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A B S T R A C T

In this paper we study the existence, multiplicity and the stability properties of lateral (positive) periodic
oscillations in a class of simple parallel-plate MEM devices based on graphene and graphene-like materials
with a non-constant 𝑇 -periodic input voltage, which are modeled by Duffing equations. We also complete some
partial results previously obtained in Kadyrov et al., (2021) for this kind of models and show analytically the
existence of a positive asymptotically locally stable 𝑇 -periodic oscillation, in particular for the graphene-based
model. These results could be an approach to a design principle for stabilizing the device without an external
controller by means of a tuning of the input voltage. Numerical continuation and simulations are also provided
in order to illustrate theoretical results and to reveal the robustness of the graphene-based MEMS compared
to the traditional ones.
. Introduction

Microelectromechanical systems (MEMS) are micro-scale devices
hat integrates mechanical elements and electronics components on a
ommon substrate (typically silicon) through micro fabrication tech-
ology, and as a whole system. These devices are employed as physical
uantities sensors (e.g., inertia, pressure, mass, temperature, force and
umidity sensors) and as actuators (e.g., RF switches, micro-grippers
nd thermal actuators). Furthermore, MEMS provide high performance,
ong-life and smart functionalities, and the achievement of complicated
asks in small places, everything by low fabrication and operational
osts [1]. Hence, theoretical approaches based on mathematical mod-
ling and simulations that allow the design of higher quality devices
with novel materials) and the optimization of those that are available,
voiding the former trial and error approach, could be of interest for
esearchers in MEMS.

It is worth to mention that there exist some novel materials that
ould be employed in the fabrication of MEMS leading to devices with
promising improved performance than the conventional ones. For

xample, the graphene is a mono-layer of carbon atoms that are tightly
ounded and organized into a planar honeycomb lattice [2] with as-
onishing elastic, electromechanical, thermomechanical and electrical
roperties which make it suitable for applications in electronic devices

✩ Funding: This work was supported by the Pontificia Universidad Javeriana Cali Capital Semilla, Colombia project n◦ 020100750 and grants
GC2018-096265-B-I00, PGC2018-100680-B-C21 and P20-01160.
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1 Research assistant in the project 020100750.

like MEMS (see for example [2], [3], [4], [5], [6], [7], [8]). The
elastic properties of this novel material has been studied in works
like [9] and [10] within a framework of nonlinear elastic stress-strain
response, and recently in [11] the authors considered the mechanical
resonant modes in graphene and demonstrate a route for the generation
of mechanical frequency combs in graphene resonators undergoing
symmetry-breaking forces.

In this paper, we are interested in the stable periodic responses
of a class of graphene-based devices. Specifically, we study from a
mathematical point of view the stable nonlinear oscillatory behavior
exhibited by electrostatic MEMS with a simple parallel-plate capacitor
configuration [1] and which are based on graphene and graphene-like
materials.

We consider a Duffing equation of the form

𝑥̈ + 𝑏𝑥̇ + ℎ(𝑥) =
𝐹 (𝑡)

(1 − 𝑥)2
(𝑥 < 1), (1)

with 𝑏 > 0, ℎ ∈ 𝐶1(R) and 𝐹 ∈ 𝐶(R∕𝑇Z) a positive 𝑇 -periodic function
for some real 𝑇 > 0.

The general Eq. (1) is inspired by the MEMS models with a parallel-
plate capacitor structure and an AC–DC input voltage 𝑉 (𝑡) such that
𝐹 (𝑡) = 𝛽𝑉 2(𝑡), where 𝛽 > 0 is a physical constant, and where 𝑥(𝑡) is
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Fig. 1. Idealized parallel-plate capacitor for the graphene-based MEMS.

he normalized distance between plates in time 𝑡 (see Fig. 1 for an
illustration). We remark that devices with this configuration consist in
two rectangular parallel electrodes; one of them fixed and the other
one movable in the transversal direction. As a consequence of the
driving voltage there is an attracting force generated between the two
electrodes called electrostatic force which tends to deflect the movable
electrode. This last one is usually a flexible structure that generates
an elastic restoring force that acts on the opposite direction of the
electrostatic force (see [1] for more details). The constant input voltage
for which the forces are balanced is known as the pull-in voltage.
Beyond this constant voltage the plates collide.

Hence the right side of (1) represents the electrostatic force between
plates and the function ℎ is such that 𝑓𝑒 = −ℎ represents the restor-
ing force due to, for example, the manufacturing materials employed
in MEMS structures (see [1] for some classical MEMS models with
ODEs). Then, we postulate the existence of a dimensional maximum
deformation of the micro structure under stress, which leads to a non-
dimensional strain parameter 𝜇𝑒 > 0. This means that 𝑓𝑒 is restoring
whenever |𝑥| < 𝜇𝑒, i.e., 𝑥ℎ(𝑥) > 0 if 𝑥 ≠ 0, 𝑓𝑒(±𝜇𝑒) = 0, and 𝑓𝑒 is
not recovering when |𝑥| > 𝜇𝑒, i.e., the sign of 𝑓𝑒 is the same of the
deformation: 𝑥ℎ(𝑥) < 0 if |𝑥| > 𝜇𝑒. Thus, with this in mind we assume
the following general hypotheses over the function ℎ:

H1. ℎ is odd (we are assuming that the magnitude of the restoring
force is the same by axial compression or expansion).

H2. ∃ 𝜇𝑒 > 0: ℎ(𝜇𝑒) = 0, ℎ > 0 on
]

0, 𝜇𝑒
[

and ℎ′(𝜇𝑒) < 0 < ℎ′(0).
H3. ℎ ∈ 𝐶1(R) ∩ 𝐶2(

]

0, 𝜇𝑒
[

) and ℎ′′ ≤ 0 on
]

0, 𝜇𝑒
[

.

We set the class of functions  like those real-valued functions
verifying hypotheses H1, H2 and H3. Hence, in this work we are
interested in finding 𝑇 -periodic solutions of (1) whenever ℎ ∈ , with
range in

]

−𝜇𝑒, 𝜇𝑒
[

. Henceforth, we shall consider that any solution of
(1) whose range is not included in

]

−𝜇𝑒, 𝜇𝑒
[

is physical meaningless.
In particular for the non-dimensional graphene-based model first

introduced in [12] we have ℎ(𝑥) = 𝑥−𝛼|𝑥|𝑥 and 𝜇𝑒 =
1
𝛼 for 𝛼 > 0 in (1).

It is not difficult to check that ℎ ∈ . We remark that 𝛼 is a constant
parameter associated to the mechanical properties of the graphene and
the geometry of the device. Thus, the non-dimensional graphene-based
model is given by

𝑥̈ + 𝑏𝑥̇ + 𝑥 − 𝛼|𝑥|𝑥 =
𝛽𝑉 2(𝑡)
(1 − 𝑥)2

. (2)

In [12] the authors study some periodic solutions for (1) but they
do not search for the corresponding stability properties. We remark
that these periodic solutions are typically unstable (for more details
see first paragraph, page 6). In this paper we focus on get the stable
periodic solutions of this model. Thus the main objective of this paper
is to complete the study given in [12] providing analytical results about
multiplicity, existence and stability properties of periodic oscillations of
general Eq. (1). In particular, we will focus on getting stable periodic
solutions of this model.

Next, we provide some preliminaries. Let us define

𝐹 ∶= min𝐹 , 𝐹 ∶= max𝐹 , (3)
𝑚 𝑀

2

𝜇1 ∶= min {1, 𝜇𝑒}, (4)

nd a function 𝜙(𝑥) called the auxiliary function associated to (1) by

(𝑥) ∶= (1 − 𝑥)2ℎ(𝑥) (𝑥 < 1).

.1. The Lower and Upper Solutions approach

It is worthy to mention that the problem of finding 𝑇 -periodic
olutions of (1) is equivalent to solve the periodic boundary problem
iven by (1) along with the boundary conditions 𝑥(0) = 𝑥(𝑇 ), 𝑥̇(0) =
̇ (𝑇 ). Thus, in order to find 𝑇 -periodic solutions of (1) we can follow
he Lower and Upper Solutions approach (see [13]). Specifically, we
hall use constant lower and upper solutions of the periodic boundary
roblem associated to (1).

A constant function 𝑢(𝑡) ≡ 𝛾 is said to be a lower solution of (1) if
or all 𝑡 ∈ R

̈ + 𝑏𝑢̇ + ℎ(𝑢) ≥ 𝐹 (𝑡)
(1 − 𝑢)2

⟺ 𝜙(𝛾) ≥ 𝐹 (𝑡). (5)

The definition of upper solution is similar but reversing the inequality
in (5). Thus an upper solution 𝑢(𝑡) ≡ 𝜂 of (1) satisfies that for all 𝑡 ∈ R

𝜙(𝜂) ≤ 𝐹 (𝑡). (6)

We notice that, whenever the inequality (5) (resp. (6)) is strict, then 𝛾
(resp. 𝜂) is called a strict lower solution (resp. strict upper solution) of
(1).

Remark 1. The theory basically says that if we have 𝛾 and 𝜂 a pair of
constant lower and upper solutions of (1) respectively, such that 𝛾 < 𝜂, then
there exists a 𝑇 -periodic solution 𝑥0(𝑡) of (1) which satisfies for all 𝑡 ∈ R

𝛾 ≤ 𝑥0(𝑡) ≤ 𝜂.

This claim follows as a consequence of Theorem 5.3 (chapter 1) in [13],
because we have a problem with a linear dependence on the derivative 𝑥̇
and the function 𝑔(𝑡, 𝑥) = ℎ(𝑥) − 𝐹 (𝑡)

(1−𝑥)2 is continuous on its domain.

Remark 2. Let us assume that 𝛾 and 𝜂 are a pair of constant lower
and upper solutions of (1) such that 𝜂 < 𝛾 (reversed order), that the
coefficient 𝑏 > 0 is appropriately bounded and that 𝑔(𝑡, 𝑥) has a continuous
partial derivative with respect to 𝑥 verifying for all (𝑡, 𝑥) ∈ R × ]𝜂, 𝛾[:

𝑥(𝑡, 𝑥) <
(

𝜋
𝑇

)2
. Then there exists a 𝑇 −𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 solution 𝑣0(𝑡) of (1) which

atisfies for all 𝑡 ∈ R

𝜂 ≤ 𝑣0(𝑡) ≤ 𝛾.

This result is consequence of a particular case of Theorem 3.2 (chapter 5)
in [13].

We notice that (5) and (6) are equivalent to 𝜙(𝛾) ≥ 𝐹𝑀 and 𝜙(𝜂) ≤
𝑚 respectively. In particular, the solutions of equation

(𝑥) = 𝐹𝑀 , (7)

re lower solutions of (1), and the solutions of equation

(𝑥) = 𝐹𝑚, (8)

re upper solutions of (1). These lower and upper solutions are called
on-strict constant lower and upper solutions.

Next we study the constant lower and upper solutions for (1). First
e prove that if ℎ ∈  then the associated auxiliary function 𝜙 is
nimodal on

[

0, 𝜇1
]

(Lemma 1) what allow us know the distribution
f positive non-strict constant lower and upper solutions (Lemma 2).

emma 1. If ℎ ∈  then 𝜙 has the following properties:

(𝑖) 𝜙 ∈ 𝐶1(R) ∩ 𝐶2(
]

0, 𝜇1
[

) and verifies that 𝜙 > 0 on
]

0, 𝜇1
[

with
𝜙(0) = 𝜙(𝜇 ) = 0.
1
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(𝑖𝑖) 𝜙 has a unique critical point 𝑐 ∈
]

0, 𝜇1
[

and thus 𝜙′(𝑥) > 0 ∀𝑥 ∈ [0, 𝑐[
and 𝜙′(𝑥) < 0 ∀𝑥 ∈

]

𝑐, 𝜇1
[

.

Proof. Claim (𝑖) is obvious from the properties of ℎ. Now let us consider
the derivative

𝜙′(𝑥) = (1 − 𝑥)2ℎ′(𝑥) − 2(1 − 𝑥)ℎ(𝑥).

Then 𝑥 ∈
]

0, 𝜇1
[

is a critical point of 𝜙 if and only if

𝛷(𝑥) ∶=
ℎ′(𝑥)
ℎ(𝑥)

− 2
1 − 𝑥

= 0. (9)

ince ℎ(0) = 0, ℎ > 0 on
]

0, 𝜇𝑒
[

and ℎ′(𝜇𝑒) < 0 < ℎ′(0) then

lim
𝑥→0+

𝛷(𝑥) = ∞, lim
𝑥→𝜇−1

𝛷(𝑥) = −∞. (10)

On the other hand, 𝛷 is strictly decreasing on
]

0, 𝜇1
[

. Effectively,

′(𝑥) =
ℎ′′(𝑥)ℎ(𝑥) − (ℎ′(𝑥))2

ℎ2(𝑥)
− 2

(1 − 𝑥)2
,

and thus 𝛷′ < 0 on
]

0, 𝜇1
[

, because ℎ′′ ≤ 0 on
]

0, 𝜇𝑒
[

and ℎ > 0 on
]

0, 𝜇𝑒
[

.
In consequence, 𝛷 has a unique root 𝑐 ∈

]

0, 𝜇1
[

. Clearly, from (9)
and (10) we have that 𝛷(𝑥) > 0 on ]0, 𝑐[ and 𝛷(𝑥) < 0 on

]

𝑐, 𝜇1
[

. Claim
(𝑖𝑖) then follows since 𝜙′(0) = ℎ′(0). □

Now, let us define

𝜙𝑀 ∶= max
𝑥∈]0,𝜇1[

𝜙(𝑥) = 𝜙(𝑐) > 0, (11)

where 𝑐 is the unique critical point of 𝜙 given in Lemma 1. Thus, the
following lemma provides information about the solutions of (7) and
(8) on the domain

]

−𝜇𝑒, 𝜇1
[

.

Lemma 2 (Existence of Non-Strict Lower and Upper Solutions for (1)). Let
∈  and assume that 𝐹𝑀 ≤ 𝜙𝑀 in (1). Then Eq. (7) has at most two roots

0 < 𝓁1 ≤ 𝓁2 on
]

−𝜇𝑒, 𝜇1
[

, and Eq. (8) has at most two roots 0 < 𝑢1 ≤ 𝑢2
on

]

−𝜇𝑒, 𝜇1
[

which verify that

0 < 𝑢1 ≤ 𝓁1 ≤ 𝑐 ≤ 𝓁2 ≤ 𝑢2.

f 𝐹 is a non-constant function then 𝑢1 < 𝓁1 and 𝓁2 < 𝑢2. Moreover, if
𝑀 < 𝜙𝑀 then both 𝓁𝑖 and both 𝑢𝑖 are different.

roof. From Lemma 1 we have that 𝜙 is increasing on [0, 𝑐[ and
ecreasing on

]

𝑐, 𝜇1
[

. Thus, if 𝐹𝑀 = 𝜙𝑀 then one has that 𝓁1 = 𝓁2 = 𝑐,
and if 𝐹𝑀 < 𝜙𝑀 , by the Intermediate Value Theorem applied to the
function 𝜙 restricted to the intervals ]0, 𝑐[ and

]

𝑐, 𝜇1
[

respectively, we
obtain the existence of 𝓁1 ∈ ]0, 𝑐[ and 𝓁2 ∈

]

𝑐, 𝜇1
[

such that 𝜙(𝓁1) =
𝑀 = 𝜙(𝓁2). Notice that we have at most 𝓁1 and 𝓁2 since 𝜙 is a strictly
onotonic function on each interval. An analogous reasoning shows

he existence of 0 < 𝑢1 < 𝑢2 such that 𝜙(𝑢1) = 𝐹𝑚 = 𝜙(𝑢2) since
0 < 𝐹𝑚 ≤ 𝐹𝑀 < 𝜙𝑀 . The order of the roots 𝑢1 ≤ 𝓁1 < 𝑐 < 𝓁2 ≤ 𝑢2
follows from the monotonic character of function 𝜙 on the intervals
]0, 𝑐[ and

]

𝑐, 𝜇1
[

, with the strict inequalities holding whenever 𝐹𝑚 < 𝐹𝑀 .
Finally, the reader should notice that since 0 < 𝐹𝑚 and 𝜙 < 0 on

]

−𝜇𝑒, 0
[

,
then we have no more roots of Eqs. (7) and (8) besides those already
provided. □

1.2. The main results

We assume from now on that 𝐹 is non-constant and notice that the
preceding approach lead us to a first result about the existence of 𝑇 -
periodic solutions of (1) whenever we take ℎ ∈  and 0 < 𝑏 < 𝑏∗,
0 < 𝑇 < 𝑇 ∗ for certain computable bounds 𝑏∗ and 𝑇 ∗ (see for instance
Theorem 1 for the graphene model). Thus, if 𝐹𝑀 ≤ 𝜙𝑀 then there exist
at least two 𝑇 -periodic solutions of (1), 𝑥0(𝑡) and 𝑣0(𝑡), such that for all
𝑡 ∈ R
0 < 𝑢1 ≤ 𝑣0(𝑡) ≤ 𝓁1 ≤ 𝓁2 ≤ 𝑥0(𝑡) ≤ 𝑢2 < 𝜇1, 𝑥

3

here 𝑢𝑖 and 𝓁𝑖 are a posteriori bounds of the solutions that are given
by Lemma 2. Moreover, it is possible to prove that 𝑣0 is asymptotically
locally stable by means of an additional restriction over 𝑏 that is
imposed by the linearization technique (Liapounoff-Zukovskii criteria
for Hill’s equations).

Perhaps, this is the first analytical result about stability for periodic
solutions for the general model (1) introduced by Kadyrov et al. in [12].
Indeed, the authors in [12] do not provide any analytical results about
the stability for the periodic solutions obtained in Theorem 1 there, and
only performed numerical examples. Furthermore, the periodic solution
presented in that paper is normally unstable, because it is obtained
via well ordered lower and upper solutions (see Proposition 3.1 and
subsequent Remark in [14]), hence it corresponds to the solution 𝑥0(𝑡),
forgetting the most crucial periodic solution 𝑣0(𝑡) which will be typi-
cally stable. Thus we aim to complete the study presented in [12] and
to provide an analysis about stability properties of periodic solutions of
the general differential Eq. (1), in particular, the implications over the
graphene model (2).

Concretely, when this result is applied to a graphene-based MEMS
modeled by (2), it is not difficult to obtain the following result (Theo-
rem 1). First we provide some necessary definitions. Let us consider

𝑉𝑚𝑎𝑥 = max
𝑡∈[0,𝑇 ]

𝑉 (𝑡), 𝑉𝑚𝑖𝑛 = min
𝑡∈[0,𝑇 ]

𝑉 (𝑡),

and the auxiliary function associated to the graphene-base model given
by

𝜙𝛼(𝑥) = (1 − 𝑥)2(𝑥 − 𝛼|𝑥|𝑥).

Assume that 𝛽𝑉 2
𝑚𝑎𝑥 < max]0,𝜇1[ 𝜙𝛼 and for 𝑠 ∈

]

0, ( 𝜋𝑇 )
2
[

let us define

∶
[

𝑠, ( 𝜋𝑇 )
2
]

→ R as

𝐺(𝓁) = 𝓁 − 𝑠
√

𝓁
cot

√

𝓁
(𝑇
2

)

, (12)

whenever 𝑠 ≤ 𝓁 ≤
(

𝜋
𝑇

)2
. Thus, 𝐺 is a continuous non-negative function

that is zero only on the boundary. We remark that function 𝐺 arises
from the methodology in order to employ Theorem 3.2 in [13] (chapter
5). Then, if 𝑢1 and 𝓁1 denote the positive roots given by Lemma 2 with
the auxiliary function 𝜙𝛼 for the graphene model and 𝐹 (𝑡) = 𝛽𝑉 2(𝑡), we
et

∗ =
𝜙′
𝛼(𝑢1)

(1 − 𝑢1)2
,

and define the following quantities

𝑏(𝑠∗) ∶= max
𝓁∈

[

𝑠∗ ,( 𝜋𝑇 )2
]

𝐺(𝓁), 𝑇 ∗ = 𝜋
(1 − 𝑐𝛼)
√

𝜙′
𝛼(𝑢1)

,

∗ = min

{

2

√

𝜙′
𝛼(𝓁1)

(1 − 𝓁1)
, 𝑏(𝑠∗)

}

,

or 0 < 𝑇 ≤ 𝑇 ∗, where 𝑐𝛼 is the unique critical point of 𝜙𝛼 given by
emma 1.

heorem 1. Assume that 𝑉 2
𝑚𝑎𝑥 < 𝜙𝛼 (𝑐𝛼 )

𝛽 , 0 < 𝑇 ≤ 𝑇 ∗ and 0 < 𝑏 < 𝑏∗.
Then there exist at least two 𝑇 -periodic solutions 𝑥0(𝑡) and 𝑣0(𝑡) of (2) such
that for all 𝑡 ∈ [0, 𝑇 ]

0 < 𝑣0(𝑡) < 𝑥0(𝑡),

here 𝑣0(𝑡) is asymptotically locally stable. Additionally, if we assume that

− 2𝛽𝑉 2
𝑚𝑖𝑛 ≤

( 𝜋
𝑇

)2
+ 𝑏2

4
, (13)

hen 𝑥0(𝑡) and 𝑣0(𝑡) are the only positive 𝑇 -periodic solutions of (2) and
(𝑡) is unstable.
0
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The main purpose of this work is to provide a new general result
about the existence, multiplicity, and the stability properties of 𝑇 -
periodic solutions of (1) with lesser restrictive conditions than those
imposed in Theorem 1. Hence, we shall complete the partial results
for (1) stated in [12]. For that purpose we will combine the known
multiplicity results for periodic solutions of a Duffing equation with
convex potential (see [15]) and some results that relate the asymptotic
stability of periodic solutions with Topological Degree (see [16,17]),
in order to obtain results for the existence of asymptotically stable
periodic solutions of (1) (see Section 2).

Next we present some necessary preliminaries in order to introduce
the main result of this work.

Let 𝑝 ∈ [1,∞]. Then we define 𝐾(𝑝, 𝑇 ) as the best Sobolev constant
in the inequality

𝐶‖𝑢‖2𝑝 ≤ ‖𝑢̇‖22,

for all 𝑢 ∈ 𝐻1
0 (0, 𝑇 ), which is explicitly given by (see [18,19])

𝐾(𝑝, 𝑇 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2𝜋

𝑝𝑇 1+ 2
𝑝

(

2
2 + 𝑝

)1− 2
𝑝 ⎛
⎜

⎜

⎝

𝛤 ( 1𝑝 )

𝛤 ( 12 + 1
𝑝 )

⎞

⎟

⎟

⎠

2

, if 1 ≤ 𝑝 < ∞,

4
𝑇
, if 𝑝 = ∞.

Now, we are able to state our main result about the existence and
he stability properties of periodic solutions of the general Eq. (1).

heorem 2. Consider Eq. (1), let ℎ ∈  and 𝐶0 = max {ℎ′(0), 2𝐹𝑀} for 𝐹
non-constant. Assume that 𝐹𝑀 < 𝜙𝑀 and that there exists some 𝑝 ∈ [1,∞]
such that

‖𝑎‖𝑝 <
(

1 + 𝑇 2𝑏2

4𝜋2

)

𝐾(2𝑝∗, 𝑇 ), (14)

where 𝑎(𝑡) ∶= 𝐶0 − 2𝐹 (𝑡) and 𝑝, 𝑝∗ are conjugate exponents. Then (1)
has exactly two positive 𝑇 -periodic solutions 𝑥(𝑡) and 𝑣(𝑡) verifying that
𝑣(𝑡) < 𝑥(𝑡) for all 𝑡 ∈ [0, 𝑇 ]. Moreover, 𝑣(𝑡) is asymptotically locally stable
and 𝑥(𝑡) is unstable.

Remark 3. Theorem 2 completes the study about positive 𝑇 -periodic
solutions of (1) by giving information about their stability properties and
multiplicity. In fact, Theorem 2 shows that, under certain conditions, (1) ad-
mits exactly two positive 𝑇 -periodic solutions, one of them is asymptotically
locally stable and the other is unstable.

Next corollary provides a more practical condition than (14) for the
cases 𝑝 = ∞ and 𝑝 = 1.

Corollary 1. Let ℎ and 𝐶0 be as in Theorem 2. Assume that some of the
following conditions holds:

(a)
𝐶0
2

− 𝜋2

2𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

< 𝜙𝑀 ,

and

𝐹𝑚, 𝐹𝑀 ∈
]

𝐶0
2

− 𝜋2

2𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

, 𝜙𝑀

[

.

(b) 𝐹𝑀 < 𝜙𝑀 and

𝐹 >
𝐶0
2

− 2
𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

,

where 𝐹 ∶= 1
𝑇 ∫ 𝑇

0 𝐹 (𝑡)𝑑𝑡.

hen conclusion in Theorem 2 is also true.

In particular, we obtain the following results for the graphene-based
EMS model.
4

Theorem 3. Assume for Eq. (2) that 𝑉 2
𝑚𝑎𝑥 < 𝜙𝛼 (𝑐𝛼 )

𝛽 and that there exists
𝑝 ∈ [1,∞] such that

‖

‖

‖

1 − 2𝛽𝑉 2(𝑡)‖‖
‖𝑝

<
(

1 + 𝑇 2𝑏2

4𝜋2

)

𝐾(2𝑝∗, 𝑇 ), (15)

where 𝑝, 𝑝∗ are conjugate exponents. Then (2) has exactly two 𝑇 -periodic
solutions 𝑥0(𝑡) and 𝑣0(𝑡) such that for all 𝑡 ∈ [0, 𝑇 ]

< 𝑣0(𝑡) < 𝑥0(𝑡),

here 𝑣0(𝑡) is asymptotically locally stable and 𝑥0(𝑡) is unstable.

emark 4. Theorem 3 provides a more complete insight about 𝑇 -periodic
scillations in the graphene-based MEMS than the one obtained in Theorem
stated in [12].

A more practical condition than (15) for the cases 𝑝 = ∞ and 𝑝 = 1
s given in the following corollary.

orollary 2. Let 𝜂1 ∶= 1
2𝛽 − 𝜋2

2𝛽𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

and 𝜂2 ∶= 𝜙𝛼 (𝑐𝛼 )
𝛽 . Assume

that for Eq. (2) some of the next conditions holds:

(a) 𝜂1 < 𝜂2, 𝑉 2
𝑚𝑖𝑛 > 𝜂1 and 𝑉 2

𝑚𝑎𝑥 < 𝜂2.
(b) 𝑉 2

𝑚𝑎𝑥 < 𝜂2 and ‖𝑉 ‖

2
2 >

𝑇
2𝛽 − 2

𝛽𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

.

Then conclusion in Theorem 3 is also valid.

Remark 5. We notice that Theorem 1 and Corollary 2 provide results about
the existence, multiplicity and the stability properties of positive 𝑇 -periodic
solutions of (2). In this sense, Corollary 2 requires less restrictive conditions
than those imposed in Theorem 1 (with all conditions assumed). Effectively,
if we assume that all hypotheses in Theorem 1 hold then condition (𝑎)
in Corollary 2 is satisfied. More precisely, 𝜂1 < 𝜂2 is equivalent to have
1 − 2𝜙𝛼(𝑐𝛼) <

𝜋2

𝑇 2 + 𝑏2

4 which is true because from hypotheses in Theorem 1
we have 𝛽𝑉 2

𝑚𝑖𝑛 < 𝜙𝛼(𝑐𝛼) and (13) holds. Besides, 𝑉 2
𝑚𝑖𝑛 > 𝜂1 is equivalent to

(13) and 𝑉 2
𝑚𝑎𝑥 < 𝜂2 is a direct assumption in Theorem 1.

2. Proofs

Proof of Theorem 2. In order to prove this result, we consider three
steps. First we check the multiplicity of positive 𝑇 -periodic solutions
of (1). Next we shall prove the existence of constant lower and upper
solutions for (1). Finally we shall prove the existence and stability
properties of positive 𝑇 -periodic solutions of (1).

Multiplicity: We notice that 𝑎(𝑡) = 𝐶0 − 2𝐹 (𝑡) ∈ 𝐿1(0, 𝑇 ) and is 𝑇 -
eriodic because 𝐹 ∈ 𝐶(R∕𝑇Z). Furthermore, because 𝐶0 ≥ 2𝐹𝑀 > 0

and 𝐹 is non-constant we have that 𝑎(𝑡) > 0 almost everywhere on
. Now let us define 𝑔(𝑡, 𝑥) = ℎ(𝑥) − 𝐹 (𝑡)

(1−𝑥)2 so that (1) turns into
𝑥̈ + 𝑏𝑥̇ + 𝑔(𝑡, 𝑥) = 0. Then 𝑔 ∈ 𝐶0,1(R∕𝑇Z ×

]

0, 𝜇1
[

) and we have that

𝑥(𝑡, 𝑥) = ℎ′(𝑥) −
2𝐹 (𝑡)

(1 − 𝑥)3
and 𝑔𝑥𝑥(𝑡, 𝑥) = ℎ′′(𝑥) −

6𝐹 (𝑡)
(1 − 𝑥)4

.

Since ℎ ∈ , 𝐹 (𝑡) > 0 for all 𝑡 ∈ R, 𝜇1 ≤ 𝜇𝑒 and 𝐶0 ≥ ℎ′(0) > 0 it follows
that for all 𝑡 ∈ R and 𝑥 ∈

]

0, 𝜇1
[

𝑔𝑥(𝑡, 𝑥) ≤ ℎ′(0) − 2𝐹 (𝑡) ≤ 𝑎(𝑡) and 𝑔𝑥𝑥(𝑡, 𝑥) < 0.

Thus, from hypothesis (14) and Lemma 4 in Appendix we conclude
that (1) has at most two non-trivial 𝑇 -periodic solutions with range in
]

0, 𝜇1
[

(positive solutions).
Strict constant lower and upper solutions: Since ℎ ∈ , 𝐹𝑀 < 𝜙𝑀 and

𝐹 is a non-constant function, it follows from Lemma 2 that there exist
non-strict constant lower and upper solutions for (1), 𝓁1, 𝓁2 and 𝑢1, 𝑢2
respectively, such that

0 < 𝑢1 < 𝓁1 < 𝑐 < 𝓁2 < 𝑢2 < 𝜇1,

whenever 𝑥 ∈
]

−𝜇𝑒, 𝜇1
[

. Moreover, 𝜙(𝑢1) = 𝜙(𝑢2) = 𝐹𝑚 and 𝜙(𝓁1) =
𝜙(𝓁2) = 𝐹𝑀 . From Lemma 1 we know that 𝜙 is a positive continuous
function on

]

0, 𝜇
[

which is increasing (𝜙′ > 0) on 0, 𝑐 and decreasing
1 ] [
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(𝜙′ < 0) on
]

𝑐, 𝜇1
[

. Thus, for 𝑖 = 1, 2 there exist positive and small
enough constants 𝛿𝑖, 𝜁𝑖 such that

0 < 𝑈1 < 𝐿1 < 𝑐 < 𝐿2 < 𝑈2 < 𝜇1,

where 𝑈1 = 𝑢1 − 𝛿1, 𝑈2 = 𝑢2 + 𝛿2, 𝐿1 = 𝓁1 + 𝜁1 and 𝐿2 = 𝓁2 − 𝜁2 which
verify

𝜙(𝑈1) < 𝐹𝑚, 𝜙(𝑈2) < 𝐹𝑚, 𝜙(𝐿1) > 𝐹𝑀 and 𝜙(𝐿2) > 𝐹𝑀 .

Hence, 𝐿1, 𝐿2 and 𝑈1, 𝑈2 are, respectively, a pair of strict constant
lower and upper solutions for (1).

Existence and Stability properties of 𝑇 -periodic solutions: We remark
that 𝑔(𝑡, 𝑥) and 𝑔𝑥(𝑡, 𝑥) verify the 𝐿1-Carathéodory conditions on [0, 𝑇 ]×
]

0, 𝜇1
[

because ℎ ∈  and 𝐹 ∈ 𝐶(R∕𝑇Z).
As a consequence of Theorem 5.3 in [13] (chapter 1) and Remark 1

we obtain the existence of a 𝑇 -periodic solution of (1), 𝑥(𝑡), such that
for all 𝑡 ∈ R

𝐿2 < 𝓁2 ≤ 𝑥(𝑡) ≤ 𝑢2 < 𝑈2. (16)

On the other hand, we have that 𝐿1 > 𝑈1 are a pair of strict
constant lower and upper solutions of (1) and 𝑔𝑥(𝑡, 𝑥) ≤ 𝑎(𝑡) for all
(𝑡, 𝑥) ∈ R×

[

𝑈1, 𝐿1
]

where 𝑎(𝑡) ≥ 0 and is positive on a subset of positive
measure. Now we shall apply Theorem 4.2 in [17] in order to obtain the
conclusion. Notice it is not difficult to prove that Theorem 4.2 in [17] is
valid whenever the 𝑥-domain is an open interval (see [20]). Moreover,
(14) generalizes, for arbitrary periods 𝑇 , the condition over the 𝑝-norm
of 𝑎+ in the set 𝛺𝑝,𝑐 defined in [17].

Besides, since the first step reveals that the number of non-trivial
positive 𝑇 -periodic solutions of (1) is finite, we have that all conditions
to apply Theorem 4.2 in [17] are fulfilled and hence there exists a
solution of (1), 𝑣0(𝑡), which is asymptotically locally stable and verifies
for all 𝑡 ∈ R that

𝑈1 < 𝑣(𝑡) < 𝐿1. (17)

Therefore 𝑥(𝑡) is the only 𝑇 -periodic solution of (1) which verifies (16)
and 𝑣(𝑡) is the only 𝑇 -periodic solution of (1) which verifies (17). We
conclude that 𝑥(𝑡) is unstable as a consequence of Proposition 3.1 and
the subsequent Remark in [14] (see also Theorem 1.1 in [20]). □

Proof of Corollary 1. Notice that 𝐹𝑚 < 𝐹𝑀 because 𝐹 is non-constant
and that 𝑎(𝑡) ≥ 0 for all 𝑡 ∈ R by definition. We will prove that
conditions (𝑎) and (𝑏) imply that (14) holds. Thus, under condition (𝑎)
we have 𝑝 = ∞ so that 𝑝∗ = 1 and 𝐾(2𝑝∗, 𝑇 ) = 𝜋2

𝑇 2 . Additionally, we
have 𝐹𝑀 < 𝜙𝑀 and
𝐶0
2

− 𝜋2

2𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

< 𝐹𝑚,

where this last inequality implies that for all 𝑡 ∈ R

≤ 𝑎(𝑡) = 𝐶0 − 2𝐹 (𝑡) ≤ 𝐶0 − 2𝐹𝑚 < 𝜋2

𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

,

o that |𝑎(𝑡)| < 𝜋2

𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

for all 𝑡 ∈ R. Hence (14) is satisfied for
𝑝 = ∞. Now let us assume that (𝑏) holds, then we have 𝑝 = 1, 𝑝∗ = ∞,
𝐾(2𝑝∗, 𝑇 ) = 4

𝑇 , 𝐹𝑀 < 𝜙𝑀 and

1
𝑇 ∫

𝑇

0
𝐹 (𝑡)𝑑𝑡 >

𝐶0
2

− 2
𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

.

ence

∫

𝑇

0
𝐹 (𝑡)𝑑𝑡 > 𝑇𝐶0 −

4
𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

,

hich implies that
𝑇

0
|𝑎(𝑡)|𝑑𝑡 = 𝑇𝐶0 − 2∫

𝑇

0
𝐹 (𝑡)𝑑𝑡 < 4

𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

,

o that (14) holds for 𝑝 = 1. Therefore, an application of Theorem 2
ith 𝑝 = ∞ and 𝑝 = 1 respectively finishes the proof. □
5

In order to proof Theorem 3 we need the following claim about
the maximum value of the auxiliary function 𝜙𝛼 on the interval

]

0, 𝜇1
[

henever 𝛼 ∈ [0,∞[. We remark that if 𝛼 = 0 then we obtain a linear
estoring force in the model (a canonical MEMS model, see [1]).

laim 1. Let 𝑞(𝛼) ∶= 𝜙𝛼(𝑐𝛼) for 𝛼 ∈ [0,∞[. Thus 𝑞 is a monotone
ecreasing function.

roof of Claim 1. For each 𝛼 ≥ 0, 𝑐𝛼 ∈
]

0, 𝜇1
[

is the unique critical
oint of 𝜙𝛼 such that 𝜙𝛼(𝑐𝛼) = max]0,𝜇1[ 𝜙𝛼 > 0 (when 𝛼 = 0 we have
0 =

1
3 and 𝜙0(

1
3 ) =

4
27 ). Furthermore, for 𝑥 ∈

]

0, 𝜇1
[

we have

𝜕𝜙𝛼(𝑥)
𝜕𝛼

= −𝑥2(1 − 𝑥)2 < 0,

so that 𝜙𝛼2 (𝑥) < 𝜙𝛼1 (𝑥) ≤ 𝜙𝛼1 (𝑐𝛼1 ) for all 𝑥 ∈
]

0, 𝜇1
[

and arbitrary
≤ 𝛼1 < 𝛼2. We conclude that 𝑞(𝛼2) < 𝑞(𝛼1). □

roof of Theorem 3. A straightforward computation shows that 𝑞(0) =
4
27 , so from hypothesis and Claim 1 we have for 𝛼 > 0 that 2𝛽𝑉 2

max <
𝜙𝛼(𝑐𝛼) = 2𝑞(𝛼) < 8

27 < 1. Since ℎ′(0) = 1 we obtain by taking
𝐹 (𝑡) = 𝛽𝑉 2(𝑡) that 𝐶0 = 1. Thus (15) implies that condition (14) holds
or 𝑎(𝑡) = 1 − 2𝛽𝑉 2(𝑡). An application of Theorem 2 leads us to the
onclusion. □

roof of Corollary 2. Let us assume that (𝑎) holds. Then 𝑉 2
𝑚𝑎𝑥 < 𝜙(𝛼)

𝛽
and

𝑉 2
𝑚𝑖𝑛 >

1
2𝛽

− 𝜋2

2𝛽𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

.

Then

0 ≤ 1 − 2𝛽𝑉 2(𝑡) ≤ 1 − 2𝛽𝑉 2
𝑚𝑖𝑛 <

𝜋2

𝑇 2

(

1 + 𝑇 2𝑏2

4𝜋2

)

,

and hence (15) is satisfied for 𝑝 = ∞. If we assume that now (𝑏) holds
e obtain that 𝛽𝑉 2

𝑚𝑎𝑥 < 𝜙(𝛼)
𝛽 and

∫

𝑇

0
𝑉 2(𝑡)𝑑𝑡 > 𝑇

2𝛽
− 2

𝛽𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

.

so that

𝑇 − ∫

𝑇

0
2𝛽𝑉 2(𝑡)𝑑𝑡 < 4

𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

.

This last inequality implies that ∫ 𝑇
0 |1 − 2𝛽𝑉 2(𝑡)|𝑑𝑡 < 4

𝑇

(

1 + 𝑇 2𝑏2

4𝜋2

)

and
then (15) holds for 𝑝 = 1. An application of Theorem 3 finishes the
proof. □

3. Some numerical results for a graphene-based MEMS model

In this section we present some numerical results for (2) and the
comparison with the canonical parallel-plate MEMS model (Nathanson’s
model, see [1]), in order to highlight the advantages of using graphene.

Parameters values for the graphene MEMS model: Let 𝐸 to
denote the Young’s modulus of the graphene, 𝐷 the absolute value of
the third order elastic stiffness modulus of graphene, 𝐴𝑐 and 𝐿 the
ross-sectional area and the length of the graphene strip, 𝑚 the mass
f the movable plate, 𝜖 the dielectric constant of the gap medium, 𝐴

the movable plate area, 𝑐 the damping coefficient and 𝑑 the initial gap
between the plates. Then we have for (2) that

𝑏 = 𝑐
√

𝐿
𝐸𝐴𝑐𝑚

, 𝛼 = 𝐷𝑑
𝐸𝐿

and 𝛽 = 𝜖𝐴𝐿
2𝐸𝐴𝑐𝑑3

.

Table 1 contains realistic values of the parameters that are em-
ployed to obtain the numerical results for the graphene-based MEMS
model, when a voltage 𝑉 (𝑡) = 𝑉𝐷𝐶 + 𝑉𝐴𝐶 cos (𝜔̂𝑡) is supplied. Notwith-
standing, we notice that 𝑉𝐷𝐶 and 𝑉𝐴𝐶 can be tuned to convenience
almost like ‘‘control parameters’’ to explore the dynamical behavior
of the system as long as the required conditions of Theorem 3 or
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Table 1
Parameters values.
𝛽 6.510 432 214 911 766 × 10−4 ∕V2

𝛼 2.029411764705882e-02
𝑏 1.153802627922852e-02
𝜔̂ 6.806139097297727
𝑇 9.231643986932663e-01

Fig. 2. Bifurcation diagram computed with AUTO using a pseudo arc length contin-
ation scheme. The blue solid line is the stable part of the branch whereas the red
ashed curve is the unstable one. The blue hollow square is the starting solution at
𝐴𝐶 = 3, the two black squares at 𝑉𝐴𝐶 = 19.9 are a stable (lower) and unstable (upper)

solutions close to the limit point (red asterisks) where the branch changes its stability.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Corollary 2 hold. Then we will consider 𝑉𝐷𝐶 = 5V and 𝑉𝐴𝐶 = 3V,
and then we will consider 𝑉𝐷𝐶 = 3V and 𝑉𝐴𝐶 = 1.5V.

Numerical continuation results:
Here we present numerical continuation results as one of the pa-

rameters is changed using AUTO which is a well tested and powerful
program to analyze (among others) periodic solutions of dynamical
systems [21].

Fig. 2 shows the bifurcation diagram where the primary continu-
ation parameter is the amplitude of the forcing 𝑉𝐴𝐶 for a fixed value
of the DC voltage 𝑉𝐷𝐶 = 5 V. The blue hollow square at 𝑉𝐴𝐶 = 3 is
the starting solution of the diagram which is stable and was computed
numerically solving a boundary value problem with the parameters and
boundary values inferred from part (a) in Corollary 2. As the branch
(solid line) moves to higher values of 𝑉𝐴𝐶 the stability is preserved up
to a critical value at which a limit point occurs (LP) (red asterisk). At
this point the branch becomes unstable (dashed line) and the value
of the continuation parameter diminishes until a vanishing value of
the alternating voltage is reached. The vertical axis is the norm of the
solution averaged over a period [21] and is just a scalar measure for
the bifurcation diagram. Note that the equilibria for 𝑉𝐴𝐶 = 0 (one stable
and another unstable) can be analytically computed for the autonomous
case. The symmetric shape of the negative 𝑉𝐴𝐶 part of the bifurcation
diagram is to be expected since the sign of alternating forcing does not
play a role in the bifurcation behavior.

Two solutions close to the LP (𝑉𝐴𝐶 = 19.9 (black squares)) has been
selected and correspond to the stable and unstable solutions predicted
by part (a) in Corollary 2. They will also appear in the stroboscopic
Poincaré plot of the next section. The linear stability around these
periodic solutions is measured by the corresponding Floquet multipliers
and can be relevant for the applications.

Fig. 2 is a numerical implementation of part a) in Corollary 2: when
the parameter lies in the appropriate interval we find two periodic
solutions with opposite stability that live always in the positive part
6

of 𝑥. Outside of the region no periodic solutions can be predicted and
the separating case occurs exactly where the stable and the unstable
periodic solution merge at a fold bifurcation.

In Fig. 3 we present the phase space representation of the positive
solution exactly at the Limit Point in the bifurcation diagram.

We notice that the zoom close to the rightmost end of the curves
shows a highly non symmetric and nonlinear behavior of the oscillation
of the plate of the graphene MEMS. The solutions are always far enough
from the singularity at 𝑥 = 1.

Stroboscopic map: Now we present some results to illustrate the
stability and basin of attraction associated to the positive 𝑇 -periodic
solution given by Corollary 1 which is asymptotically locally sta-
ble, through computation of the stroboscopic Poincaré map for the
graphene-based MEMS. The stroboscopic maps were computed by accu-
rately integrating forward and backwards in time with initial conditions
close to the orbits of interest but keeping the position and velocity
values only for integer time multiples of the period of the external
forcing. We have used Matlab solver ode45 with tolerances of the order
of 10−14.

The dynamical behavior of the trajectories can be visualized using
two different color-maps with four colors each and two different time
direction integrations. Color-bar A goes from green to blue and the
trajectories remain one quarter of the time at each successive color in a
forward time integration. The initial conditions for this case have been
selected in a grid around to the stable equilibrium point. Color-bar B
runs from yellow to red with the same convention (a quarter of the
total time at each sub color) in a backwards time integration close to
the unstable equilibrium point.

Fig. 4(a) shows the region of interest of the stroboscopic map when
𝑉𝐴𝐶 = 19.9V, with a mesh grid of 10200 nodes for the fixed point
on the left, and a mesh grid of 1270 nodes for the fixed point on the
right. Trajectories corresponding to the mesh grid of the fixed point
on the left are portrayed with color-bar A, and those corresponding
to the mesh grid of the fixed point on the right with the color-bar
B. The integration in the first case was to 3000 T and in the second
case was to −3000 T. Fig. 4(b) is a close up to the map that shows the
existence of a region containing the fixed point on the left, for which the
trajectories have an asymptotic behavior to that fixed point. This region
also seems to be bounded by some of the trajectories corresponding to
the mesh of the fixed point on the right. We notice the existence of
trajectories that escape towards the singularity, resulting in a possible
blow-up behavior.

A typical fish-like figure is formed around the stable–unstable equi-
librium couple. As expected the green ‘‘fish’’ shrinks at the fold bifur-
cation and disappears. Note that from the applications point of view
the region of interest is precisely the stable basin of attraction and the
unstable initial conditions have to be avoided.

Fig. 5 shows the region of interest of the stroboscopic map when
𝑉𝐴𝐶 = 4.5V by using the same color-maps as in the former case, a
mesh grid of 10200 nodes with a perturbation parameter of 1.95e−02
for the fixed point on the left, and a mesh grid of 7675 nodes with a
perturbation parameter of 3.46e−03 for the fixed point on the right.
The conditions of Theorem 1 are satisfied, thus as the previous section
shows, one of the positive 𝑇 -periodic solutions is asymptotically locally
stable and the other is unstable. Thus, we obtain the existence of a
region of initial conditions for which trajectories have an asymptotic
behavior to the fixed point on the left, moreover, this region is com-
pletely bounded by some of the trajectories with initial conditions
nearby the fixed point of the right. Note that for this case the basin
of attraction has increased significantly. This fact could be anticipated
from the numerical continuation diagram 2 by looking at the distance
between the two equilibria. In some sense the continuation and the
stroboscopic diagrams provide complementary information about the
dynamical behavior of the solutions.

Basin of Attraction Comparison: In this subsection we compare
the basins of attraction (see [1]), of the two MEMS models, paying
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s

Fig. 3. Phase space representation of the positive solution at the Limit Point in the bifurcation diagram, for this value of the 𝑉𝐴𝐶 parameter (20.1673) the stable and unstable
olution merge.
Fig. 4. Region of interest of the stroboscopic map and close up associated to the case 𝑉𝐴𝐶 = 19.9V. In 4(a) the desired experimental region is the green stable lobe around the
stable periodic solution. A separatrix curve can also be observed separating the stable and unstable regimes. The unstable equilibrium point has two unstable and two stable
directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Region of interest of the stroboscopic map associated to the case 𝑉𝐴𝐶 = 4.5V.
special attention to the robustness properties. In order to tackle the
comparison between the two models we need to ensure equivalent
operating conditions. Therefore we will use in both models the same
gap, area of the plates, damping coefficient, and the geometry of a
7

parallel-plate device. Additionally, we will take into account for the
Nathanson’s model a linear restoration force as follows:

𝐹 = −𝐸𝐴 𝑥 ,
𝑟𝑒𝑠 𝑐 𝐿
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here 𝐴𝑐 , 𝐿 and 𝑥 are defined as in Section 1, and 𝐸 denotes the
Young’s modulus of some material, for example, the silicon. Hence we
consider 𝐸 = 100GPa. On the other hand, to achieve the comparison
we ensure the existence of two periodic solutions for the linear response
model through the application of lower and upper solutions theorems,
moreover, one of them is asymptotically locally stable. Before we
present the results of this section we notice that the stroboscopic map
associated to the linear response model has been shifted so that fixed
points corresponding to the asymptotically locally periodic solutions for
both models match.

We notice that for a periodic input voltage with 𝑉𝐷𝐶 = 3V and
𝑉𝐴𝐶 = 1.5V, Figs. 6(a) and 6(c) show the region of interest of the
stroboscopic map associated to both models. For the case of the non-
linear response model, we consider a mesh grid of 3720 nodes, and
perturbation parameters of 3.305e−02 for the fixed point on the left
and 3.065e−03 for the fixed point on the right. On the other hand,
for the case of the linear response model we consider a mesh grid of
3720 nodes with a perturbation parameter of 3.06e−02 for the fixed
point on the left, and a mesh grid of 1580 nodes with a perturbation
parameter of 1.035e−02 for the fixed point on the right. Additionally,
trajectories corresponding to the mesh grid of the fixed point on the left
are portrayed with color-map C, and those corresponding to the mesh
grid of the fixed point on the right with the color-map D. Fig. 6(b) is a
close up to Fig. 6(a), and Fig. 6(d) is a close up to Fig. 6(c).

The size of the basin of attraction for the graphene-based MEMS is
considerably larger than for the classical silicon based MEMS (please
note the different scales).

Fig. 7 gives an insight into the comparison between the two models
considering dimensional variables. We can observe that the set of initial
conditions that leads to a good operation of the device, i.e., the safe
operation region, of the model with nonlinear response is greater than
the safe operation region of the model with linear response.

4. Concluding remarks

In this work we obtained results about the existence, multiplicity
and the stability properties of lateral (positive) periodic oscillations of
8

the movable plate in a family of MEM devices that are based on ma-
terials with elastic response verifying certain conditions (graphene and
graphene-like materials), and which are modeled by Eq. (1). Moreover,
we completed the study presented in [12] for the general Eq. (1) by
showing analytically the occurrence of an asymptotically locally stable
positive 𝑇 -periodic oscillation. These results could be an approach
to a design principle for stabilizing the device without an external
controller, since a proper adjustment of the input voltage leads to the
required behavior.

On the other hand, we found sufficient and precise conditions over
control parameters that lead to the existence of lateral (positive) peri-
odic oscillations and the existence of a stable and safe operation region
in those graphene-based MEMS modeled by (2). Indeed, we showed that
the role of the parameter 𝛼, which relates the elastic properties of the
graphene with the geometry of the device, in the stabilization process
of the device is merely to determine the associated ‘‘pull-in voltage’’ :
𝑉 2
𝑚𝑎𝑥 < 𝜂2 ∶= 𝜂2(𝛼) (see [1] for more details) since the other conditions
n Corollary 2 do not depend on 𝛼.

Regarding the gains of using graphene/graphene-like materials in
EMS with a simple parallel-plate capacitor configuration, we observe

hat under certain hypotheses on control parameters and ensuring the
ame operating conditions of devices, simulations show that the safe
peration region (basin of attraction) of the graphene-based MEMS is
reater than that of a canonical MEMS. Additionally, it is worthy to
ention that although the structure of lateral (positive) oscillations

eems to be preserved in both models, the pull-in voltage associated to
he graphene-based MEMS is lesser than the pull-in voltage associated
o that of a canonical MEMS as a consequence of the monotonically
ehavior of function 𝑞 revealed by Claim 1. Hence, in practice we
equire a less voltage input in order to operate the graphene-based
EMS so these kind of devices could provide better performance at

ower consumption.
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Fig. 7. Comparison between the regions of interest of the stroboscopic maps associated to the models with nonlinear and linear elastic response for 𝑉𝐷𝐶 = 3V and 𝑉𝐴𝐶 = 1.5V.
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ppendix. Some auxiliary results

This appendix contains some classical results which have been
ncluded for the benefit of the reader. The following Lemma provides
nformation about the distance between consecutive zeros of solutions
f a linear second order differential equation. This result is a conse-
uence of the discussion in [18] about explicit criteria for the periodic
aximum and antimaximum principles, and the adaptation of some
ell known ideas in [15] (see also [17] and [22]).

emma 3. Consider 𝑎 ∈ 𝐿1(0, 𝑇 ) and 𝑇 -periodic. Assume that there exists
∈ [1,∞] such that

𝑎+‖
‖𝑝 <

(

1 + 𝑇 2𝑏2

4𝜋2

)

𝐾(2𝑝∗, 𝑇 ),

here and 𝑝 and 𝑝∗ are conjugate exponents. Then the distance between two
onsecutive zeros of any non-trivial solution of

𝑢̈ + 𝑏𝑢̇ + 𝑎(𝑡)𝑢 = 0, (A.1)

is greater than 𝑇 . Moreover, if there exist 𝑎1(𝑡) and 𝑎2(𝑡) two functions
enjoying the properties of 𝑎(𝑡) with

𝑎1 ≪ 𝑎2,

then the linear equations

𝑢̈ + 𝑏𝑢̇ + 𝑎𝑖(𝑡)𝑢 = 0,

for 𝑖 = 1, 2 do not admit non-trivial 𝑇 -periodic solutions simultaneously.

Next lemma provides a result on the multiplicity of non-trivial
periodic solutions for a second order differential equation with finite
domain (see [15] and [22]).
9

Lemma 4. Consider the following second order differential equation

𝑥̈ + 𝑏𝑥̇ + 𝑔(𝑡, 𝑥) = 0, (A.2)

ith 𝑏 > 0 and 𝑔 ∶ R×
]

x1, x2
[

→ R. Assume that 𝑔 ∈ 𝐶0,1(R∕𝑇Z×
]

x1, x2
[

),
𝑥𝑥 < 0 on R ×

]

𝑥1, 𝑥2
[

and that there exists a 𝑇 -periodic function 𝑎(𝑡)
erifying the hypotheses in Lemma 3 such that for all 𝑡 ∈ R and 𝑥 ∈

]

𝑥1, 𝑥2
[

𝑥(𝑡, 𝑥) ≤ 𝑎(𝑡).

hen (A.2) has at most two non-trivial 𝑇 -periodic solutions with range in
x1, x2

[

.

roof. Let 𝑢1(𝑡), 𝑢2(𝑡) be a pair of different non-trivial 𝑇 -periodic
olutions of (A.2) with range in

]

𝑥1, 𝑥2
[

, and let us define for each 𝑡 ∈ R

(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑔(𝑡, 𝑢2(𝑡)) − 𝑔(𝑡, 𝑢1(𝑡))
𝑢2(𝑡) − 𝑢1(𝑡)

if 𝑢2(𝑡) ≠ 𝑢1(𝑡),

𝑔𝑥(𝑡, 𝑢2(𝑡)) if 𝑢2(𝑡) = 𝑢1(𝑡).

hen 𝜁 ∈ 𝐶(R∕𝑇Z) so that 𝜁 ∈ 𝐿1(0, 𝑇 ) and 𝑤(𝑡) = 𝑢2(𝑡) − 𝑢1(𝑡) is a
non-trivial 𝑇 -periodic solution of equation

𝑤̈ + 𝑏𝑤̇ + 𝑎(𝑡)𝑤 = 0. (A.3)

Assume without loss of generality that for some fixed 𝑡 ∈ R, 𝑢1(𝑡) < 𝑢2(𝑡),
therefore from the Mean Value Theorem we have the existence of
𝑢 = 𝑢(𝑡) such that 𝑢 ∈

]

𝑢1(𝑡), 𝑢2(𝑡)
[

and

𝜁 (𝑡) = 𝑔𝑥(𝑡, 𝑢).

Hence, in general for each 𝑡 ∈ R we have that there exists 𝑢 = 𝑢(𝑡) ∈
]

𝑥1, 𝑥2
[

such that 𝜁 (𝑡) = 𝑔𝑥(𝑡, 𝑢). From hypothesis over 𝑔𝑥 we obtain that
𝜁 (𝑡) ≤ 𝑎(𝑡) for all 𝑡 ∈ R, and since 𝜁+ ≤ 𝑎+ it follows that

‖

‖

𝜁+‖
‖𝑝 <

(

1 + 𝑇 2𝑏2

4𝜋2

)

𝐾(2𝑝∗, 𝑇 ).

From the first part of Lemma 3 we obtain that 𝑤 cannot vanish because
it is a 𝑇 -periodic function. Therefore 𝑢1(𝑡) < 𝑢2(𝑡) or 𝑢2(𝑡) < 𝑢1(𝑡) for all
∈ R.

On the other hand, let us assume that there exist 𝑢1(𝑡), 𝑢2(𝑡) and
3(𝑡) non-trivial 𝑇 -periodic solutions of (A.2). Then we can suppose that
1(𝑡) < 𝑢2(𝑡) < 𝑢3(𝑡) for all 𝑡 ∈ R, take 𝜁 (𝑡) and 𝑤(𝑡) as before, and define

(𝑡) =

{ 𝑔(𝑡,𝑢3(𝑡))−𝑔(𝑡,𝑢2(𝑡))
𝑢3(𝑡)−𝑢2(𝑡)

if 𝑢3(𝑡) ≠ 𝑢2(𝑡),

𝑔𝑥(𝑡, 𝑢3(𝑡)) if 𝑢3(𝑡) = 𝑢2(𝑡).

Thus 𝑛 ∈ 𝐶(R∕𝑇Z), 𝑣(𝑡) = 𝑢3(𝑡)−𝑢2(𝑡) is a non-trivial 𝑇 -periodic solution
f equation

𝑣̈ + 𝑏𝑣̇ + 𝑛(𝑡)𝑣 = 0,
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𝑛
i
w
n

R

and from the Mean Value Theorem we get that for each 𝑡 ∈ R exists
𝑢 = 𝑢(𝑡) ∈

]

𝑢1(𝑡), 𝑢2(𝑡)
[

, 𝑢 = 𝑢(𝑡) ∈
]

𝑢2(𝑡), 𝑢3(𝑡)
[

such that 𝜁 (𝑡) = 𝑔𝑥(𝑡, 𝑢) and
(𝑡) = 𝑔𝑥(𝑡, 𝑢). Since 𝑔𝑥𝑥 < 0 on its domain and 𝑢(𝑡) < 𝑢(𝑡) for all 𝑡 ∈ R
t follows that 𝜁 (𝑡) < 𝑛(𝑡) for all 𝑡 ∈ R. From second part of Lemma 3
e conclude that either 𝑤 ≡ 0 or 𝑣 ≡ 0. Hence, (A.2) has at most two
on-trivial 𝑇 -periodic solutions. □
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