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Abstract: The highly regarded Fe2P-based magnetocaloric materials are usually fabricated by ball
milling, and require an additional extended annealing treatment at high temperatures (at tempera-
tures up to 1423 K for several hours to days). In this work, we show that fabricating Mn1.3Fe0.6P0.5Si0.5

into the form of microwires attained 82.1 wt.% of the desired Fe2P phase in the as-cast state. The
microwires show a variable solidification structure along the radial direction; close to the copper
wheel contact, Fe2P phase is in fine grains, followed by dendritic Fe2P grains and finally secondary
(Mn,Fe)5Si3 phase in addition to the dendritic Fe2P grains. The as-cast microwires undergo a ferro-
to para-magnetic transition with a Curie temperature of 138 K, showing a maximum isothermal
magnetic entropy change of 4.6 J kg−1 K−1 for a magnetic field change of 5 T. With further annealing,
a two-fold increase in the maximum isothermal magnetic entropy change is found in the annealed
microwires, which reveal 88.1 wt.% of Fe2P phase.

Keywords: melt-extraction technique; (Mn,Fe)2(P,Si) microwires; microstructure; magnetocaloric effect

1. Introduction

Solid-state magnetic refrigeration is considered a potential alternative to the conven-
tional vapor-compression techniques due to its high energy efficiency and environmental
friendliness [1–6]. The development of magnetic refrigerators depends on the perfor-
mance of magnetic refrigerants, those having significant magnetocaloric effect (MCE) [7–9].
(Mn,Fe)2(P,Si) materials are one of the most promising magnetic refrigerants due to their
high magnetocaloric performance, relatively low hysteresis and abundance of the raw
materials [10–12].

Regarding the synthesis procedures, it is noticeable that most of the reported
(Mn,Fe)2(P,Si) systems are prepared by ball milling and/or arc melting methods [13,14].
However, these methods usually require time-consuming heat treatment (from several
hours to several days) for achieving homogeneous compositions and forming high frac-
tions of the Fe2P phase [9]. Alternatively, rapid solidification techniques, such as melt
spinning [15,16] and droplet melting [17,18], enable the fabrication of materials with excel-
lent compositional homogeneity and reduced impurities after short-time heat treatment.
In this way, melt-extraction as a rapid solidification technique has been proposed as a
promising method to develop wire-shaped magnetocaloric materials as reported for melt-
extracted Gd-based microwires [19,20] and more recently high-entropy alloys [21,22], as
well as medium-entropy alloys [23]. Moreover, theoretical calculations suggest that wire-
shaped magnetic refrigerants with high packing factors could result in a larger working
frequency compared to particles and layers [24,25]. Their micro-size diameters could im-
prove the heat transfer of the cooling system [24]. Hence, it will be of interest to study
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(Mn,Fe)2(P,Si) melt-extraction microwires and their structural and magnetocaloric behavior.
The as-cast microwires show a variable solidification structure for the Fe2P phase going
from fine to dendritic grains along the radial direction. An elevated amount (82.1 wt.%)
of the desired Fe2P phase is obtained in the as-cast Mn1.3Fe0.6P0.5Si0.5 microwires, which
gives an isothermal magnetic entropy change peak value of 4.6 J kg−1 K−1 (for 5 T) at 145 K.
A two-fold increase to 10.5 J kg−1 K−1 is achieved with further annealing at 1373 K for
15 min.

2. Materials and Methods

The MCE of (Mn,Fe)2(P,Si) can be tuned by varying the Fe and Si content [26–28].
We have selected x = 0.6 in Mn2−xFexSi0.5P0.5 due to the minimized hysteresis reported
in ref. [27]. In addition, for this family of compounds, slight deficiency in transition
metal elements can reduce the impurities and thermal hysteresis [29,30]. Therefore, the
composition of Mn1.3Fe0.6P0.5Si0.5 was chosen for researching. An ingot was prepared by
arc-melting in argon atmosphere from a mixture of raw materials: Mn (99.5%), P (99.5%),
FeP chunks (98%) and Si (99.999%). For accounting for the loss of Mn during arc-melting,
an excess of 5 wt.% of Mn was added to the mixture. The ingot was re-melted at least
six times with electromagnetic stirring then suction casted into an 8 mm diameter rod
for subsequent melt-extraction into microwires. Using a melt feeding speed of 20 µm/s
and a 30 cm diameter Cu wheel with a linear speed of 30 m/s, up to 7 cm long as-cast
microwires with ~35 µm diameters were obtained. For annealing studies, the microwires
were sealed in a quartz tube under Ar atmosphere and annealed at 1373 K for 15 min and
then water quenched.

The measurements were performed, employing a large quantity from the as-cast and
annealed microwires, giving that the obtained results are the average from the studied
samples. Powder X-ray diffraction (XRD) experiments at room temperature using Cu-Kα

radiation were performed to characterize for the crystal structure and phase composition
of the microwires. Microstructural and compositional details were obtained on a field
emission scanning electron microscope (SIGMA-500-Zeiss) with an energy dispersive
spectrometer (EDS). Magnetic measurements were carried out on a Quantum Design
Physical Property Measurement System (PPMS-16 T) using a standard vibrating sample
magnetometer (VSM) option. A set of the microwire arrays were close packed in a sample
holder with a length of ~3 mm and an inner diameter of ~1 mm. To avoid virgin effects,
the samples were precooled down to 10 K. Isothermal magnetization measurements were
performed using a discontinuous protocol for erasing the magnetic hysteresis prior to any
measurement [31]. The isothermal magnetic entropy change (∆Siso) is indirectly determined
from magnetization measurements by applying the Maxwell relation:

∆Siso = µ0

∫ H

0
(

∂M
∂T

)
H′

dH′. (1)

The relative cooling power (RCP) are calculated using the following Equation:

RCP = ∆Spk
isoδFWHM, (2)

where (δFWHM) is the full width at half maximum of the peak of isothermal magnetic
entropy change (∆Spk

iso).

3. Results and Discussion

The XRD patterns of the as-cast microwires and the Rietveld refinement results show
a main phase (82.1(7) wt.%) of the desired Fe2P hexagonal structure (space group of

P
−
62m) in addition to minority (Mn,Fe)5Si3 phase (space group of P63/mcm) as displayed

in Figure 1a. As this Fe2P phase contributes to the giant MCE of the Mn-Fe-P-Si family,
it is worth highlighting for its phase amount obtained in the as-cast microwires since its
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enhancement usually requires annealing of the as-cast ingots as reported in ref. [12]. The
lattice parameters found for the Fe2P phase are a = b = 6.09513(13) Å, c = 3.45230(10) Å.
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Figure 1. (a) XRD and Rietveld refinement results of the as-cast microwires. SEM of the (b) surface
and (c) radial cross-section of the as-cast microwires.

The as-cast microwires are observed with a continuous and smooth surface as evi-
denced from their scanning electron micrograph (SEM) presented in Figure 1b. Further
etching them with 4 wt.% hydrofluoric acid for 3 min, the radial cross-section of the mi-
crowires in Figure 1c reveals groove defects at the Cu-wheel side. Further magnification
shows fine equiaxed grains near the wheel contact (see area A), while fine dendrites are
observed (area B) further away from the wheel contact zone.

The EDS maps of the axial cross-section of the microwires presented in Figure 2a reveal
an overall uniform element distribution. Only very minor fluctuations for P and Si con-
centrations are noticed along the radial directions when performing EDS line scans across
the width and cross-section of the microwires (Figure 2b,c). These local inhomogeneities
could be attributed to the existence of impurity (Mn,Fe)5Si3 phase previously observed
from XRD data.
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Figure 2. (a) EDS maps of axial cross-section of the as-cast microwire. EDS line scans (b) along the
width of the microwire and (c) the microwire cross-section.

Figure 3a presents the M(T) data of the as-cast microwires for 0.05 T and their deriva-
tives in the inset, showing the Curie temperature (TC) of 138 K. The magnetization and
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specific heat measurements [32,33] are common methods for calculating the MCE per-
formance of the materials. Here, isothermal magnetization curves were measured for
determining the isothermal magnetic entropy change. Figure 3b presents the isothermal
magnetic entropy change as a function of temperature for magnetic field change up to
5 T. Their peak values (∆Spk

iso) for a field change of 2 and 5 T are found to be 1.9 and

4.6 J kg−1 K−1, respectively. The temperature corresponding to ∆Spk
iso values, denoted as

Tpk, is around 145 K. Furthermore, it has to be noted that despite the elevated content of
the Fe2P phase, the existence of the (Mn,Fe)5Si3 impurity phase could have a detrimental
effect on the magnetocaloric properties.
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Figure 3. (a) Temperature dependence of magnetization at 0.05 T and its derivatives in the inset.
(b) Isothermal magnetic entropy change as a function of temperature for the as-cast microwires for
different magnetic field changes.

Figure 4a presents the XRD data and Rietveld refinement results of the studied mi-
crowires upon annealing, which shows that Fe2P phase increases from 82.1(7) to 88.1(8) wt.%.
Furthermore, the lattice parameters a shrink, and lattice parameters c expand after anneal-
ing, and the values are a = b = 6.08589(10) Å, c = 3.45741(10) Å. Figure 4b,c show the field
dependence of Tpk and ∆Spk

iso of the as-cast and annealed microwires. It is observed that
they are enhanced upon annealing and a two-fold increase from 1.9 and 4.6 to 5.1 and
10.5 J kg−1 K−1 (for a field change of 2 and 5 T) is achieved, which is comparable to Gd
(9.8 J kg−1 K−1 for 5 T) [27]. These larger values of ∆Spk

iso can be attributed to the larger
amount of the Fe2P phase and to the subsequent variation in the composition (closer to
the nominal one after annealing). There is slightly variation in the RCP after annealing,
as shown in Figure 4d. The RCP values of microwires before and after annealing are
160 are 178 J kg−1, larger than 90 J kg−1 of Mn1.3Fe0.65P0.5Si0.5 for a field change of 2 T [34],
indicating a better cooling performance. The larger RCP values can be attributed to the
broad ferromagnetic-paramagnetic phase transition.
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4. Conclusions

The Mn1.3Fe0.6P0.5Si0.5 microwires have been successfully fabricated by the melt-
extraction technique. An elevated Fe2P phase content of 82.1 wt.% has been attained
for the as-cast microwires, which is significantly improved in comparison to conven-
tional methods. A variable solidification structure along the radial direction of the as-cast
microwires is found, from fine Fe2P grains near the copper wheel contact → dendritic
Fe2P grains + secondary (Mn,Fe)5Si3 phase as we advance further away from the wheel
contact. The Fe2P phase content increases up to 88.1 wt.% upon further annealing, leading
to an observed two-fold increase in the isothermal magnetic entropy change peak values
from 1.9 and 4.6 J kg−1 K−1 to 5.1 and 10.5 J kg−1 K−1 for a field change of 2 T and 5 T.
The RCP values of annealed melt-extracted microwires are 178 and 440 J kg−1 (for 2 T and
5 T). These results indicated that the annealed melt-extracted microwires show improved
MCE performance.
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