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Abstract: Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of
physiological processes. In an inflammatory microenvironment, these functional foods can interact
with the immune system by modulating or balancing the exacerbated proinflammatory response. In
this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after
interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their
change of state with phenotypical and functional modifications from the resting state to the activated
and effector state, supposing an increase in their energy requirements that affect their intracellular
metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals,
such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use
therapeutically for health or the prevention of different pathologies, including obesity, metabolic
syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention
in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive
strategy that allows inducing important changes in cellular properties. Thus, we provide an overview
of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory
processes associated with obesity and diabetes, paying particular attention to nutritional effects on
APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic
pathways involved after their activation.

Keywords: tolerogenic dendritic cells; macrophages; regulatory T cells; regulatory B cells; proteosome;
autophagy; succinate; glycolysis; oxidative phosphorylation; tricarboxylic acid cycle

1. Introduction

The term “nutraceutical” was proposed by DeFelice in 1984 as any substance that
can be a food or part of a food that provides medical or health benefits, including the
prevention and treatment of disease [1]. Other authors have amplified or redefined this
concept as a mix of substances able to interact with individual DNA molecules as a function
of the environment [2,3]. Moreover, nutraceuticals can perform as cellular and functional
modulators, contributing to the homeostasis of physiological processes [3]. Therefore, in an
inflammatory microenvironment, these functional foods can act on the immune system by
modulating or balancing the exacerbated proinflammatory response. Because of polydrug
approaches that are often used in these processes, their management can exhibit adverse
side effects; therefore, the nutraceutical capacity represents an active option to use thera-
peutically for health or the prevention of pathologies, such as cancer, gastroenterological
disorders, inflammatory and neurodegenerative diseases, and infections [4–7].
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The main function of the immune system is defense against foreign and/or malignant
cells through nonspecific or specific mechanisms that induce innate and adaptative immune
responses, respectively. For this, professional antigen-presenting cells (APCs), such as
dendritic cells (DCs), macrophages, and B lymphocytes, after identifying external or internal
danger signals, i.e., pathogen-associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs), acquire an activated state [8]. Moreover, during this process,
APCs migrate to lymphatic nodes to interact with T lymphocytes and induce a specific
effector response [9], with activation of intracellular signaling cascades, leading to the
induction of a general proinflammatory response [8]. This change of state, which includes
phenotypical and functional modifications from the resting state to the activated and
effector state from these immune cells, supposes an increase in their energy requirements
that affect their intracellular metabolism [10]. This implies deep changes in different
metabolic pathways, such as glycolysis, the tricarboxylic acid (TCA) or Krebs cycle, the
pentose phosphate pathway (PPP), fatty acid (FA) oxidation (FAO), fatty acid synthesis
(FAS), amino acid metabolism, and oxidative phosphorylation (OXPHOS) [10,11].

For this, leukocytes are subjected to continuous metabolic reprogramming, not only as
a consequence of oxygen and nutrient levels, but also driven by microenvironmental signals,
such as PAMPs and DAMPs, through various signaling pathways involved in activation,
cell differentiation, and/or proliferation [12–15]. Furthermore, metabolic signaling drives
cell fate [15,16].

The term “immunometabolism” is considered an “interface” of the immune system
and metabolism [17]. Currently, the scientific community speaks openly about how an
imbalance in signaling pathways in immunometabolism can lead to the pathogenesis of
metabolic disorders, such as obesity, diabetes, metabolic syndrome hypertension, can-
cer, and autoimmune diseases [18–22]. Indeed, the scientific community is conducting
an active search for the possible mechanisms involved in intracellular metabolism that
allow the regulation of immune responses, seeking a balance between the functions of
effector and regulatory immune cells. The inflammatory process plays an essential role
in the promotion of metabolic abnormalities that cause diseases such as obesity and type
2 diabetes mellitus (T2DM), and metabolic factors, in turn, regulate immune cell func-
tions. Hence, obesity as the main inducer of a local or systemic chronic inflammation is
a main inductor for T2DM [23]. High blood glucose levels and the related inflammation
can generate angiopathies in the circulatory system. Moreover, the impaired innate and
adaptative systems, together with metabolic dysregulation, also raises the sensitivity of
patients to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [24]. Further-
more, an interaction between the unbalanced metabolic state and these low-grade chronic
inflammatory responses can lead, through a vicious cycle, to the development of metabolic
diseases, such as T2DM (Figure 1). Moreover, in the inflammatory process, autophagy is a
fundamental biological process contributing to immunometabolism [25,26]. Thus, upon
leukocytes identifying proinflammatory danger signals, autophagy is activated and initi-
ates a protective cytoplasmic function, removing aggregated or damaged cytosolic proteins
and damaged lysosomal membranes, such as DAMPs, inflammasome components, and
type I interferon (IFN) regulators, through the multistage lysosome–homeostatic response
termed “membrane repair, removal, and replacement” (MERiT). In this process, lysosomal
damage inhibits the mechanistic target of rapamycin (mTOR) signaling pathway and ac-
tivates AMP-activated protein kinase (AMPK) [26]. mTOR is a protein kinase regulator
of intracellular metabolism, present in two signaling complexes, mTORC1 and mTORC2,
which are composed of distinct protein-binding partners with different functions in the
development, homeostasis, and differentiation of immune cells [27]. Moreover, AMPK is
often associated with immunometabolic states compatible with anti-inflammatory activities
and quiescence [26]. In this sense, at the removal phase, it is activated and inhibited by
the mTOR signaling pathway. As mentioned before, AMPK acts in situations in which
autophagy is activated. An increase in mTOR activity is related to inflammatory states
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and a greater response of macrophages and effector T cells, while AMPK is related to
anti-inflammatory states [26,27].
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Figure 1. Factors that affect and/or regulate immunometabolism in the tissue microenvironment.

Moreover, NOD-like receptors (NLRs) are types of PAMP and DAMP receptors (PRRs)
with roles of sensing systemic and intracellular metabolic perturbations, particularly the
NLRP3 inflammasome. NLRP3 acts in the maintenance of intracellular homeostasis and is
activated by DAMPs, promoting innate and adaptive immune responses. NLRP3 activation
is regulated through intracellular metabolic pathways, such as hexokinase-1-dependent
glycolysis, especially within the myeloid linage [28]. However, other studies have reported
that the disruption of glycolytic flux serves as an activating signal for NLRP3 [29,30].

Thus, metabolomic and pharmacometabolomic studies have achieved progress in the
use of nutraceuticals, which can get modified during intestinal transit and metabolism.
Furthermore, the gut microbiome also plays a vital role in the host’s response to any drug
or nutrient [4].

The repolarization of immune cells toward a less inflamed phenotype by reprogram-
ming metabolism using small molecules and metabolites may be reachable [31]. For this
reason, to regulate the inflammation associated with these pathologies, intervention in
metabolic pathways through the modulation of metabolic energy with nutraceuticals is an
attractive strategy that allows inducing important changes in cellular properties that can
redrive them toward a tolerogenic immunophenotype for inflammatory disease. Thus, we
provide an overview of the link between metabolism, immune function, and nutraceuticals
in chronic inflammatory processes associated with obesity and diabetes, paying particular
attention to the nutritional effects on APCs and T cell immunometabolism, as well as the
mechanisms involved in the change in energetic pathways involved after their activation.

2. Results
2.1. Nutrient-Sensing Pathways Affecting Immune Cell Development in Homeostasis

Immune homeostasis can be achieved when there is a balance between immunogenic-
ity against non-self-antigens and tolerance to self [32]. In this sense, the immune system
is regulated by the neuroendocrine axis, in which metabolites are key communication
signals allowing a shift in the metabolic homeostasis of immune cells. This regulation
is bidirectional; reciprocally, the immune system can modulate whole-body metabolism.
Thus, immune cells, upon identifying danger signals, change their basal metabolic, phe-
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notypic, and functional state to an activate state, thus modifying metabolic pathways and
metabolite production so as to orchestrate an effector or regulator immune response. This
effect was proposed by Warburg, similar to what is observed in cancer cells; when leukocytes are
activated, glucose consumption rates promote metabolic changes, inducing aerobic glycolysis [33,34].
During glycolysis, glucose enters the cell through GLUT1 receptors to produce pyruvate
and ATP, which enter the mitochondria to produce acetyl-CoA. Although glycolysis is an
inefficient means of generating energy, it enables cells to redirect intermediates from the
TCA cycle to generate essential metabolites that promote anabolic pathways that allow
immune activation, such as an increase in the secretory machinery [22,30,35].

The energy requirements of immune cells when the body is in homeostasis vary de-
pending on the immune cell type and the state in which the cells are based on the environ-
ment, being able to clearly differentiate among rest, anergy, or tolerance processes. In this
review, to provide an understanding of the main pathways involved in immunometabolism,
we focus on APCs and T cells, which represent the most studied cell subsets, due to the fact
that they have great potential in the search for developing alternatives natural therapies for
immunometabolic diseases, such as obesity and T2DM.

2.1.1. APCs: Key Signaling Molecules Mediating Nutritional Effects on APCs

DCs, monocytes/macrophages, and B cells are well equipped to detect environmental
cues and play dominant roles during homeostasis and inflammation in peripheral blood
and injured tissue. DCs are a heterogeneous population of professional APCs that create a
crucial link between the innate and adaptive immune responses, and they are the only cells
that can interact with naive T lymphocytes. Nevertheless, immature and tolerogenic DCs
have different metabolic profiles than immunogenic DCs (semi-mature and mature) [32].
Thus, resting or immature DCs, due to their characteristics as professional APCs, continu-
ously take up molecules and release them into the environment if they are not immunogenic.
This supposes continuous energy expenditure, showing catabolic metabolism for energy
generation and cell maintenance. Thus, Zaccagnino et al. demonstrated active mitochon-
drial biogenesis during DC differentiation, suggesting a role of PGC-1α in mitochondrial
biogenesis [36]. This metabolic state manifests active OXPHOS, which is associated with
the longevity of quiescent homeostatic immune cells [30], driven by the TCA cycle fueled
via FAO [37,38] and glutaminolysis, and it is largely regulated by AMPK [38]. In this sense,
it was proposed that resting circulating monocytes switch to glycolysis when they take up
molecules, whereas when alveolar macrophages phagocytose, they use OXPHOS [39].

B cells play a pleiotropic role in the immune system. In the resting state, B cells (naive B,
memory B, and long-lived plasma cells) are naturally quiescent, although they have demon-
strated differences; for example, memory B cells express a class-switched BCR in which
the quiescent state may be imposed through different process [40]. In particular, resting
naive B cells import relatively little glucose because they proliferate only minimally [41].
Moreover, SIRT1 is highly expressed in resting B cells [42]. Germinal center B cells in vivo
also rely on glycolysis, although the precise metabolic basis for this requirement needs
further exploration [43]. Anergic B cells are metabolically quiescent, with a light increase in
glycolysis and oxygen consumption after lipopolysaccharide (LPS) stimulation in vitro and
a tolerant environment influence on B cell metabolic reprogramming [44].

2.1.2. T Cells: Key Signaling Molecules Mediating Nutritional Effects on T Cells

The immunometabolism of T cells has drawn interest mainly for their biological and
therapeutic potential. Thus, the energy needs of lymphocytes depend on their state, and
the immediate environment and aerobic glycolysis in lymphocytes may be important not
only for cell proliferation but also for the differentiation of T cells into effector lymphocytes
and for the production of effector cytokines [45].

Resting T cells require or generate low energy expenditure [46], mainly engaging
mitochondrial metabolism to generate energy [47]. Thus, mTORC1 signaling is essential for
T cell development in the thymus and homeostasis in the periphery; by contrast, mTORC2
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activity is required for Th1 and Th2 cell differentiation, while it also regulates the migration
of Tfh and Treg cells [27]. Moreover, it has been demonstrated that phosphoinositide
3-kinase/protein kinase B (PI3K/PKB, also called Akt) pathways and mTOR complexes also
regulate Th17 differentiation both in vivo and in vitro [48]. Naive T lymphocytes resting
in lymphatic nodes show a low cell division ratio, which uses low energy expenditure.
They use metabolites that enter the TCA cycle, where ATP and reducing equivalents are
generated, which subsequently increase the production of ATP upon entering the OXPHOS
pathway [49]. When naive T lymphocytes are in a resting state, energy demands are met by
glycolysis. This metabolic process is linked to antigen recognition in immune activation [22].
Precursor T cells need substantial energy as they are continuously migrating through the
lymphatic system; they get this energy from FAO and the TCA cycle. Moreover, both
resting CD4 and CD8 T cells use a predominantly oxidative metabolism. Thus, Nicoli et al.
demonstrated that autophagy and the mTOR-dependent glycolytic pathway are key agents
of antigen-driven priming in the naive CD8+ T cell pool, showing that naive CD8+ T cells
also have lower concentrations of neutral lipids and fatty acid intake compared to memory
CD8+ T cells. Contrary, cholesterol uptake was higher among naive CD8+ T cells compared
to memory CD8+ T cells. Moreover, it was demonstrated that non-indispensable amino
acids, such as L-carnitine, can promote the effector differentiation of naive CD8+ T cells [50].

Invariant natural killer T (iNKT) cells, the main category of natural killer T cells and a
subpopulation of mature innate T lymphocytes [51], were identified as essential players
in immunometabolism due to their capacity to respond to self-derived or microbially
derived lipid antigens, such us α-galactosylceramide (α-GalCer), which is presented by
CD1 molecules on APCs. Similar to these APCs, iNKT cells act as a link between the
innate and the adaptive immune system, and they are able to produce the highest amounts
of Th1, Th2, Th17, or regulatory cytokines upon activation [51–54]. Moreover, there is
evidence of communication between cellular metabolic and immune signaling pathways
for proper iNKT cell development and function. Thus, functionally, these cells present an
anti-inflammatory or prohomeostatic role in disease development or inflammatory activity,
with relevant roles in host defense [54].

Regarding homeostasis, Yarosz et al. recently demonstrated that the Kelch-like ECH-
associated protein 1 (Keap1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system
are critical to the development and homeostasis of NKT cells [55]. Moreover, although
the function of autophagy in peripheral iNKT cell homeostasis is unknown, this inhibits
mitochondrial metabolism during iNKT cell development [55]. Furthermore, regarding
iNKT cell immunometabolism, a role was revealed for very-long-acyl-chain sphingolipids
in iNKT cell maturation in the thymus and liver homeostasis in an animal model [56].

2.2. Reprogramming Metabolism after Proinflammatory Stimulation

Upon inflammatory immune activation, the rapid increase in glucose consumption
rates at the expense of OXPHOS brings about the generation of energy and biomass and
results in the accumulation of metabolic intermediates, such as succinate, itaconate, and
fumarate, which may act as immunometabolites that modulate the intracellular immune
response [30] (Figure 2).

2.2.1. Metabolic Changes in APCs after Proinflammatory Stimulation

DC metabolism and its effect on the efficacy of immune responses may help in the
design of immunotherapeutic strategies.

It has been well established that the activation of DCs leads to increased glucose uptake
and lactate production. Moreover, after a danger signal, such as PAMPs and/or DAMPs,
energy in the form of ATP is generated by OXPHOS; therefore, lactate production does
not reflect a commitment to the Warburg effect [14,57–59]. Moreover, the need for citrate
by activated DCs for fueling fatty acid synthase (FAS), which is involved in endoplasmic
reticulum (ER) and Golgi apparatus turnover, is met via glycolysis [59]. This glycolytic
metabolism is dependent on the activation of hypoxia-inducible factor 1 (HIF-1α), an
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oxygen-sensitive transcription factor, and PI3K/Akt pathways, and it indicates a possible
role for mTOR downstream of PI3K/Akt [58,60], whereas the induction of the OXPHOS
mediator AMPK antagonizes the glycolytic pathway, inhibiting DC maturation [61]. In this
sense, under certain environmental conditions, such as adequate amounts of the cytokine
IL-10 or transforming growth factor (TGF)-β and contact with Treg cells or immunosuppres-
sive drugs, DCs can become phenotypic and functionally tolerogenic [62]. Thus, tolerogenic
DCs are predominantly catabolic and rely on OXPHOS and FAO for ATP production, with
low glycolytic potential; a shift in the redox state, regulated via AMPK/PGC1a; and high
plasticity for metabolic adaptation [32,38,63].
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In contrast, immunogenic DCs exhibit anabolic metabolism and a rapid induction
(mainly glycolytic) under aerobic conditions; they are an integral component of TLR sig-
naling. Following the rapid loss of mitochondrial OXPHOS and reduced FAO [38], the
TANK-binding kinase 1 (TBK1), an inhibitor of nuclear factor kappa-B kinase subunit
epsilon (IKKE), and Akt kinase are essential for engaging the mitochondrial glycolytic
enzyme hexokinase (HK)-II [64]. Moreover, an important role has been proposed for the
AMPK–PPARγ co-activator 1α (PGC1α) axis in antagonizing metabolic pathways that pro-
mote DC activation, which may point to the intriguing possibility that the immunogenicity
or tolerogenicity of DCs is determined by the balance between anabolic versus catabolic
metabolic pathways [38,59]. In this sense, increased lactic acid levels induce a tolerogenic
reprogramming during DC differentiation from monocytes [59]. Semimature DCs have
been proposed as a major component in immune homeostasis [65]. These cells were first
characterized by partial activation, resulting in higher levels of the expression of MHC
class I and II and co-stimulatory molecules, along with lymphatic-node-homing capacity
but a lack of inflammatory cytokine secretion [66]; however, this concept seems to be more
complex, and other factors are implicated [67,68]. In this sense, Nguyen-Phuong et al.
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recently showed that blocking acetyl-CoA carboxylases 1 and 2 (ACC1/2), isozymes that
regulate fatty acid metabolism (FAS in the cytoplasm and FAO in the mitochondria), in
DCs favors the FAO pathway. Furthermore, they reported that the ACC1/2 blockade in
DCs in a proinflammatory setting induces a semi-maturation phenotype [35].

When monocytes are studied, following proinflammatory or anti-inflammatory signals,
these APCs differentiate into proinflammatory macrophages (M1) or anti-inflammatory
macrophages (M2), respectively, at the affected tissue. This M1–M2 polarization is a plastic
and dynamic process that is tissue specific. This implies an active characteristic metabolic
state: while M1 macrophages primarily use glucose consumption and lactate excretion,
M2 macrophages use OXPHOS, FAO, and mitochondrial respiration [69]. Thus, Rosa et al.
proposed that FAO induces M2 [11,70]. Moreover, the repolarization of M2 to M1 after
infection conditions with the consequent metabolic reprogramming leads to an impaired
TCA cycle in M1 and succinate accumulation [30].

In the case of B cells, following activation through the BCR or PAMP/DAMP receptors,
these cells induce their proliferation and differentiation into antibody-secreting plasma
cells, as well as regulatory and memory B lymphocytes. Upon either LPS or BCR stimu-
lation, B cells increase oxygen consumption and cause a marked upregulation in glucose;
concretely, B lymphocytes have a balanced increase in lactate production and oxygen
consumption following this activation, with proportionally increased glucose transporter
GLUT1 expression, mitochondrial mass, and amino acid transport [44,71]. Thus, B cells
rely almost exclusively on glucose metabolism to support expansion [47]. Moreover, while
in T cells, increased glucose uptake is associated with aerobic glycolysis, in B cells, this
glucose is used in the pentose phosphate pathway (PPP) to produce nicotinamide ade-
nine dinucleotide phosphate (NADPH) and ribose 5-phosphate to riboneogenesis, which
is fundamental for supporting antibody production [72]. Key molecular regulators that
control metabolism in B cells include the PI3K signaling cascade and mTOR [72]. After
activation, these cells use metabolites not only from the glycolytic and TCA cycle but also
in anabolic pathways to generate FAs. These de novo synthesized FAs are critical for the
initial expansion of the ER, which conditions the activation of all machinery-associated
protein production to immunoglobulin synthesis [43]. In this sense, plasma cells are the
only cells that secrete high levels of antibodies throughout their lives. This production of
antibodies occurs during and after infections [43]. Thus, Lam et al. (2016) proposed that this
antibody secretion and plasma cell survival (and, therefore, the energy requirements) are
linked. Furthermore, this group demonstrated that long-lived plasma cells after increased
glucose requirements produce more immunoglobulins than short-lived plasma cells that
import less glucose [73].

Currently, there is open talk of the differentiation of naive B cells into regulatory
B (Breg) cells, which produce the anti-inflammatory cytokine IL-10 and complex im-
munometabolism [72,74,75]. In this line, Menon et al. proposed that the IFN-α levels
produced by plasmacytoid DCs induce the differentiation into Breg cells that restrains
inflammation in autoimmune diseases [76]. Moreover, Jiang et al. recently suggested
that defects in the number and function of specific Breg cells disturb immunologic home-
ostasis and can contribute to autoimmune disease development [77]. Thus, Rosser et al.
summarized microenvironmental stimuli that induce Breg cell differentiation and the role
of immunometabolism in Breg cell function, showing that Breg cell activation is poorly
characterized in bioenergetic terms and depends in part on glycolysis. Moreover, they pro-
posed that low oxygen levels in cancerous or inflammatory tissues could induce Breg cell
differentiation [72]. Indeed, in this development, the intracellular cholesterol metabolism
and signaling pathways to produce IL-10 are interconnected [78].

2.2.2. Metabolic Changes in T Cells after Proinflammatory Stimulation

Metabolic reprogramming of T cells upon stimulation contrasts with B cell repro-
gramming, because T lymphocytes pass from a lower glycolytic flux when resting to a
higher one, thus enhancing this pathway. Instead, in B cells, tolerance greatly affects
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B cell metabolic reprogramming [44]. For this, the immunometabolism of T cells presents
interesting therapeutic potential.

Full activation of T lymphocytes occurs in lymphatic nodes, where naive T cells interact
with mature peptide-carrying DCs via MHC class I or II molecules: TCR involvement
(signal 1), in the context of co-stimulation (signal 2), and the production of effector cytokines
(signal 3). However, for an absent or incomplete signal 2, anergic T cells would emerge.
This implies a mechanism for the maintenance of T cell anergy, with failure to upregulate
the metabolic machinery [16].

Thus, after full activation, resting naive T cells proliferate and differentiate toward
T effector cells. In this process, the first two daughter T cells display phenotypic and
functional indicators of being differentially fated toward effector and memory lineages [79],
whereby metabolic pathways cooperate with transcription programs to maintain differential
cell fates following asymmetric T cell division [80]. Thus, activated CD4+ T lymphocytes
can differentiate into a Th response designed to fight bacterial or fungal antigens, while
activated CD8+ T cells can differentiate into cytotoxic T cells to combat viral infections.

Memory T cells present an oxidative metabolism [81,82], governed by transcription
factor c-myc [83]. Regarding subpopulations, memory CD4+ T cells and regulatory T cells
perform FAO for their survival and metabolic needs. Moreover, it was demonstrated that
lysine acetylation of glyceraldehyde 3-phosphate dehydrogenase in CD8+ T cells in the
presence of short-chain FAs (SCFAs), such as acetate, increases glycolysis-promoting naive
CD8+ T-cell differentiation into memory T cells [84].

Resting naive T cells after differentiation into effector T cells balance metabolic path-
ways from catabolic metabolism to anabolic energy metabolism. This is driven predom-
inantly by the glycolytic–lipogenic pathway and is associated with glutamine oxidation
that fuels mitochondrial OXPHOS through the TCA cycle; it is regulated via the mTOR-
dependent nutrient-sensing pathway stimulated downstream of PI3K/Akt pathways [46].
Moreover, mTORC1 signaling is essential for T cell differentiation into effector CD4+ Th1
and Th17 cells, as well as cytotoxic CD8+ T cells [27,81] versus CD4+ Th2 cells, which
display high levels of mTORC2 activity [82]. Moreover, AMPK stimulates catabolic path-
ways, with autophagy providing energy for CD4+ Th1 and Th17 cell proliferation in an
inflammatory state, such as infections [26]. AMPK helps T cell differentiation and Treg cell
function, supports T cell survival in glucose-limited conditions, supports T cell quiescence
via FAO, and stimulates FAO in memory CD8+ T cells. Furthermore, Th17 cells mainly
perform glycolysis thanks to the fact that they possess HIF-1α, which is an oxygen-sensitive
transcription factor that regulates glycolytic gene expression. However, Treg cells per-
form glycolysis, FAO, and OXPHOS. Proinflammatory CD4+ T cells rely on glycolysis.
Thus, similar to other leukocytes, such as APCs, Th17 cells use glycolysis for effector
inflammatory function; however, when this metabolic pathway is blocked, T cells become
Treg cells [85]. In a recent study, McTernan et al. demonstrated through in vitro assay that
ethanol alters naive T cell metabolism with an increase in glycolysis and impaired OXPHOS,
which disrupts mitochondrial repair processes and promotes Th1 CD4+ T lymphocytes [86].
Jones et al. showed the main metabolic pathways for different functions in human CD4+

and CD8+ T cells. Thus, increased expression of HK-II with higher basal glycolysis was
demonstrated in CD4+ T cells. However, cytokine production in CD8+ T cells is more
reliant on OXPHOS [83].

Treg cell metabolism in vivo is dependent on the environment and type of immune
response orchestrated. Thus, Treg cells that develop in vivo present a resemblance to effec-
tor T cells in that they depend on glycolysis-driven lipogenesis, with the raptor/mTORC1
pathway that promotes cholesterol and lipid metabolism, for their proliferation and func-
tion [46,87]. In this sense, it has been reported that inhibition of the mTOR pathway with
rapamycin can balance the response between regulatory and effector T cells [72]. Moreover,
it was proposed that Treg cells perform FAO for energy and survival, similar to memory
CD4+ T cells [54].
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T cells are highly influenced by nutrient uptake from their environment, and changes
in the overall nutritional status, such as malnutrition or obesity, can result in altered T cell
metabolism and behavior. In states of severe malnutrition or starvation, T cell survival,
proliferation, and inflammatory cytokine production all decrease, as do T cell glucose
uptake and metabolism. The altered T cell function and metabolism seen in malnutrition
are associated with altered adipokine levels, most particularly decreased leptin [88].

2.3. Modulation of Immunometabolic Pathways in Obesity and Type 2 Diabetes as an
Intervention Tool

Immunometabolic pathways in patients with obesity and/or T2DM are altered. Dia-
betes is essential for immunometabolism studies, since high glucose levels over time trigger
processes such as endothelial inflammation, increased mitochondrial oxidative stress, and
decreased nitric oxide (NO), producing systemic alterations related to immunity. T2DM,
the most common form of diabetes (∼90%), presents a systemic inflammatory response
coupled with insulin resistance (IR) or decreased metabolic response to insulin in various
tissues, such as adipose tissue, liver, and skeletal muscle, as well as by reduced insulin
synthesis in the islets of Langerhans [89,90]. Thus, after the APC–T lymphocyte interaction
and activation process, this process is favored by factors such as insulin. Moreover, insulin
resistance (IR) and a change in receptors affect T cell function, specifically polyclonal CD4
cell activation and effector cytokine production, such as Th1 and Th17 cells. Thus, IL-17
production affects IR signaling in macrophages, altering its activation.

Regarding B cells, an increase in IgG production is related to IR [91]. In addition, it has
been shown that B lymphocytes secrete proinflammatory cytokines, including IL-8, along
with a decrease in IL-10 production, compared to B cells from subjects without diabetes.

During the progression of diabetes, hyperglycemia promotes mitochondrial dysfunc-
tion and induces the formation of reactive oxygen species (ROS) that cause oxidative stress
in several tissues, such as blood vessels and pancreatic beta cells [24].

Surendar et al. showed that a combination of factors, such as decreased adiponectin
and increased Th1 and Th17 cell glycolysis, can favor IR, contributing to obesity [92].
Similarly, Damas et al. demonstrated that Th17 cells and macrophages accumulated in
visceral adipose tissue contribute to altered glycemic status in obese subjects [93].

Modulation of Aerobic Glycolysis and TCA with Traditional Drugs

In obesity and diabetes, the proinflammatory microenvironment alters immunometabolism,
favoring the aerobic glycolysis pathway in both APCs and T cells, albeit with signatures
specific to each cell type. In contrast, OXPHOS generally favors an anti-inflammatory
phenotype, such as that of tolerogenic DCs, M2, and Treg cells. Thanks to the knowledge
of the energy production pathways involved in the processes of activation, proliferation,
and survival of immune cells, different targeted therapies are applied that act on the
immunometabolism of the cells affected in said pathologies. For this, therapeutic im-
munomodulators described, such as dimethyl fumarate (DMF), metformin, methotrexate,
and rapamycin, are used to induce metabolic reprogramming with anti-inflammatory
effects [31].

2.4. Modulation of Metabolic Pathways as a Therapeutic Strategy: The Nutraceutical Approach

An approach in therapies to modulate the exacerbated proinflammatory response
in T2DM and obesity could be the use of nutraceuticals as an adjuvant to redirect the
alterations in the metabolic pathways that occur in immune cells in a proinflammatory
microenvironment. The propose is the regulation of the inflammation associated with
these pathologies; thus, intervention in metabolic pathways through the modulation of
metabolic energy with nutraceuticals alone or combined with traditional drugs is an
attractive strategy that allows inducing important changes in immunocellular properties in
obesity and T2DM (Table 1).
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Table 1. Nutraceuticals with a modulator effect on immunometabolism.

Nutraceuticals
Effects/Immunometabolic Signaling Pathways References

APCs T Lymphocytes

Naringenin
Anti-inflammatory effects/↑LXRα/↑AMPK (MΦ) - [94]

- ↑AhR in Treg cells [95]

Resveratrol

Anti-inflammatory effects/↑SIRTUIN-1/↓IL-6 (Mo) - [96]

Tolerogenic DCs/↓NF-κB - [62]

↓M1, ↑M2/↑AMPK, ↓p38 MAPK, ↓JNK ↑Treg cells [97]

Tolerogenic DCs/↑OXPHOS, mitochondrial
biosynthesis, ↑SIRTUIN 1, AMPK (DCs) - [38]

Tolerogenic DCs/↑PGC1α - [38]

↓M1/↑AMPK - [98]

↓M1/↓iNOS, ↓NO - [99]

↓M1/↓NF-κB, ↓COX, ↓TLR4-TRAF6, ↓p38 MAPK, ↓Akt - [100]

↓Mo-to-M1 differentiation/↑GSH, ↑AMPK - [101]

- ↓Th17 cells/↓Treg cells, ↓Th1
cells/↓Th2 cells/↓STAT3 [102]

Carnosol ↓Glycolysis, ↓mitochondrial respiration/↑AMPK,
↓mTOR (mDCs) - [103]

Curcumin

↓Glycolysis, ↓mitochondrial respiration/↑AMPK,
↓mTOR (mDCs) - [103]

↑Lipid metabolism/↑AMPK, ↑LXRα, ↑ABCA1,
↑ABCG1, ↑SREBP1c (M1) - [104]

Piperine

↑Cholesterol efflux/↑ABCA1 (M1) - [105]

↓M1 polarization/↓ inflammatory cytokines, ↓CD11c,
Gal-3 (M1) - [106]

↑IL-6, TNF-α/↑mTORC1 (M1) - [107,108]

Quercetin

↓DC maturation/↓MAPK, ↓Akt, ↓NF-κB ↓Ag-specific T cell activation [109]

↓M1/↓iNOS, ↓NO - [99]

↓Th2 response/↓specific IgE (plasma cells) ↓Th2 response/↓IL-4, ↓IL-5 [110]

Baicalin ↑Lipid metabolism/↑ABCA1, ↑ABCG1; ↑PPARγ,
↑LXRα (M1) - [111]

Berberine
Anti-inflammatory role/↓NF-κB (Mo) - [112]

↓M1 polarization/↓TLR4/MyD88/NF-κB - [113]

MUFAs

Anti-inflammatory effects/↓TNFα, ↓IL-6, ↓IL-1β (Mo)
Anti-inflammatory

effects/↓TNFα, ↓IL-6, ↓IL-1β
(lymphocytes)

[11,114,115]

Anti-inflammatory effects/↓COX-2, ↓TNFα, ↓IL-6,
↓IL-12 (M1) - [116]

↑AMP/ATP ratio, ↑AMPK, ↓NF-κB pathway (M1) - [117]

Anti-inflammatory effects/↓PI3K, ↓Akt, ↓MAPKs,
↓NF-κB, ↓NOS2, ↓COX2 (M1) - [118]

SCFAs

↑Breg cells/Epigenetic mechanism ↑Treg cells/↓histone deacetylase,
↑FOXP3 [119–121]

- ↑DN T cell differentiation/↑OX40,
↓NLRP3 [122]

↑Breg cells/↑IL-10 (B cells) - [123]
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Table 1. Cont.

Nutraceuticals
Effects/Immunometabolic Signaling Pathways References

APCs T Lymphocytes

Vitamin B ATP generation/naive B cells vitamin B1-dependent
TCA cycle - [124]

Vitamin D

↑Aerobic glycolysis, ↑OXPHOS,
↑TCA/↑PI3K/Akt/mTOR (DCs) - [62,125,126]

Reprogramming aerobic glycolysis, glucose
oxidation/PFKFB4 (DCs)

Reprogramming aerobic
glycolysis, glucose oxidation/

PFKFB4 (DCs: Treg cells)
[127]

↑M1 with antimicrobial activity/↑iNOS, ↑NO - [126]

↑M1 with antimicrobial activity/↑ROS - [128]

Anti-inflammatory activity/↓TLR-2, TLR-4, ↓IL-6,
↓TNF-α (Mo/MΦ) - [129]

↑Infected M1 with antimicrobial activity, lipid
metabolism/↓PPARy, lipid inhibition (M1) - [130]

↑Breg cells/↑IL-10 (B cells) - [131]

-
↓Th1 response, ↑Treg

cells/↓IFNγ-producing CD4,
CD8 T cells (mice)

[132]

Vitamin C

Antioxidant and anti-inflammatory effects/↓ROS,
↓DNA damage, ↓TNF-α, ↓IL-6, ↓p38 MAPK,
↓autophagy, ↑DNA demethylation (M1)

- [133]

↑DNA demethylation (DC) - [134]

Vitamin C and E inhibit oxidative pathway/
NF-κB (DCs)

Vitamin C and E inhibit blocks
oxidative pathway/

Treg-cell-mediated responses
[135]

Vitamin E

↓Activated-DC-/↓NF-κB-mediated DC functional
maturation (mDCs) - [136]

Anti-inflammatory effects/↓inflammatory cytokines - [137]

- ↑Activation/↑CD4–APC
interaction [138]

Astaxanthin ↓FAO/↓oxLDL production, ↓ROS, ↓NO, ↓inflammatory
cytokines (M1) - [139]

Sulforaphane Anti-inflammatory effect/↓NO, ↓COX-2, ↓iNOS,
↓TNF-α, ↓IL-6, ↓ IL-1β, ↓PKM2 (M1) - [140]

ABC: ATP-binding cassette transporters; AhR: aryl hydrocarbon receptor; AKT: protein kinase B; AMPK: AMP-
activated protein kinase; APC: antigen-presenting cell; Breg cell: regulatory B cell; COX: cyclooxygenase;
DC: dendritic cell; FAO: fatty acid oxidation; Gal-3: galectin-3; GSH: glutathione; IgE: immunoglobulin E;
MΦ: macrophages; iNOS: inducible nitric oxide synthase; JNK: Jun N-terminal kinase; LXRα: liver X receptor al-
pha; Mo: monocytes; MyD88: myeloid differentiation primary response 88 protein; M1: pro-inflammatory
macrophages; M2: anti-inflammatory macrophages; mTOR: mammalian target of rapamycin; NF-κB: nu-
clear factor kappa-light-chain-enhancer of activated B cells; NO: nitric oxide; NOS2: nitric oxide synthase 2;
oxLDL: oxidized low-density lipoprotein; OXPHOS: oxidative phosphorylation; PKM2: pyruvate kinase M2;
PFKFB4: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4; PGC1α: PPARγ co-activator 1alpha; PI3K: phos-
phoinositide 3-kinases; PPARγ: peroxisome proliferator-activated receptor gamma; p38 MAPK: p38 mitogen-
activated protein kinases; IL-1: interleukin 1, IL-6: interleukin 6; ROS: reactive oxygen species; SREBP1c: sterol
response element-binding protein 1c; TCA: tricarboxylic acid; TLR-4: Toll-like receptor 4; TNF-α: tumor necrosis
factor alpha; TRAF6: TNF receptor-associated factor 6; Treg cell: regulatory T cell.

2.4.1. Nutraceutical Anti-Inflammatory and Antioxidation Functions

Nutraceuticals have demonstrated a wide range of health effects, such as anti-inflammatory,
anticancer, antioxidant, and prebiotic effects and their regulation of lipid metabolism [141].
Next, we focus on those nutraceuticals that have shown immunometabolic abilities (Figure 3).
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2.4.2. Polyphenols

These compounds are phenylpropanoids of plants origin that are related to a decrease
in cardiovascular risk, capable of showing anti-inflammatory, anti-hypertensive, anti-
platelet, and antioxidant function [141,142]. The antioxidant action (ROS scavenging,
oxidative stress protection, thiol redox stabilization, and membrane lipid peroxidation
attenuation) or pro-oxidant activity (ROS production, thiol redox alteration, membrane
lipid peroxidation, and oxidative stress) of polyphenols is able to regulate epigenetic
factors by oxidant and thiol-redox-mediated signaling modulation. For example, our
group demonstrated that naringenin regulates the liver X receptor (LXR)α expression in
macrophages by modulating AMPK [94]. Wang et al. showed that naringenin induces the
aryl hydrocarbon receptor (AhR)-mediated signaling pathway in Treg cells [95]. Moreover,
Li et al. demonstrated that naringenin improves insulin sensitivity in gestational diabetes
mellitus through AMPK in nonimmune cells (e.g., skeletal muscles) in mice [143].

Resveratrol is a plant-derived polyphenol with pleiotropic biological properties, a po-
tent antioxidant nutraceutical, and a SIRTUIN-1 activator, which is able to partially inhibit
the enhanced IL-6 production after β-glucan stimulation in monocytes [96]. Svajger et al.
showed that resveratrol induces DC-associated tolerance, suggesting that these effects may
be associated with molecular targets through nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) translocation [62]. Moreover, Shabani et al. demonstrated
that resveratrol treatment can decrease M1 and increase Treg cell infiltration into skele-
tal muscle in mice fed a high-fat diet (HFD). Moreover, they observed that resveratrol
decreases inflammation in skeletal muscle with an AMPK expression increase and a p38
mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) decrease [97].
Thus, their results showed the metabolic reprogramming toward M2 and Treg cells is
balanced after resveratrol treatment in HFD mice.

Furthermore, moderate doses of resveratrol promote OXPHOS and mitochondrial
biosynthesis in DCs from mice and humans via activating SIRTUIN-1 and AMPK [38,144],
as well as via augmenting PGC1α expression to prevent DC maturation and immunogenic
activation [38].

Quan et al. demonstrated that resveratrol suppresses the reprogramming of macrophages
into an endotoxin-tolerant state through the activation of AMPK [98]. In line with this,
Chan et al. showed that this polyphenol blocks iNOS expression and NO generation in
these cells [99]. Malaguarnera summarized that resveratrol decreases NF-κB activation
and COX on activated macrophages and attenuates the TLR4–TRAF6, MAPK, and AKT
pathways [100]. Thus, resveratrol attenuates monocyte-to-macrophage differentiation via
GSH upregulation through AMPK activation [101].
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Moreover, resveratrol’s capacity to act on T cell differentiation to decrease the inflammatory-
associated response was analyzed. This polyphenol can inhibit inflammation through the
ratio between Th17 cells and Treg cells and the Th1 cell/Th2 cell balance; acting as a
SIRTUIN-1 agonist, it can deacetylate the transcription factor STAT3 and alter nuclear
factors essential to the process of lymphocyte differentiation [102].

Curcumin is an important anti-inflammatory and antioxidant compound playing a
key role in many cellular processes, including inhibition of STAT3 activation in nonimmune
cells, such as adipocytes and trophoblast cells; inhibition of NF-kB activation in pregnancy
complications; and activation of the NRF2/KEAP1 pathway [145–148]. Campbell et al.
demonstrated that polyphenols, such as carnosol and curcumin, can decrease glycolysis and
spare respiratory capacity in LPS-induced DC stimulation, via AMPK activation and mTOR
signaling inhibition. Thus, they suggested that polyphenol supplementation may be useful
to regulate inflammation through immunometabolism in metabolic disease [103]. Further-
more, we described that curcumin induces AMPK phosphorylation and increases LXRα
mRNA and protein expression. Curcumin upregulates the expression of genes involved in
cholesterol transport and metabolism, such as ATP-binding cassette (ABC) transporters
ABCA1 and ABCG1, as well as sterol response element-binding protein 1c (SREBP1c), show-
ing a possible mechanism for understanding the hypocholesterolemic effects of curcumin
and expanding the knowledge about LXRα regulation by AMPK [104]. Piperine blocks
ABCA1 degradation and increases cholesterol efflux in macrophages [149]. Furthermore,
Liu et al. demonstrated that piperine can inhibit the M1 polarization of macrophages
through downregulation of proinflammatory cytokine expression and a decrease in CD11c
and Gal-3 M1-like polarization markers. Reprogramming toward M2 cannot be achieved
in the adipose tissue of obese mice but may decrease insulin resistance [106]. However,
controversial results have been proposed for piperine. Pan et al. and He et al. showed that
this nutraceutical increases mTORC1 activity in resident peritoneal M1 to produce IL-6 and
TNF-α, thus boosting their functions against bacterial infection [107,108].

Moreover, the effects of curcuminoids and piperine are greater when combined than
when alone in reducing serum malondialdehyde levels but without affecting TNF-α, leptin,
or adiponectin in blood [4,105]. Although the synergistic effect of curcumin and piperine
on global metabolism has been well established, no studies have been conducted on
immunometabolism. More conducive studies are needed to clarify the power of these
combined nutraceuticals.

Quercetin, a common polyphenol in nature, is an aglycone bioflavonoid widely used
for the treatment of metabolic and inflammatory disorders [150]. Huang et al. demon-
strated that quercetin can inhibit LPS-induced DC maturation through decreased surface
expression of MHC class II and co-stimulatory molecules and a reduction in proinflam-
matory cytokines/chemokines. Moreover, this nutraceutical can abrogate the ability of
LPS-stimulated DCs to induce Ag-specific T cell activation, both in vitro and in vivo. Fur-
thermore, quercetin may reduce MAPK, Akt, and NF-κB signaling pathway activation and
diminish Ag-specific T cell activation [109]. Similar to what is observed for resveratrol,
quercetin reduces macrophage NO production through scavenging of NO and a reduction
in iNOS gene expression [99]. Furthermore, quercetin reduces specific immunoglobulin (Ig)
E production in plasma cells. In this sense, this polyphenol can modulate the Th2 response
through IL-4 and IL-5 cytokine reduction [110]. Moreover, Yang et al. determined that
quercetin supplementation in the diet in an animal model can increase IgA and IgM in
serum. They demonstrated that quercetin also increases IL-4, complement component 4
(C4), and TNFα production through NF-κB signaling pathway activation [151].

Baicalin is a major flavonoid glycoside present in the dry roots of Scutellaria baicalensis
and is used to treat hypertension [111]. Thus, this nutraceutical can act through TLR4,
BCR, and TCRαβ, present in APCs and T cells [152], to regulate immunometabolism in the
host. Furthermore, baicalin can induce ABCA1 and ABCG1 cholesterol transporters. In this
sense, it has been demonstrated that baicalin increases PPARγ and LXRα protein levels in
macrophages [111].
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Berberine, a phytoalkaloid, presents hypoglycemic effects on T2DM [153]. Thus,
Reddi et al. showed the anti-inflammatory potential of this nutraceutical via decreas-
ing NF-κB in activated monocytes [112], and Gong et al. observed its inhibitory effects
on M1 polarization through interfering with TLR4 interaction and disturbing the TLR4/
MyD88/NF-κB signaling pathway [113]. Daien et al. demonstrated that dietary fiber
supplementation in healthy individuals is associated with increased B10 cells in periph-
eral blood [123]. Moreover, short-chain fatty acids (SCFAs) from high dietary fiber and
microbiota metabolism can bind to specific G-protein-coupled receptors (GPCR) of immune
cells, thereby changing their phenotype. These metabolites can also directly fuel specific
metabolic pathways to affect immune function [154].

Dietary nutraceuticals, such as SCFAs, can act as tolerogenic modulators in im-
munometabolic responses. Thus, acetate, propionate, and butyrate, which are mainly
derived from the microbiota metabolism, promote a tolerogenic response induced through
B and Treg cells via epigenetic mechanisms; for example, butyrate inhibits histone deacety-
lase that increases FOXP3 expression and enhances acetylation at histone H3 in the FOXP3
promoter [120,121]. This protective mechanism delays the onset of diabetes [119]. Moreover,
it has been demonstrated that SCFAs inhibit the production of proinflammatory cytokines
and chemokines, as well as the recruitment of leukocytes to injured tissue [155]. The anti-
inflammatory activity of SCFAs has been described in intestinal barrier function, showing
that acetate, propionate, and butyrate stimulate the formation of tight junctions through
inhibition of the NLRP3 inflammasome and autophagy in the intestinal barrier [156].

Moreover, it was recently demonstrated that SCFAs promote double-negative T cell
differentiation in intestinal microenvironmental immunity through OX40 via inhibition of
the NLRP3 inflammasome [122].

Daïen et al. recently demonstrated that acetate promotes IL-10-producing Breg or
B10 cells [123]. Moreover, it has been shown that this molecule may increase glycolysis-
promoting naive CD8+ T cell differentiation into memory T cells [84].

Monounsaturated fatty acids (MUFAs) are chemically classified as FAs that present one
double bond in the carbon chain. There are three main classes of MUFAs: omega-3 omega-6,
and omega-9 (n-3, n-6, and n-9, respectively). They can act as antioxidants by modulating
the antioxidant signaling pathway and may regulate inflammatory processes [157]. Thus,
Dangardt et al. demonstrated that n-3 MUFA supplementation increases serum levels and
decreases TNFα, IL-6, and IL-1β levels in the PBMCs of subjects with obesity [114]. In line
with this, Zhao et al. revealed that the treatment of people with obesity with n-3 MUFAs,
such as linolenic acid, decreases free plasma FAs, IL-6, and TNFα levels and increase
PPARγ expression in mononuclear cells (PBMCs) [11,115]. Furthermore, oleic acid (OA)
is an n-9 MUFA, recognized as a versatile nutraceutical and effective biomolecule, with
potent antioxidant capacity because it can directly regulate both the synthesis and the
activity of antioxidants enzymes [158]. Thus, Camell et al. described that dietary OA
induces M2 in the mesenteric adipose tissue of mice [159]. In line with this, Charlett et al.
published that OA decreases COX-2, TNFα, IL-6, and IL-12 expression in LPS-stimulated
M1, showing anti-inflammatory and antifungal properties [116]. Hou et al. reported
that OA supplementation increases the AMP/ATP ratio and AMPK activation, as well
as inhibiting the NF-κB pathway in M1 [117]. Moreover, Hong et al. proved that OA
treatments have anti-inflammatory effects through inhibiting proinflammatory mediators,
including PI3K, Akt, MAPKs, NF-κB, NOS2, and COX2 in M1 [118]. Regarding T cells,
Gorjão et al. demonstrated that OA stimulates T lymphocytes, inducing their proliferation,
while other saturated or n-3 fatty acids decrease it [160].

Vitamins are essential micronutrients that are synthesized by bacteria, yeasts, and
plants but not by mammals [161]. They play key roles in inflammation and in basic
metabolic pathways [162].

Vitamin B1 is an essential cofactor in the maintenance of the TCA cycle. Thus, Ku-
nisawa et al. showed that naive B cells in Peyer’s patches use the vitamin-B1-dependent
TCA cycle for the generation of ATP. However, IgA-producing plasma cells switch to using
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glycolysis for the generation of ATP and shift to a catabolic pathway for IgA secretion. They
demonstrated that a vitamin-B1-deficient diet in mice prevented intestinal lamina propria
B cell differentiation after proinflammatory stimuli [124].

Vitamin D is available in two distinct forms: ergocalciferol (vitamin D2) and cholecal-
ciferol (vitamin D3) or 1.25(OH)2D3. Vitamin D3 is the main form of vitamin D in the diet of
most people and is the form that is synthesized in the skin. Vanherwegen et al. summarized
that 1.25(OH)2D3 interferes with the expression of genes involved in processes such as gly-
colysis, OXPHOS, and TCA, as well as genes in the PI3K/Akt/mTOR signaling pathway in
DCs [126]. Thus, vitamin D3 induces glycolytic enzyme 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 4 (PFKFB4) expression, leading to metabolic reprogramming toward
aerobic glycolysis and glucose oxidation in tolerogenic DCs to induce functional Treg
cells [127]. Moreover, other studies published have reflected that vitamin D and/or resver-
atrol can induce tolerance in monocyte-derived DCs [62,125].

Related to macrophages, vitamin D3 acts as a stimulator of NO production in the
human HL-60 cell line. This occurs by increasing iNOS gene expression, which can lead to
the suppression of Mycobacterium tuberculossus infection [126]. This antimicrobial activity is
associated with an increase in ROS levels mediated by NADPH oxidase and PI3K [128].
In this sense, Vanherwegen et al. concluded that vitamin D3 can increase glycolytic
immunometabolism typical of the M1 phenotype [126].

Moreover, vitamin D3 presents anti-inflammatory activity in monocytes/macrophages
by decreasing both the protein and the mRNA levels of TLR-2 and TLR-4.

This reduces IL-6 and TNF-α levels [129].
Salomon et al. showed the connection between myeloid lipid metabolism and vitamin

D3 receptor signaling in the context of M. tuberculosis infection. Thus, they demonstrated
that vitamin D3 regulates pro-adipogenic PPARy in activated macrophages, leading to
the inhibition of lipid droplet induction by this nutraceutical [130]. Moreover, it has been
published that vitamin D enhances the IL-10 expression of activated B cells [131], which
can lead to B10 cells. In line with this, low-dose combined vitamin D3/dexamethasone
promoted IL-10 production in DCs and B cells from dyslipidemic mice [132]. Moreover,
this combined treatment decreased the percentage of IFNγ-producing CD4 and CD8 T cells
in dyslipidemic mice, leading to tolerogenic immunometabolism with a decrease in the
Th1 pattern response [132]. Thus, this evidence highlights vitamin D3 as an inducer of
metabolic changes in immune cells.

Vitamin C (also known as ascorbic acid) is a potent antioxidant nutraceutical. Chen et al.
demonstrated that this molecule may inhibit LPS-induced ROS, DNA damage, TNF-α,
IL-6, and p38 MAPK in the macrophages of patients with community-acquired pneumo-
nia. Moreover, vitamin C inhibited autophagy in these LPS-induced macrophages [133].
In this sense, Morante-Palacios et al. published that vitamin C deeply enhances DNA
demethylation during monocyte-to-DC differentiation and later maturation. Moreover,
they demonstrated that this nutraceutical triggers extensive demethylation at NF-κB/
p65-binding sites, together with concordant upregulation of antigen presentation and
immune-response-related genes during DC maturation [134]. Furthermore, Tan et al.
showed that vitamins C and E inhibit the NF-κB signaling pathway in DCs. This, together
with the oxidative pathway blocked in vitamin-C-/vitamin-E-treated DCs, produced Treg-
cell-mediated responses [135].

Vitamin E (tocopherol) plays an important role as a potent lipid-soluble antioxidant
agent in immune cells, which is found in higher concentrations, being one of the most
effective nutraceuticals to modulate immunometabolism [163]. Moreover, this nutraceutical
vitamin E plays an important anticancer activity, modulating the NRF2/KEAP1 path-
way [148]. Vitamin E presents a protective role, acting against oxidation of membrane
PUFAs, due to their high metabolic activity and their defensive function [163]. Regarding
DCs, as already mentioned before, Tan et al. studied the antioxidant function of vitamin
E alone or combined with vitamin C, showing that lower doses of α-tocopherol increase
HLA-DR, CD40, CD80, and CD86 membrane expression [135], thus improving DC pheno-
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typical maturation. Moreover, Xuan et al. proved that higher doses of α-tocopherol inhibit
NF-κB-mediated DC functional maturation [136]. Thus, opposite effects are observed
depending on the concentration of vitamin E used. In addition to these studies, it can be
deduced that low doses of vitamin E combined with higher doses of vitamin C do protect
DCs from their phenotypical and functional activation. Moriguchi et al. demonstrated
that vitamin E supplementation in elderly mice reduces inflammatory cytokine production
and improvement in T cell proliferation and improves alveolar macrophage phagocytic
activity [137]. Marko et al. showed that vitamin E supplementation in elderly mice and
humans may enhance early events in T cell activation, including the interaction between
naive CD4 T cells and APCs [138].

Carotenoids represent 40-carbon molecules found in red, yellow, and orange fruits
and vegetables but also in some animal products (i.e., eggs and fish), which are widely
distributed in nature. They have diverse biological functions, acting as antioxidant and anti-
inflammatory agents [164]. Thus, lycopene and astaxanthin are strong antioxidants that
decrease the risk of both cancer and cardiovascular diseases [139]. Astaxanthin can reduce
heart inflammation and balance the blood levels of LDL-C and HDL-C, contributing to a
decrease in macrophage infiltration and apoptosis in vascular lesions [139,165]. Astaxanthin
may block oxLDL production and uptake by activated intravascular macrophages to inhibit
the release of ROS, NO, and proinflammatory cytokines in injured tissue [139,166].

Sulforaphane (1-isothiocyanate-4-methyl-sulfinylbutane, SFN) is present in cruciferous
vegetables, such as broccoli and cauliflower [167,168]. This nutraceutical shows a powerful
anti-inflammatory effect [168]. Furthermore, this molecule is an important antioxidant
and anticancer agent, preventing cancer occurrence and improving the chemotherapy
response [148,169]. Regarding immunometabolism, SFN may inhibit the release of NO,
COX-2, iNOS, TNF-α, IL-6, and IL-1β in LPS-stimulated macrophages [170]. Recently,
Bahiraii et al. demonstrated that SFN decreases M1 marker expression, such as IL-1β,
IL-6, TNF-α, iNOS, NO, and ROS. Moreover, they showed that this nutraceutical blocks
pyruvate kinase M2 (PKM2) in M1 macrophages [140].

2.4.3. Delivery Systems for Nutraceuticals

The usage of nutraceuticals to prevent and treat obesity and/or T2DM is limited by
several features, such as poor water solubility, low bioavailability, uncontrolled release,
difficulty in crossing biological barriers due to low permeability, and low efficacy. One of
the strategies in biomedicine to overcome these disadvantages is the use of nanostructures,
such as nanocarriers. Thus, Hoti et al. summarized nanotechnology-based delivery systems
used for nutraceutical transportation [171]. Moreover, this group contextualized modified
cyclodextrin (CD)-based nanosponges (NSs; CD-NSs) as efficient encapsulating agents for
delivering nutraceuticals with controlled kinetics through the topical, oral, and parenteral
routes. CD-NSs are the most preferred, advanced, biocompatible, and natural systems
to deliver nutraceuticals. These nanocarriers are used as delivery systems of several
nutraceuticals, such as quercetin, curcumin, and resveratrol [171]. Soni et al. demonstrated
that SFN-loaded nanostructured lipid carriers (NLCs) improve oral efficacy against cancer.
The optimized SFN-loaded NLC formulation Precirol®, with ATO 5 (solid lipid) and
vitamin E (liquid lipid) as the lipid phase, represents a great strategy for the improved
efficacy of SFN after oral administration [172]. Although efficient encapsulating agents for
delivering nutraceuticals are being developed [171,172], few studies to date have shown
its impact on immunometabolism. In this sense, Osali demonstrated that nanostructures
functionalized with curcumin decrease the concentration of malondialdehyde. Furthermore,
this nano-curcumin increased brain-derived neurotrophic factor and IL-10 levels, as well as
antioxidant capacity, in the blood from subjects with metabolic syndrome [173].

3. Conclusions

We conclude that nutraceuticals are immunometabolic modulators with an anti-
inflammatory function, which are able to decrease the activated inflammatory metabolic
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state of APCs and T lymphocytes in obesity and/or T2DM pathologies, promoting tolero-
genic metabolic reprogramming in these immune cells. Although there have been important
discoveries in basic research, further effort is necessary to confirm the immunometabolic
properties demonstrated by nutraceuticals in translational immunology, such as clinical assays.
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