the slave problem
SCOPF (18)-(25) is solved. Let (8}, uf, u;) be its solution and let 178} be

In the simplest case, the operation uncertainty can take on the form of a bounded
active/reactive power, injected at a set of buses from the internal system and/or the
neighbouring systems. Determining realistic bounds for the expected range of variation is
crucial to obtain reasonable results, since the values of these bounds impact the outcome
of the worst-case problem. The range of uncertainty variation can be determined by using
the historical record of the values taken by each uncertain variable (e.g., the output of a
wind farm) at a given time of the day.

23



the minimal value of the constraints violation. If this value is zero it signifies
that the current uncertainty pattern does not lead to any constraint viola-
tion given the postulated preventive/corrective actions. After considering
all possible values of the vector i satisfying the bounds constraints (16), the
worst-case operating scenario corresponds to the uncertainty pattern ij that
leads to the largest violation of post-contingency constraints. A value of zero
of this objective constitutes a very reassuring information for the TSO.

On the other hand if, for one or for several contingencies, the objective
(15) is strictly positive, it means that system security cannot be guaranteed
by the sole combination of preventive and corrective controls available for
the next day. In this case, it will be necessary to determine an appropriate
strategic decision u,, that enhances the system controllability during the
next day.

Note that there is currently no theoretically sound algorithm able to solve
the worst-case bi-level programming problem (15)-(25) given that it is non-
convex, non-linear, very large scale, and involves both discrete and continuous
variables [118], and therefore, to determine the worst uncertainty patterns
heuristic approaches must be conceived, or (linear) approximations could be
used”.

A suggested alternative of the worst-case approach consists in modeling
uncertainty in the conventional SCOPF (1)-(8) by considering a pre-defined
number of base cases (e.g. ranging from no wind to strong wind) and for
each of them the whole list of postulated contingencies [10].

6. Summary and conclusions
The contributions of this paper are three-fold:

e it reviews the state of the art of computational solutions of the classical
SCOPF problem;

e it identifies the open challenges of this problem and highlights promis-
ing approaches to face them;

“For instance, there exists an interesting theoretical result which allows to transform
the linearization of this worst-case problem (e.g. under dc approximation assumptions)
into a MILP problem [117], for which very powerful solution methods exist.
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e it pinpoints some limitations of the classical formulation and indicates
possible future research directions in stochastic and robust approaches
for multistage decision making under uncertainty that might help over-
come these limitations.

The main challenges of the SCOPF problem can be summarized as fol-
lows:

1. Problem formulation: some improvements of the SCOPF formulation
that should be implemented to obtain solutions that are more realistic
and thus more usable by system operators. These improvements are
the use of a pre-specified limited number of corrective actions and the
handling of transient and voltage stability constraints. Dealing with
these makes the problem more complex because it adds new binary
variables, it increases significantly the size of the problem, and the
SCOPF must be coupled with dynamic simulation to validate the com-
bined optimal preventive and corrective actions. Because the SCOPF
is already large and complex, it appears more reasonable to handle
transient and voltage stability by adding to the SCOPF linear heuris-
tic constraints derived from dynamic simulation. This would, however,
lead to sub-optimal solutions.

2. Problem solution techniques: the following key issues have been dis-
cussed:

e reducing the size of the SCOPF problem by efficiently identify-
ing binding contingencies to be included in the SCOPF. However,
if the size of the reduced problem is still intractable by actual
computers, one may have to rely on approximate models for the
post-contingency states.

e treatment of discrete variables

Several mature and sophisticated heuristics approaches exist for
handling discrete variables with small discrete steps. At worst the
simple, fast, but “blind” round-off strategy can be used. However,
for a feasible MINLP SCOPF problem, most of these techniques
may not be able to propose settings of discrete variables which
ensure the SCOPF feasibility with respect to continuous variables.

On the other hand, the handling of discrete variables with large
discrete stepsis rather complex due to the large nonlinearities they
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often introduce. This calls for simplified techniques followed by a
check of the results using the full nonlinear model. Furthermore,
to reduce the combinatorial explosion of the SCOPF it is reason-
able to use some the discrete variables with large steps (e.g. net-
work switching) only as post-contingency corrective action, which
allows parallel computations for each problematic contingency.

e use of efficient solvers

Mature NLP solvers (e.g. interior point algorithms), which con-
verge reliably and fast, can be used to determine the optimal set-
tings of continuous variables in the SCOPF.

With regard to discrete variables, it makes sense to use approaches
relying on MILP, another class of optimization techniques that has
recently reached maturity.

The outstanding progress on both optimization field and computers power
have made possible SCOPF computations on very large systems for day-
ahead operational planning using the nonlinear ac network model. Never-
theless, the application of SCOPF in real-time still does not meet the speed
requirements for very large systems, unless a dc model is used. Therefore,
simplified SCOPF models should be used while seeking to obtain a feasi-
ble solution with respect to a maximal subset of contingencies, ignoring less
probable contingencies. To speed-up the SCOPF solution, the paralleliza-
tion of computations can be easily envisaged, where the SCOPF problem
is decomposed and distributed among several processors, each one solving
independently a limited subset of post-contingency states [43, 119]. Another
desirable property of a SCOPF for real-time applications is to be able to
efficiently use a hot start in order to take advantage or the previous solution
[120].

Future developments in the field of SCOPF will mainly aim to enlarge
the scope of this application. They can be summarized as follows:

e Framing the problem as a multistage decision making problem under
uncertainty, will make it possible to take advantage of the significant
recent progresses in stochastic dynamic programming and robust con-
trol approaches, and suggests many interesting directions of research.
In particular, the worst-case approach extends the applicability of the
SCOPF to the increasingly uncertain day-ahead operational planning
context. Stochastic SCOPF formulations have only been solved for

26



small test systems and have not yet been accepted by utilities. Fur-
thermore, the problem cannot be decomposed because the cost of post-
contingency corrective actions appear in the objective function, and
therefore for very large systems simplified approaches may be required.

e The coupling of SCOPF with time domain simulation is another direc-
tion of future research in order to ensure that the set of optimal actions
proposed by SCOPF do not lead to system instability. Preliminary en-
couraging results have been obtained [25].

e The computational power of current computers allows us to envisage
the inclusion of the SCOPF within the security constrained unit com-
mitment problem, encouraging results being reported [57].
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