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Abstract 

The non-isothermal kinetics of primary crystallization processes is studied from 

numerically generated curves and their predictions have been tested in several 

nanocrystallization processes. Single processes and transformations involving two 

overlapped processes in a non-isothermal regime have been generated and deviations 

from isokinetic behavior are found when the overlapped processes have different 

activation energies.  In the case of overlapped processes competing for the same type of 

atoms, the heating rate dependence of the obtained Avrami exponent can supply 

information on the activation energies of each individual processes. The application to 

experimental data of nanocrystallization processes is consistent with a limited growth 

approximation. In the case of preexisting crystallites in the as-cast samples, predictions 

on the heating rate dependence of the obtained Avrami exponents of multiple processes 

have been confirmed. 
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1. Introduction 

 The study of the devitrification kinetics in glassy metals has received attention 

since their discovery [1-3]. The application of the classical theory of crystallization 

(based on nucleation and growth processes) to this process was also early adapted [2, 3]. 

This theory was developed independently by Kolmogorov [4, 5], Jhonson and Mehl [6] 

and Avrami [7] (JMAK theory) in the late 30’s of the last century to be applied to 

isothermal polymorphic transformations. However, it can be appropriately extended to 

transformations implying compositional changes [8, 9] and to non-isothermal processes 

[10-19].  

 In this work, a direct extension of the classical theory of isothermal 

crystallization to non-isothermal processes, previously proposed by the authors [16], is 

revised in order to solve deviations observed for low transformed fractions. In the frame 

of this approach, the kinetic analysis of the primary crystallization of several metallic 

glasses including the development of single or multiple phases is evaluated. 

Nanocrystallization processes fulfill most of the five postulates of Kolmogorov (listed 

in Ref. [5]). In the case of nanocrystallization processes, the crystallites can be 

considered spherical (isotropic growth) and non-random nucleation is claimed to occur 

(due to non-homogeneity of the matrix [20], nucleation enhancement by Cu clustering 

phenomena [21-23] or formation of agglomerates in Hitperm alloys [24]). However, 

random nucleation can be assumed as an approximation for a global view of the 

transformation. 

  

2.  Kinetics of crystallization 
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2.1 Isothermal processes 

In JMAK theory, the extended transformed fraction, X* [5] corresponds to the 

fraction of the system that should be transformed if any growing crystal could freely 

grow without impinging with another growing crystal (i.e. if no geometrical 

impingement occurred). It is obtained from the nucleation rate, I=dN/dt (N being the 

number of nuclei formed per unit volume, and t, the time), and the rate of linear growth, 

G=dR/dt (R being the average radius of the crystals). For isotropic growth in three 

dimensions: 
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where crystals are considered to be spherical. Assuming power laws for nucleation rate 

I=I0·t
b and linear growth G=G0·t

a, results: 

   
3

3 1 10 04
*

3

na b nI G
X t Kt kt

C

   
    (2) 

with C a constant, k=K1/n, the frequency factor, and n, the Avrami exponent. The value 

of this exponent can be decomposed as n=nI+3·nG, where nI=1+b corresponds to 

nucleation (with a nucleation rate constant if b=0 (nI=1), increasing I(t) if b>0 and 

decreasing I(t) if b<0); and nG=a+1 corresponds to growth (nG=1/2, for diffusion 

controlled growth, G=G0/t
1/2, and nG=1 for interface controlled growth, G=G0). 

The relationship between X* and the actual transformed fraction, X, is obtained 

considering a statistical geometrical impingement: 
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The JMAK equation results when Eq. (2) and (3) are combined:  

  1 exp
n

X kt  
 (4) 

  

2.2 Extension to non-isothermal processes 

Nakamura et al. [25] proposed a general expression of the transformation 

equation to extend JMAK equation to non-isothermal processes, which for a constant 

heating rate  results: 
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where T is the temperature, TO is the onset temperature and k(T)=k0exp(-Q/kBT) is a 

temperature dependent frequency factor, which is assumed to follow an Arrhenius law 

with Q, the activation energy, and kB, the Boltzmann constant. 

Later on, some of the present authors simplified Nakamura’s expression 

considering the following approximation [16]: 
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In previous works [16, 26-30], it was implicitly assumed TO’=TO (the onset 

temperature of the process). However, a deeper insight into this relationship is required 

to appreciate the effect of TO’ on the estimated values.  

If we divide the two terms of equation (6) by k(T) we obtain a function A(T): 
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which, according to Eq. (6), can be approximated to a straight line for a certain 

temperature range and, thus: 
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The value of TO’ which leads to the best fitting depends on the value of the 

temperature T at which the approximation will be performed: 

 

 
'o

A T
T T

D T
 

 (9)  

Figure 1a shows the value of TO’ as a function of the temperature, T, at which 

the approximation of Nakamura’s expression is performed for activation energies in the 

range 0.5-10 eV. Except for Q<2 eV, a very good linear behavior can be found in a 

wide temperature range (from ~100 K to >1000 K), which extends far beyond the 

temperature range of interest for practical uses in the analysis of devitrification 

processes of amorphous alloys. As an example, for Q=4 eV (typical value for primary 
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crystallization processes of Fe-based amorphous alloys [3]) the fitting gives 

TO’=[0.48993(2)·T+2.43(1)] K. 

As Q changes from 3 to 10 eV, the slope of the straight line increases 2 % and 

the value of the intercept with the Y-axis decreases from ~3 K to 0.3 K. These results 

allow us to propose an approximated value of TO’ for practical applications: 

TO’=TP/2 (10) 

where TP is the crystallization peak temperature and thus, the temperature around which 

it is found the thermal range of interest to perform the simplification of Nakamura’s 

expression. It is worth mentioning that the present result is independent of the values of 

, k0 and k0’. Moreover, as this approximation affects X*, it is also independent of 

whether the kinetics of transformation follows JMAK equation or an expression 

considering a generalized impingement parameter [31, 32].  

In order to appreciate the goodness of the proposed approximation, figure 1b 

shows the two terms of Eq. (7) using TO’=TP/2 along with the corresponding curve of 

the transformation rate generated using Nakamura’s equation (k0=1025 s-1, n=4, Q=4 eV, 

=10 K/min) as will be explained below. Only one free parameter, k0’/k0, has been used 

to fit A(T) function in the temperature range from 730 K to 760 K resulting 

k0’/k0=5.314(3). 

 

3. Results. Validity of the approximation using numerically generated curves 

3.1 Crystallization processes implying the formation of a single phase 
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In order to appreciate the effect of TO’ on the Avrami exponent obtained 

applying the approximation of a direct extension to non-isothermal processes of Avrami 

equation, a systematic procedure was followed. Kinetic curves of X(t) were generated 

using Eq. (5) for different values of  (from 10 to 60 K/min), Q and n; and Kissinger 

method [33] was applied to recalculate the activation energy of the numerically 

generated curves. As an example, for Q=4 eV, Kissinger analysis yields Q’=3.9965 eV 

for n=1 (regression coefficient, r2> 0.9998), with a better linear fitting as n increases. 

Afterwards, the corresponding curves were analyzed and local Avrami exponents were 

recalculated applying the relationship: 
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derived from Eq.(18) of Ref. [16].  

Figure 2 shows the results obtained for a numerically generated process with 

parameters n=1, Q=4 eV, k0=1025 s-1 and =10, 20, 30, 40, 50 and 60 K/min, 

respectively. Different values of TO’ were considered: a) the onset temperature, TO, 

estimated as the interception with the baseline of the steepest slope of dX/dt plot; b) a 

temperature below the onset temperature at which there is no appreciable deviation of 

the dX/dt signal from the baseline; c) the value suggested by the above mentioned 

discussion, TP/2; d) room temperature; and e) 0 K.  

As an example, some of these temperatures are indicated in the inset of figure 2 

on a dX/dt plot generated using Nakamura’s kinetic equation at 10 K/min. 



Journal of Alloys and Compounds, 544 (2012) 73-81 

http://dx.doi.org/10.1016/j.jallcom.2012.08.002 

8 

 

Deviations from the actual value (n=1 in the example shown) are important for 

low values of transformed fractions when TO’=TO is chosen. Good results are obtained 

(with an error below 0.1%) for TO’=TP/2.  The use of lower values of TO’ does not 

significantly affect the resulting Avrami exponent, although its value is slightly 

overestimated.  

 

3.2 Crystallization processes implying the formation of multiple phases 

Frequently, the first DSC peak of a devitrification process corresponds to several 

overlapped transformations. In fact, several crystalline phases can be developed and 

they can overlap in time (isothermal regimes) or temperature (non-isothermal regimes). 

In order to study the effect of applying the proposed non-isothermal analysis to such 

transformations, the simplest case of two independent processes is considered.  

As a first approximation, the transformation curves can be numerically generated 

using Nakamura’s equation in the following way: 
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where f is the fraction of phase 1at the end of the crystallization process. The kinetics of 

formation of phase 1 is characterized by the parameters n1, Q1 and k01 (Avrami 

exponent, activation energy, and frequency factor, respectively), being n2, Q2, k02 the 

corresponding set of phase 2. This construction assures that the fraction of each phase at 

the end of the whole process (f and 1-f, respectively) is independent of .  
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An example of the dX/dt functions generated using Eq. (12) for two different 

values of  and typical temperatures for primary crystallization of amorphous alloys are 

shown in figure 3a (the fractions ascribed to each individual transformation are also 

shown).  

Kissinger method was applied to calculate the average activation energy, <Q>, 

of the whole process. Figure 4 shows three examples of <Q> as a function of the final 

fraction of phase 1. It can be observed that the behavior of <Q> is far from being linear 

with f. These values of <Q> have been used to apply the direct extension to non-

isothermal processes of the JMAK equation using Eq. (11). Results are shown in figure 

3b. It is worth noticing that although isokinetic behavior would be expected, it is not 

reproduced unless Q1=Q2. For a given X, there is no clear dependence of the Avrami 

exponent with . In fact, an increasing or decreasing n with  can be obtained for the 

same set of values n1, n2, Q1, Q2 depending on the frequency factors k01 and k02 used. In 

fact, completely separated peaks can be obtained tailoring these frequency factors. 

Therefore, it can be concluded that, for the processes generated using Eq.(12), non-

isokinetic deviations are an artifact.  

Expression (12) implicitly assumes that each process has a fraction of the total 

volume V of the sample (fV and (1-f)V, respectively) only accessible to each 

corresponding phase and that is not accessible to the other phase. In order to overcome 

this limitation, we can use the idea of the extended volume, which is not affected by the 

remaining untransformed fraction. Thus, a total extended volume fraction can be 

defined as the sum of the extended transformed fractions of each process: X*=X1*+X2* 

(as also proposed in [34]). Thus, 
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If a transformation involves the production of two different phases, with 

different composition, Eq. (12) could be more appropriate than Eq. (13) if it is assumed 

that the different processes do not compete for the same kind of atoms. Therefore, the 

volume ascribed to each atom (allowing it to diffuse through the sample) would 

correspond to only one process. However, if different processes compete for the same 

atoms, Eq. (13) will be more appropriate to describe the total transformed fraction. In 

both cases, the simplification that there is no dependency of the kinetic parameters 

(activation energy, Avrami exponent or frequency factor) of one phase on the degree of 

transformation of the second one was assumed.  

Figure 5a-c shows dX/dt functions generated using equation (13) for two 

different  (10 and 60 K/min) and different values of Avrami exponents, activation 

energies and frequency factors for each individual process. This figure also shows the 

contributions ascribed to each individual process, calculated after separating the 

contribution of each phase to the variation of the extended transformed fraction: 

*
1

1

i idX dX

X dt dt



  (14) 

where the sub index i=1, 2 identifies each individual process. It should be mentioned 

that the fraction of each phase at the end of the process depends on the heating rate 

unless the activation energies were equal. This result contrasts with that of the previous 

generated multiple process assuming addition of actual transformed fractions.  In fact, 

as heating rate increases, the process with the highest activation energy is delayed in 
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temperature and thus the remaining untransformed volume, available for its 

development, is reduced due to the progress of the process with lower Q. Therefore, 

non-isokinetic behavior must be expected. Moreover, using this approach, it is not 

possible to obtain separated peaks, discarding those cases in which overlapped peaks 

can be experimentally separated by changing thermal treatment. 

 Figure 5d-f shows the Avrami exponents obtained from the analysis of the 

multiple processes generated by addition of the extended transformed fractions (Eq. 

(13)). It can be observed that, for given activation energies, the tailoring of frequency 

factors can lead to a negligible contribution of one of the two processes. Only in these 

cases, which actually correspond to single processes, or when Q1=Q2, isokinetic 

behavior is reproduced. It is noteworthy that when the highest Avrami exponent 

corresponds to the process with the highest Q value, the Avrami exponent obtained 

from the analysis, increases with the heating rate but in the case for which the highest 

Avrami exponent corresponds to the lowest Q value process, the Avrami exponent 

obtained decreases as  increases. 

 

4. Discussion. Application to experimental curves 

Ribbon samples of Fe60Co18Nb6B16 alloy and Fe65.5Cr4-xMo4-yCux+yGa4P12C5B5.5 

alloy series (x=0, 1; y=0, 0.5, 1) were obtained by melt-spinning technique. Differential 

scanning calorimetry (DSC) scans were performed in a Perkin-Elmer DSC7. 

Transmission electron microscopy (TEM) experiments were performed in a Philips 

CM200 at 200 kV and high resolution electron microscopy (HREM) was performed in a 

Jeol JEM3000F operated at 297 kV. 
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4.1 Fe60Co18Nb6B16 (single phase crystallization) 

Figure 6 shows the local Avrami exponent obtained for Fe60Co18Nb6B16 

amorphous alloy ascribed to the primary crystallization (corresponding heat flow curve 

is shown in the inset) using Eq. (11) with different values of TO’. By comparing the 

results after setting TO’=TP/2 with the previously published ones, using TO’=TO, [16], 

deviations are found only for low crystalline fractions. The average value for the whole 

range of transformed fractions, <n>~0.9, concurs with the Avrami exponent obtained 

from Gao-Wang method [35]. The agreement with those values obtained from Ozawa 

method [16]remains in this study. In fact, changes in TO’ have no influence for high 

transformed fractions. 

At very low X, n reaches values above 2.5 (constant nucleation rate and diffusion 

controlled growth). These values could be understood in the frame of classical JMAK 

theory as due to both: a) an enhanced nucleation rate (nI>1, which may be associated to 

the presence of crystalline agglomerates [36], as shown in figure 7) and/or b) a transient 

interface controlled growth (nG=3) as Clavaguera-Mora et al. [3] used to describe the 

initial stages of primary crystallization processes.  

However, it must be taken into account that those values corresponding to X<0.1 

are very sensitive to baseline selection. As crystallization progresses, Avrami exponent 

decreases to values below 1, indicating a strong impingement in the growth process and 

a decreasing nucleation rate, which has been simulated with Cellular Automata in the 

frame of an instantaneous growth approximation [36]. The extension of this latter model 

to a limited growth approximation yielded very similar values of the local Avrami 
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exponents (decreasing from 4 to below 1) [37] as those found here. This limited growth 

process can be understood as a simplification of the kinetic description of Clavaguera-

Mora et al. [3] including an initial transient interface controlled growth (nG=3) followed 

by a diffusion controlled growth affected by soft impingement. In the limited growth 

approximation, only the transient interface controlled growth is considered. In the 

present case, we can consider two different processes competing for the same kind of 

atoms (described by Eq. (13)), resulting in a fraction of the crystals that will grow, 

whereas the rest of crystals will remain blocked. At the final stages of the 

transformation the fraction of crystals growing will be very small and thus, the progress 

of the transformation should be limited to the nucleation phenomena. At this stage we 

can proceed as follows: 
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(15) 

where NG is the number of crystal growing and NB is the fraction of crystals blocked. 

For sufficiently large values of time, NG<<NB. The application of the approximation 

developed in the present paper (Eq. (11)) to Eq. (15), results: 
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 This expression, analogous to that developed by Ozawa [12], could be used in 

the present context to obtain the nucleation contribution to the Avrami exponent, nI, at a 

fixed temperature at which the growth contribution is negligible. In the case of the 

studied Fe60Co18Nb6B16 alloy, the average slope of the different linear fittings, in the 
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temperature range from 825 to 895 K with  from 2.5 to 80 K/min (figure 8a), yields 

nI=0.211±0.006.  

The intercept y(T) with the Y-axis is temperature dependent: 
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and neglecting the value of the first logarithmic term with respect to that proportional to 

1/T, a linear fitting of y(T) vs. 1/T (shown in figure 8b) would lead to a slope –nIQ/kB, 

from which Q=4.3±0.3 eV is obtained (in good agreement with the values obtained 

using other methods [16]). However, this activation energy might correspond to high 

transformed fractions whereas those reported in Ref. [16] correspond to the transformed 

fraction at the peak temperature. Moreover, a value of Q=3.60.3 eV was found from 

the temperature dependence of the induction time in isothermal experiments [38]. This 

fact points to an almost constant activation energy along the transformation process. 

At the initial stage of the nanocrystallization, the fraction of crystallites blocked 

should be negligible and the Avrami exponent could be expressed by n=nI+3·nG. 

Assuming nI~0.2 and nG=1 (interface controlled), the value of n=3.2 is coherent with the 

observed values in figure 6 for very low transformed fractions. The very low values of 

nI could be ascribed to deviations from random nucleation. 

 Other possible kinetic analysis could be performed in the frame of the general 

impingement parameter [31]. However, even in the extreme case of Austin-Rickett 

kinetic equation, the analysis brings out values of n=0.65±0.12, reporting no advantage 

in the interpretation with respect to the above mentioned analysis on the frame of 

limited growth.  



Journal of Alloys and Compounds, 544 (2012) 73-81 

http://dx.doi.org/10.1016/j.jallcom.2012.08.002 

15 

 

 

5.2 Fe65.5Cr4-xMo4-yCux+yGa4P12C5B5.5 (crystallization of multiple phases) 

The direct extension of JMAK equation to non-isothermal processes has also 

been applied to the bulk amorphous compositional series 

Fe65.5Cr4-xMo4-yCux+yGa4P12C5B5.5 (x=0, 1; y=0, 0.5, 1). The parent alloy (x=0, y=0) 

exhibits a large supercooled liquid region (>60 K) which decreases after Cu addition 

[39]. Cu addition yields a primary crystallization process consisting in the formation of 

nanocrystalline -Fe(Ga) phase, whereas Cu-free alloy developed several phases after 

the first transformation stage [39]. Figure 9a-d shows the DSC plots of the different 

studied alloys at different heating rates and figure 9e-h shows the corresponding local 

Avrami exponents obtained from application of Eq. (11).  

It can be noticed that the curves for Cu-free alloy are clearly non isokinetic, in 

agreement with the multiple transformation character of the primary crystallization of 

this alloy. In the case of the Cu containing alloys, isokinetic behavior is better fulfilled, 

although some deviation could be observed, particularly for the alloys with 1 and 2 at. 

% of Cu. In fact, TEM studies on as-cast samples of these alloys showed the presence of 

crystallites of -Fe(Ga) phase, which implies the existence of two competitive 

processes in the transformation: growth of the preexisting crystals and nucleation and 

growth of new -Fe(Ga) crystallites. Figure 10 shows TEM images of both, as-cast 

samples and samples heated up to the end of the first transformation stage. 

In the case of alloys with 0.5 at. % of Cu no preexisting crystals were detected 

and, consequently, a single process is expected. Nanocrystallization kinetics of this 

alloy can be interpreted in the same way as done for the previously discussed 
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Fe60Co18Nb6B16 alloy. In the frame of the limited growth approach, the Avrami 

exponents at the end of the process can be ascribed to nucleation phenomena with nI~1. 

At low crystalline volume fractions, the expected values should be ascribed to transient 

interface controlled growth (affecting to all the crystal formed) plus nucleation n=4. 

In the case of the alloys with 1 and 2 at. % of Cu, the initial values of n are not 

as high as those found for the alloy with 0.5 at. % of Cu. Unlike for this alloy, at the 

initial stages of crystallization n values clearly depart from isokinetic behavior for the 

alloys with higher Cu content. This might be due to the two different processes 

occurring for these alloys (growth of preexisting crystals and nucleation and limited 

growth of the new formed crystals). At the very beginning of the transformation, the 

main process is the growth of the preexisting crystals as the transformed fraction 

ascribed to nucleation and growth of the new crystallites is negligible. This should 

allow us to approximate the Avrami exponent at the initial stages of transformation to 

the type of growth of these preexisting crystals. At X~0.05 (fraction at which n~4 for 

the alloy with 0.5 at. % of Cu), n~1.5-2.5 for the alloy with 1 at. % of Cu and n~2.5-3.5 

for the alloy with 2 at. % of Cu, increasing as  increases. 

Deviations from isokinetic behavior in these two alloys (1 and 2 at. % of Cu) 

yields to higher Avrami exponents as  increases. As it has been explained before, this 

feature has been above mentioned using Nakamura’s equations if the process with the 

highest Avrami exponent is also the process with the highest activation energy. In the 

present case, a lower Avrami exponent must correspond to the process of growth of 

preexisting crystals, rather than to the process involving nucleation and growth of new 

crystallites. Therefore, the observed  dependence of n indicates a lower activation 
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energy for the process with the lower Avrami exponent: i.e. the growth of the crystals 

already present in the as-cast samples.  

This is in agreement with the lower enthalpy ascribed to the first transformation 

stage (the one studied here) in the case of the alloys with 1 and 2 at. % of Cu (12.10.2 

kJ/kg and 11.00.2 kJ/kg, respectively) than for the alloy with 0.5 at. % (23.50.2 

kJ/kg). A lower enthalpy per transformed volume implies lower activation energy of the 

process assuming most of the kinetic parameters involved in both processes must be 

similar. The crystalline fraction at the end of the nanocrystallization process measured 

by XRD is similar for the alloys with Cu of the studied series [39] and, therefore, a 

lower enthalpy might correspond to those compositions with crystalline phase already 

present in the as-cast sample. However, the large difference (~50 %) in enthalpy cannot 

be attributed only to the little amount of crystallites already formed in the as-cast 

sample. In fact, for the alloy with 2 at. % of Cu, the preexisting crystals grow from 26 to 

40 nm and this implies that the initial crystalline fraction is only ~25 % of the 

crystalline fraction due to the growth of the preexisting crystallites and, consequently, 

much lower values with respect to the whole crystalline fraction.  

 

Conclusions 

The approach to directly extend the Avrami equation to non-isothermal regimes 

previously reported is revised in order to solve some deviations of the Avrami 

exponents observed for very low transformed fractions.  

A final expression of the local Avrami exponent is reported as: 
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where X is the transformed fraction; , the heating rate; Q, the activation energy; T the 

temperature and TP the peak temperature. 

Effects on the obtained Avrami exponents by applying this approach to single 

processes and transformations involving two overlapped processes (in both cases, 

independent processes and competing processes) are discussed and deviations are found 

from isokinetic behavior when the overlapped processes have different activation 

energies.   

In the case of processes competing for the same type of atoms, the Avrami 

exponent, n, for a given value of transformed fraction, increases as  increases if the 

activation energy is higher for the process with the highest Avrami exponent. The n 

value decreases if the activation energy is higher for the process with the lowest Avrami 

exponent.  

Applications to experimental data are consistent with a limited growth 

approximation. In the case of preexisting crystallites in the as-cast samples, 

experimental results confirm the predictions on the  dependence of the obtained 

Avrami exponents of multiple processes. 
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Figure captions 

Figure 1. a) Values of TO’ as a function of the temperature at which the approximation 

of Nakamura expression is performed for different values of activation energy. The 

dashed red line is a linear fitting to the curve corresponding to Q=4 eV. b) Left axis: 

Comparison between A(T) (symbols) and the proposed approximation 0

0

'
( )

2

pTk
T

k
 (red 

line). Right axis: Corresponding dX/dt curve generated using Nakamura kinetic equation 

at 10 K/min (Q=4 eV; n=4) (black line). 
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Figure 2. Avrami exponent obtained applying Eq. (11) (using several values of TO’) to 

the data generated using Nakamura kinetic equation (inset) at different heating rates 

(Q=4 eV; n=1; k0=1025 s-1). The inset shows the corresponding dX/dt curve. 
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Figure 3. a) Generated DSC peaks using Eq. (12) with Q1=4 eV, n1=2.5, k10=1025 s-1; 

Q2=3 eV, n2=1.5, k20=1018 s-1 (Example shown for f=0.5 and =10 and 60 K/min). b) 

Corresponding Avrami exponents for the indicated values of f and =10 K/min (dark 

blue), 20 K/min (green), 30 K/min (red), 40 K/min (light blue), 50 K/min (purple) and 

60 K/min (dark yellow). 
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Figure 4. Activation energies obtained from Kissinger analysis on generated curves 

using Eq. (12) with the parameters shown in the inset. 
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Figure 5. Left column: Generated DSC peaks using Eq. (13) for two different heating 

rates and: a) Q1=4 eV, n1=1.5, k10=1025 s-1; Q2=3 eV, n2=2.5, k20=1018 s-1; b) Q1=4 eV, 

n1=4, k10=1025 s-1; Q2=3 eV, n2=1.5, k20=2·1018 s-1; c) Q1=4 eV, n1=4, k10=1025 s-1; Q2=4 

eV, n2=1.5, k20=1025 s-1. Right column: d), e) and f) show the Avrami exponents 

corresponding to cases a), b) and c), respectively. Different colors correspond to 

different  as in Fig. 3. Arrows indicate the evolution of the curves as  increases from 

10 to 60 K/min when applicable. 
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Figure 6. Application of Eq. (11) to experimental data of Fe60Co18Nb6B16 using 

different values of TO’. The inset shows the corresponding DSC curve at 10 K/min. 
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Figure 7. Left: TEM image of nanocrystallized Fe60Co18Nb6B16 sample. Right: HRTEM 

image showing a detailed view of an agglomerate formed in this alloy. 
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Figure 8. a) Linear fitting corresponding to Eq. (16). b) Linear fitting corresponding to 

Eq. (17). 
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Figure 9. a) DSC scans of as-cast Fe65.5Cr4-xMo4-yCux+yGa4P12C5B5.5 alloys at different 

heating rates. b) Application of Eq. (11) to experimental data of Fe65.5Cr4-xMo4-

yCux+yGa4P12C5B5.5 alloys using TO’=Tp/2. 
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Figure 10. TEM images of as-cast and nanocrystallized samples of Fe65.5Cr4-xMo4-

yCux+yGa4P12C5B5.5 alloys. The grain size histograms of nanocrystallized samples are 

also shown.  

 

 


