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ABSTRACT This paper presents the development of a virtual rehabilitation game and mental load with
different difficulty blocks. The game was controlled with body tracking and physiological signals - elec-
trocardiography and electrodermal activity - were recorded throughout the session. Several parameters -
heart rate (HR), heart rate variability (HRV), skin conductance level (SCL), skin conductance response
(SCR), energy expenditure . . . - were extracted from these signals to check mental load influence on them.
Mental load was found to affect the variation in kinetic power and instantaneous heart rate; a Support Vector
Machine with linear kernel was trained with these two variables and an 82.3% accuracy rate was obtained.
Furthermore, the mental load was reflected in the number of errors made by the volunteers, in the selection
time and in the number of rounds in the game.

INDEX TERMS Body tracker, ECG, EDA, mental load, rehabgame.

I. INTRODUCTION
According to the World Health Organization (WHO), when
people do exercise frequently, there is a reduction in the risk
of suffering from cardiopathies, diabetes, high blood pres-
sure, breast and colon cancers [1]. WHO guidelines state that
young people and adults need to do 150 min. a week of mod-
erate to vigorous aerobic exercise [2]. However, some physi-
cal activity can be negatively affected by certain factors. One
of these factors is stress. Some people, used to doing sports,
use physical exercise to cope with stress, although, in the
following study [3], its authors concluded that, stress actually
has a negative effect, as it reduces efforts to perform Physical
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Activity (PA). Stress elevates the concentration of cortisol
in the blood and its negative effects on health [4] might
be magnified when paired with a sedentary lifestyle, also
implying an important risk factor related to obesity [5]. Stress
can be defined as the perceived information overload as the
feeling of being overwhelmed when environmental demands
exceed the perceived capacities to cope with them [6], [7].
The most well-known cause is the work environment [8], but
it also occurs during the performance of other daily activities
such as driving a vehicle in urban environments [9].

To motivate and increase the frequency with which PA is
carried out, virtual assistants can be used to guide the type of
exercise and the number of repetitions to be performed [10].
These can be based on devices that monitor the subject,
such as body trackers which have proven their efficiency
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in many additional applications, such as video games [11],
[12], interaction with computers [13], [14], cardiopulmonary
resuscitation (CPR) [15], estimate of caloric expenditure [16],
[17], [18], [19] or rehabilitation [20] in general. Additionally,
the use of robots as tangible assistants to promote physical
activity in the elderly [21] - also known as active aging - has
also been tested, proving to be more motivating than virtual
assistants [22].While virtual assistants manage the rehabilita-
tion session, other technologies, such as virtual reality [23] or
the use of video games [24], can help with physical exercise.

Numerous studies have shown that stress, as well as the
performance of physical activities, are reflected in several
physiological variables. Stress can generate variations similar
to those associated with PA, such as blood pressure (BP),
heart rate (HR) [25], [26], [27], [28], skin conductivity [29]
and skin temperature [30]. This is why, the subject’s moni-
toring could be used with a dual objective: the first one being
to ensure that s/he is performing the exercise; and the second
one being to extract information about his/her general state
and the level of stress in particular that the proposed activity
is generating, and in order to adapt it to a level of effort better
suited to the individual’s capabilities.

This pilot study was carried out to determine the effect that
stress or increased mental demand has on certain physiolog-
ical variables during light PA -below 39% of the heart rate
reserve [31]-, and to thereby identify an excess of mental
load during its execution. A Kinect-based video game was
therefore adapted in which different geometric shapes have
to be reached on the screen by only moving both arms. The
skeleton provided by Kinect is used to estimate the kinetic
power (Pk ) of the movements and consequently the energy
expenditure. The electrocardiogram (ECG) and electroder-
mal activity (EDA) of both hands are recorded simultane-
ously. PA should be light, with intensity in the control phase
being similar to the stressful phase, to avoid increases in heart
rate due to energy demand and possible sweating due to the
effect of thermoregulation. The further goal of this study is
to verify if there are physiological variables that indicate the
stress level of a user with physical disability during a gamified
rehabilitation session; however, as they are a particularly
sensitive population, this study was performed with a healthy
population.

II. STATE OF THE ART
A state-of-the-art review focused on finding the answer to
‘‘stress during physical activity’’ was carried out following
the guidelines described in [32]. The PRISMA flow graph,
which summarizes the results obtained in different phases,
is depicted in Figure 1. As an initial approach, we used the text
‘‘stress AND physical AND activity’’ in two databases: IEEE
Xplore and Scopus, which returned 343 items in IEEEXplore
and 36859 in Scopus. Given the large number of results in
the second database, the search was refined by adding the
following keywords: ‘‘heart AND rate AND (gsr OR eda OR
sc OR skc).’’ This more restrictive search returned 170 items
in Scopus.

FIGURE 1. Number of selected articles throughout the review process.

We found an total of 13 duplicated papers that were
removed, while the remaining 500 articles continued to the
following two phases. In the first one, only the title and
abstract were screened. This phase removed many studies
about stress in physical materials.

In the second phase, the remaining 112 articles went
through a full-text reading process, in which papers that met
one of the following excluding criteria were discarded: 1) The
study does not include physiological signals. 2) It uses very
few samples of a physiological signal (e.g., one single HR
sample per day). 3) It uses animal models. 4) It is a review;
and 5) It is a previous work from a selected paper. Finally,
we selected 16 related papers whose main features are shown
in Table 1.
In the review carried out, we found that themost commonly

used physiological variables for stress detection are derived
from the recording of cardiac activity −87.5% of the cases-,
in any of its variants: ECG [34], [38], [39], photoplethysmo-
gram (PPG) [54] or blood volume pulse (BVP) [42], from
which we obtain parameters based on the time or frequency
domain, and in which Standard deviation of NN intervals
(SDNN) is one of the most significant according to [41].
Secondly, we find EDA [42], [51], in 56.25% of cases,
which has shown its efficacy when used alone or in con-
junction with other variables, such as ECG [53], [57]. Less
frequently, other authors have included physiological signals
such as electroencephalography (EEG) [46], electromyogra-
phy (EMG) for the measurement of muscle loading in the
upper trapezius [46], BP [47], breathing rate (BR) [40], [41],
maximal oxygen consumption (V02) [34] or skin temperature
(ST) [41], [54]. To complement the physiological informa-
tion, it may be advisable to include environmental variables,
such as weather conditions [54], or the speed, position and
state of the road, captured with a cell phone [42] while driving
on a stretch of road; or those derived from the subject’s
own PA, which can be measured with accelerometers [39],
[53] or markers placed on the human body that are then
captured by a camera to analyze the subject’s movement [52].
Accelerometers have also been used to limit the extent
to which physiological information used to detect stress
is corrupted by motion artifacts [33]. To complement the
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TABLE 1. Main features of the selected manuscripts obtained through the scoping review.
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physiological information and to thus be able to classify it
properly, validation tests of the state or level of stress to which
the subject is subjected during the different phases of the
experiment are needed. It is therefore known that, physiolog-
ically, a hormone, cortisol, is released in stressful situations.
Some authors use periodic measurements of this hormone
in saliva to check the stress level of the subject [33], [50].
However, the use of questionnaires to measure the emotional
state is more widespread [34], [39], [42].

To induce stress many researchers have used a method-
ology in a controlled environment that seeks to exceed the
subject’s normal processing load in different ways: by using
arithmetic calculation tests [34], [40], [53], with time-varying
restrictions; with an intelligence quotient [38]; seeking con-
flict in the identification of a word’s color that semantically
expresses a color that is different from the color used to
display it - Stroop test [53], [57]; with videogames [41],
[51] where surprising elements are introduced that alter
their course; by using virtual reality to simulate environ-
ments that induce extreme situations such as walking along
a bar between two skyscrapers [52] or subjecting the subject
to a stressful real environment such as speaking in public
or defending an exam before a jury [42], [50]. There are
also studies that seek experimentation in daily life environ-
ments [39], while driving [42] or with animal interaction [46].

The performance of PAs and how they affect physiological
variables, in combination with stressful situations, is the main
purpose of this study. In all the studies found, these exper-
iments were carried out in controlled environments using
a treadmill and involving walking at different speeds [50],
running, uphill walking [34], among others ; balancing on
a barbell [52], ergometer cycling [41], [49], [54] or just
maintaining a posture - such as raising your arms 45◦ and
holding them up for several minutes [38].

Most of the studies analyzed seek to detect the existence -
or non-existence - of stress, or different stress levels, through
the use of classifiers. Among the most commonly used are
k-nearest neighbors (kNN) [33], support vector machine
(SVM), J48 [53], linear discriminant analysis (LDA) [46],
artificial neural networks (ANN) [54], random forests (RF),
decision tree (DT), or Bagging [39]. Several authors have
studied the classifiers that generate the best results with
the same dataset, while others combine them to improve
prediction [42]. Feature space dimensionality reduction is a
common preclassification task itself [42], [45] that can be
used to determinewhich features are themost relevant. This is
especially relevant for multi-modal systems that include sev-
eral sensors that can extract multiple features. They do [41] in
particular use the ridge logistic regression method to achieve
this objective.

The use of statistical techniques, such as theWilcoxon test,
allows us to determine the statistical significance between dif-
ferent stress states -or levels- according to selected variables
or characteristics. In the literature reviewed, several authors
have been found to use this analysis type [38], [57] or another
analysis type aimed at finding correlations between the level

of stress measured by questionnaires and these physiological
variables [34], [49].

Classification accuracies range between 70% and 97.13%.
Better results are generally obtained when EDA is added to
the physiological variables. In [51], the authors obtained a
sensitivity of 95%; in [50] an accuracy of 97.13% by com-
bining EDA with ST; in [33] a correct stress classification
was obtained in 93% of the participants; whereas a slightly
lower accuracy of 92.4% was obtained in [53]. It was only
in [57] that the accuracy obtained was between 70% and
85%. Stress generally produces an increase in skin potential
response (SPR) [51] or skin conductivity [33], [49], [52].

Heart rate-derived information permits correlations to be
established between stressful phases and pre- and post-stress
phases [34], allowing us to differentiate between all combina-
tions of exercise and induced stress [38]. Furthermore, if BR
data is added, the accuracy of the system is improved [41].
Some studies affirm that adding other non-physiological
inputs improves prediction [42], [53], [54], [58]. Not many
studies have used EEG among the signals analyzed, but,
in the existing ones, spectral characteristics such as high alpha
power at the C4 position are highly correlated in more than
75% of the participants with the different stress phases [49].
Furthermore, the average EEG power and Mel Frequency
Cepstral Coefficients (MFCC) were found to be the most sig-
nificant features for classifying valence and arousal dimen-
sions in human-horse interaction [49]. A decrease in evoked
potentials has also been found during stressful exercise per-
formance, suggesting an increase in cortical demand for pri-
mary task performance [52].

Combining PA and stress produces an increase in HR com-
pared to cases when these situations occurred separately [38].
This means that it is possible to detect stress in a subject,
regardless of whether they are resting or at work, with mental
stress having aweaker effect than physical stress [47]. In [41],
the authors obtained an accuracy of 74.5% in stress discrimi-
nationwhile exercisingwith an indoor cycle at different inten-
sities, based on features derived from HR and BR. Moreover,
significant differences between the PA phases and stress have
been proven when other variables, such as EDA, ST, BP or
Heat flux, are used [47].

III. METHODOLOGY
This experiment is inspired in the idea of using games for
rehabilitation (rehabgame). It is based on the use of Kinect v1
and a modification of ShapeGame, an application included in
the Kinect package for Windows SDK v1.8. The participant’s
skeleton is shown on screen along with different spinning
geometric shapes. According to a cue shown on the screen,
one of these shapes has to be reached by performing upper
limb movements, with the lower limbs having to remain
still. Some physiological variables were recorded during the
experiment as we will explain below.

Each participant attended a single session consisting of
three activity blocks (Bn) plus a final rest period (R4)
(Figure 2). Each block is also divided into three parts:
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FIGURE 2. Experimental timing.

An initial rest period (Rn), a gentle activity level (RLn) and
a stressful period (SLn). During rest periods, volunteers were
asked to remain calm and it was suggested that they sat in
a chair. If they sat down for 30 seconds before the start of
the next part, they were instructed to stand up to prevent
heart variability in the following part being influenced by the
postural change [59]. Rest periods (Rn), as borders between
consecutive activity parts, took 5minutes - 300 sec. -, because
EDA is a slow recovery physiological signal [60].

In the gentle activity level, (RLn) two shapes are shown
on the screen: the cue, visible at the top; and the target, that
can appear randomly in different positions, but always within
the reach of the skeleton’s arms. Once a target is reached,
a new one, with its cue, appears on the screen one second later.
This delay allows the player to return to the initial position
and perform similar movements for each target. The RLn
part takes 90 seconds. In the stressful level (SLn) ten shapes
appear distributed around the avatar and this takes 150 sec.
Here, participants must search before selecting and be careful
not to accidentally hit a non-cued shape. There are several
geometric shapes that are identical to the cue, in a quantity
that decreases as the experiment progresses. The total of PA
per block times is 4 minutes, to avoid fatigue and keep it as
light.

FIGURE 3. Game pictures: RLi Level on the left and SL1 on the right.

All blocks are basically similar, although with some subtle
differences existing in two main points: 1) The maximum
dwell time (DWT) in selecting a target; and 2) The number of
available targets in the SLn part. Both decrease as n increases,
guaranteeing that mental demand progressively increases.
As reaching a target on screen takes 2 sec on average, this
is the minimum DWT value configured for the ending block,
and a new target is shown on the screen when the previ-
ous one is selected, a similar level of PA being expected

FIGURE 4. Volunteer playing: left in rest period, center and right, during
the activity.

throughout the blocks, irrespective of the DWT established.
If the participant does not select any shape before the DWT
expires, or they select an incorrect one, an annoying sound
will be played (negative feedback) and a new cue and target
are then generated (a new round); there is a minimum number
of rounds (Nmin

R ) even if the volunteer does not make any
selections. The game alsomakes awarning sound if the player
has correctly selected a target or approached a shape but not
sufficiently to select it. This information is summarized in
Table 2. Before the experiment, the volunteers played a demo
in which, multiple valid targets identical to the cue, appeared
at the same time. This training session lasted 1 minute.

TABLE 2. Description of the main features of each level for all blocks:
duration (D) in seconds, number of geometric shapes shown (Sh), number
of identical shape targets (NT), and dwell time (DWT) in seconds,
minimum number of rounds (Nmin

R ).

The underlying idea of this experimental division is to
establish comparisons between periods of similar physical
activity (RLn-SLn) but with a different mental load. Differ-
ences between blocks stem from a progressive increase in
mental load by means of reducing completion time and hin-
dering the target search. We hypothesized that all RLn periods
have a similar level of PA and mental load, which are both
higher than in the rest periodsRn. Significant differencesmust
appear between SLn periods with respect to their previous
RLn periods and between SL segments when increasing the
mental demand. We also hypothesized that an increase in that
cognitive load may slightly reduce PA, especially when the
time constraints are more severe. Figure 5 shows the expected
effect of experimental blocks and periods on PA and cognitive
load.

A. DATA ACQUISITION
Physical activity was obtained by recording the joint coor-
dinates that Kinect v1 offers (Figure 6). Two physiological
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FIGURE 5. Illustration of the expected effects on PA and cognitive
demand throughout the experimental blocks.

FIGURE 6. Kinect v1 joint list [66] and coordinate group used.

signals were also acquired during the experiment: ECG and
EDA. We used Ag/AgCl electrodes for ECG (Ambu White-
Sensor 4200), placed according to Einthoven II lead posi-
tions and specific wet electrodes for EDA (Biopac EL507),
opposed to dry ones [29], [61], which were placed on
the thenar and hypothenar eminences of both hands (see
Figure 7); however, we only used the EDA channel for
the participant’s dominant hand. We also used PSM [62],
an open-hardware shield placed on an Arduino Uno board,
that was programmedwith LBSP [63], an open-source library
for real-time applications, in order to acquire data at a sam-
pling frequency of 256 Hz per channel, and sending them
wirelessly via Bluetooth.

Data was acquired using LSLRec software based on the
Lab-Streaming Layer (LSL) library [64], [65]. This software
makes it possible to save the data together with different
synchronization marks, thereby facilitating data identifica-
tion and segmentation throughout the different phases of an
experiment.

B. PARTICIPANTS
We initially gathered together a group of 29 healthy volun-
teers (16 men, 13 women), aged between 18 and 67 (mean
39.9 and standard deviation - SD - 14.2), and weighing
between 50 and 120 kg (mean 74.7 and SD 16.4). However,

FIGURE 7. Electrode placement diagram of the ECG (left) and EDA (right)
electrodes. Two EDA channels were used, one in each hand.

two men were excluded because some signals were not prop-
erly registered. This sample size is within the range of pilot
studies [67], moreover, using Cochran’s equation with this
population, a precision level of 15.3%with a confidence level
of 90% was obtained. All participants agreed to take part
in the experiment and signed the consent form. The Ethics
committee at the Regional Government of Andalusia (Spain)
approved the experiment (protocol code C.P. TAIS-C.I.
1130-N-17, 2018).

C. PROCESSING
This section describes the characteristics set analyzed. The
sliding window technique was used for the time-series anal-
ysis at each block and level. The SLn levels were divided into
two segments of the same length as the RLn level in order
to obtain the same number of samples. These two segments
are placed at the beginning and at the end of the SLn period.
In this way it is possible to analyze if any latency exists
regarding the stressor effect onset, as well as avoiding possi-
ble biases. The first 90 seconds of the SLn can be considered
the transient time, or the time of major changes in level,
while the last 90 seconds can be understood to be when
the physiological variables are relatively stabilized or in a
steady state. Furthermore, in order to analyze the evolution
in more detail, we study the variation in each of the follow-
ing variables between the RLn level and its corresponding
SLn level.
To avoid the effect of outliers in every set of data associ-

ated to all the variables obtained, the method based on the
interquartile range (IQR) was used, which considers outliers
to be those values in the set that are out of the following range:
[Q1 − 1.5IQR,Q3 + 1.5IQR], with IQR = Q3 − Q1 and Qi
the i-th quartile. The Kruskal-Wallis test (KW Test) will be
used to find statistical differences among sets. This is a non-
parametric method that tests whether the samples originate
from the same distribution and it does not assume a normal
distribution of the residuals.

1) GAME STATISTICS
The number of rounds (NR), number hit (H ), missing tar-
gets (MT ), wrong targets (WT ) and selection time (Ts) are
extracted from the game to compare the performance during
the periods RLn and SLn in all difficulty blocks.

46670 VOLUME 11, 2023



J. A. Castro-García et al.: Effect of Demanding Mental Tasks on EDA and HR During PA: A Pilot Study

TABLE 3. Percentage of body weight [19] and associated clusters for
kinetic power estimate.

2) KINETIC POWER ESTIMATE Pk
Power expenditure can be estimated by evaluating the kinetic
power, Pk , of the arm movements - joints 5-12 in the skeleton
provided by Kinect (see Figure 6). To do this, the mass and
velocity of the joint’s coordinates are required. Velocity is
easily obtained from the joint’s positions at two consecutive
time points, while for the mass distribution in the body,
we used the results published in [19], and summarized in
Table 3.
So, let s{.} be a set of joints that delimit an arm segment

(forearm, and upper arm) or define the hand (see Table 3), and
let r⃗s{.} (t) be the position of its geometric center at time point t .
The velocity, v⃗s(t), of a body segment s at time t is given
by Eq. 1, and let ms be the mass of segment s, obtained by
applying the associated percentage to the whole body weight.
Kinetic power, Pk , is therefore defined by Eq. 2, which
includes the energy expenditure of all the arm segments.

v⃗s(t) =
⃗rs{.} (t) − ⃗rs{.} (t − 1t)

1t
(1)

Pk =

∑
s

1
2
ms|v⃗s(t)|2/1t

s ∈ [s{8} s{12} s{6,7} s{5,6} s{9,10} s{10,11}] (2)

The joint’s coordinates are low-pass filtered by means
of an exponential smoothing filter that Kinect implements.
Data were then segmented by a sliding window with a 50%
overlap.

3) EDA FEATURES
To process the EDA data, we used Ledalab tools [68], con-
figured with Continuous Decomposition Analysis (CDA) to
recover the characteristics of the underlying signal in the
sudomotor nerve; with Standard trough-to-peak (TTP), which
analyzes data window maximums and miminums; and with
Global which offers general data values. Table 4 - accessible
via ledalab.de/documentation.htm - summarizes these vari-
ables. Recorded data were adapted to Ledalab input format
by adding events at the time points when the first geometric
shape of each set is shown. A two-second window (the small-
est DWT) and a sensitivity of 1 µS were used.

4) ECG FEATURES
ECG was used to extract the instantaneous heart rate (IHR)
for each level of the game and the heart rate variability (HRV),

TABLE 4. EDA-variables’ list.

using 30-sec. windows with an overlap of 50% (ultra-short-
term recording times [69]), which would allow us to obtain
5 windows at the shorter duration levels, (RLn), while for
the IHR we used 6-sec. windows with the same overlap as
in the previous case. The HRV has special interest given
that it allows us to evaluate the activity of the autonomic
nervous system (ANS) [70], and specifically the parasym-
pathetic nervous system (PNS) and the sympathetic nervous
system (SNS) whose activity can be affected in situations of
high mental demand such as stress. From HRV we observed
time characteristics such as Standard deviation of NN inter-
vals (SDNN), the root mean square of successive differences
between normal heartbeats (RMSSD) and the percentage
of successive RR intervals that differ by more than 50 ms
(pNN50); frequenty characteristics were not studied since the
windows are very small [69].

IV. RESULTS
A. GAME STATISTICS
Table 5 shows the averages of the four variables described in
the previous section related to the activity performed by all
participants. With respect to wrong targets (WTs), it can be
observed during the SLn periods that about 6.3% of failures
occur in the first two levels while it almost doubles in SL3.
There is a statistically significant difference between this
level and previous levels (p < 0.0011). Furthermore, WT
cannot occur at RLn levels, since a single target is displayed
on the screen.

The missing target (MT) obtained low values at all levels
in the first blocks (<1%). Only in the last block did this error
reach 10.78%, standing out from the other levels and blocks.
This differencewas statistically significant (p < 0.0015). The
MT number is non-zero at RLn levels and somewhat higher
for the last block, although without statistically significant
differences. These results may be due to the Kinect skeleton
not reaching the target properly some times, and requiring
additional stretching that may not be done correctly in the
pre-set time. In RL3, moreover, we have a DWT that is at the
limit of how long it takes a subject to reach a target on aver-
age, so it seems reasonable that the MT number increased.
As previously mentioned, there are no statistical differences
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between the different levels and blocks, with the exception
of SL3.

As for the number of rounds (NR), Table 5 shows the aver-
age for each level and block. Considering that the duration
of the SLn level is longer than the RLn level, some normal-
ization is required, dividing NR by the duration of the level.
The normalized values obtained are specifically [0.46 0.40
0.49 0.42 0.51 0.46] following the same order of RL1-SL3,
as shown in the table below.Onemay expectNR to decrease as
the difficulty increases - the number of blocks advances - but
the differences are not enough to make the regression slope
statistically significant. However, note that a decrease in NR
can be observed when moving from the RLn level to its SLn,
these differences having a significant difference - p < 0.001.
Finally, in focusing on the selection time (Ts), an increase

in time is noted between each SLn level and its respective
RLn, making the difference between them increase as the
block number advances, i.e. as cognitive load rises. All mean
times show statistically significant differences between them,
as well as showing a positive slope with increasing block
number.

TABLE 5. Wrong targets (WT) and missing targets (MT) in %, rounds,
number of rounds (NR ) and selection time (Ts) for all participants

B. KINETIC POWER ESTIMATE
As an example, Figure 8 shows the behavior of variable Pk
for participant S09, while Table 6 shows the values obtained
by all the volunteers. Note that the motion is poor at the Rn
levels. For each block, the SLn level shows less motion with
respect to its corresponding RLn, probably due to searching
for the target among all the available ones. This difference
was statistically negative in all blocks and subjects, 1Pk =

PSLnk − PRLnk < 0, yet, no significant correlation was found
with the number of blocks, i.e., with increased cognitive load,
so that no change in this difference can be confirmedwith task
difficulty. These results are in accordance with those obtained
from NR.

C. PHYSIOLOGICAL FEATURES
As a first analysis, we compared the statistical significance
of each proposed variable within each block Rn vs. RLn vs.
SLn, and across the SLn segments of the three blocks, in order
to know if there is any effect on physical activity and/or
cognitive demand in the variables. From the proposed charac-
teristics, we selected those that were statistically significant
for at least 90% of the total comparisons made between these
levels and across all volunteers.

TABLE 6. Mean and SD of PK for all subjects and blocks.

FIGURE 8. Subject S09’s Pk at each level using a 6 sec. data window.

Table 7 shows these percentages by level comparison
using the Kruskal Wallis test (KW Test) with a significance
value (p < 0.05) for all EDA variables. The first and last
90 sec of the SLn segment were also compared. As previously
explained, the first 90 sec may reflect some transience, while
greater stationarity is expected in the last 90 sec. Only the
CDA.Tonic variable shows significant variations through-
out the experiment, although another variable, Global.Mean,
is close to the 90% limit.

TABLE 7. Percentage of times each EDA variable obtained significant
p-values at full levels, in the first 90 seconds (F90EDA) and the last
90 seconds (L90EDA) for all subjets.

CDA.Tonic andGlobal.Mean, show an accumulation effect
as the experiment progresses, as has been shown in Figure 9,
and this can be observed more clearly in Figure 10 on the
same participant. There is no return to the prior rest level
when moving across the blocks, even though the rest period
is 5 min. It would therefore be interesting to analyze how
these variables change in the SLn segment with respect to
the previous one (1EDAn), and to determine whether these
changes increase as the cognitive load grows.
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FIGURE 9. Subject S09’s CDA. Tonic and Global.Mean at each level with
PA.

FIGURE 10. IHR -black- and EDA -orange- for volunteer S09 during the
experiment. Level transitions are marked in red.

The 1CDA.Tonicn and 1Gobal.Meann difference is posi-
tive for all subjects and blocks applying the bootstrap test [71]
for a 5% significance level. These results were the same when
we included the first 90 sec, the last 90 sec, or the whole seg-
ment of each level in the analysis. The linear regression shows
that a positive slope exist for these variables with respect to
the block number. This slope is statistically significant, which
implies that as the difficulty increases, so does the 1s. This
analysis of differences between segments and blocks was
extended to the other EDA characteristics (Table 4). Only the
1TTP. Latency regression shows a significant negative ten-
dency. This parameter measures the delay time between a new
target appearing on the screen, and the detection of a pulse
in the EDA, the so-called event-related skin conductance
response (SCR). As difficulty increases, latency decreases.

Regarding the features associated with HR, group dif-
ferences have been observed between resting states Rn and
any of the activity states - RLn, SLn. This was expected.
Figures 10 and 11 show the S09 participant values for IHR.
An increase in cardiac activity was observed during the PA

segments with respect to those related to inactivity. Further-
more, unlike the EDA signal, the HR recovers in resting
levels. Although Figure 11 shows a slight increase in HR
values in the SLn segments compared to their previous RLn,
that difference was not significant for the majority of the par-
ticipants and blocks. Such a significance was only observed
in 1IHR between Block 1 and Block 3; and between Block 2
and Block 3 for all participants. No statistical differences
were found in the HRV characteristics analyzed for the group.

FIGURE 11. Subject S09’s HR at each level.

V. DISCUSSION
Indicators have been found to vary significantly during the
different experimental phases. These include both physiolog-
ical - 1Pk , CDA.Tonic, 1CDA.Tonic, 1Global.Mean and
1IHR - and non-physiological types - WT, missing target
(MT), 1Rounds, Ts -; see Tables 5 and 8.

TABLE 8. Selected variable values between RLn and SLn for the three
experimental blocks and all subjets.

In analyzing the game variables, all of them show signifi-
cant differences between the SLn and its previous RLn. How-
ever, only selection time (Ts) shows a more game dynamic
behavior, increasing in value as the difficulty of the task at
SLn levels grows (rising n). This was expected, as reducing
the number of correct targets increases the search time. And,
as the available time to perform this task in the SL3 state
was significantly limited, selection errors WT and omis-
sion errors MT grow, while the number of rounds achieved
(or targets achieved) was lower compared to the previous
levels. An analysis among all these variables allows us to
observe the existence of a high and significant correlation
(Pearson’s coefficient ρ = 0.97, p=0.001) just for Ts andWT.
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During RLn periods the Ts is low and WT is zero. However,
in the SLn this time increases, together with the errors, and
especially in the SL3 level.

At RLn levels, a decrease in Ts is observed as n grows and,
consequently, an increase in NR. These levels are character-
ized by displaying a single target on the screen. This variation
seems to reflect a learn-to-play effect after the first block,
however, the statistical regression analysis shows that such
an effect is not significant. Ts is a particularly interesting
variable, given that it can serve as a discriminator between
situations with different cognitive loads. This means you
could differentiate between the periods SL3 and RL3 with
an accuracy of 96.2% by using a threshold of 1.28s, which
is the block with the highest cognitive load. With a lower
threshold of 1.1s, which is the optimal one to also differentiate
blocks 1 and 2, the increase in cognitive load can be detected
in 80.8% of the cases for all subjects. Figure 12 shows the
ROC curve for this parameter within the three experimental
blocks.

FIGURE 12. ROC curves of Ts for each of the blocks and with all
participants.

With respect to the variablePk , a reduction in the amount of
movement in the SLn periods had been observed with respect
to the previous RLn period. These decrements caused a 1Pk
negative and was statistically significant for all subjects.
There were significant correlations between this variable and
Ts (ρ = −0.9, p = 0.01), NR (ρ = 0.89, p = 0.02) and WT
(ρ = −0.81, p = 0.05). This shows that an increase in
the mean selection time results in a reduction in PA and,
therefore, in a lower number of targets achieved or rounds.

Only 2 of the 12 EDA variables were useful, and they are
similar since both measure the EDA’s low frequency signal:
Global.Mean is the average of the raw data, while CDA.Tonic
is mainly composed of the low-frequency components of
sweating. However, the behavior of this signal varied greatly
from subject to subject. Results showed that skin conductance
is higher at the SL3 level than at the RL3 one for most
participants −76.9%. That percentage decreased to 46% if
the criterion is extended to all-phases-SLn conductivity with

respect to the previousRLn. A possible reason is that not every
level had an increased cognitive load which led to increased
sympathetic activity. There are cases −7.7% - where skin
conductance was lower at the SLn level than at its previ-
ous RLn. This anomalous behavior for some subjects gener-
alized to others if we observe a Rn with a RLn. Sometimes the
conductivity increases when we went from Rn to RLn (34.6%
of the cases), whereas in 26.9% it was the opposite. For the
remaining volunteers, conductivity increases at some levels,
but decreases at others. Following the same analysis as with
Ts, we found, in this case, that the best accuracy that could be
achieved with these variables would be 67%.

The 1IHR variable was statistically significant. No other
parameter derived from cardiac activity showed statistical
significance. In contrast to the EDA variables, more homoge-
neous behavior was observed between subjects here, resulting
in an increase in HR in the transitions from Rn to RLn (change
from rest to PA) and from RLn to SLn (increase in cognitive
load), particularly in Block 3. This higher HR in the last level
of each block coincides with a decrease in the amount of
movement performed by the player (see Table 8), so it should
be associated with the effects of a higher cognitive load.

FIGURE 13. Feature space representation of 1Pk and 1HR of all subjets.
In light green are the points associated with the SLn-Rn+1 change; those
associated with RLn-SLn being in dark green; those with Rn-SLn in
magenta and the differences between the same level being in yellow.

Joining together the variables 1Pk and 1IHR could be
used to identify situations of stress or higher cognitive load
during PA. Let’s suppose we use sliding windows with a
90 sec duration - the size used in the experiment. The pur-
pose is to compare the PA and HR values in the current
window with respect to the previous one. Figure 13 shows
the scatter plot for four possible classes in the detection of
physiological changes associated with intra and interlevel
transitions. By using a classifier based on SVM with linear
kernel, C=1.0, using 75% for training and the remainder for
testing, we obtained an accuracy of 84.3% in the training set
and 82.3% in the test set on average over 50 random iterations
of the data set (26 volunteers multiplied by the number of
blocks −3- and by the number of classes −4; the classes are
associated with the change from Rn to RLn; from RLn to SLn;
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from SLn to Rn+1; and with the continuity of the SLn and
Rn level).

Although, the window size used was large, it does not
appear in reality that 90 sec would be a problem in detecting
stressful situations in daily life. However, smaller window
sizes, other classification techniques or other physiological
variables that may enrich the classifier and improve its accu-
racy could be studied in further research.

Due to the limited existence of scientific literature in the
field of stress or mental load detection during PA, there is
a single paper of those selected in the scoping review with
which we can compare our results. In [52], the authors try to
determine whether people with vertigo maintain it in virtual
reality tests in which the volunteers had to walk on a balance
beam, they found that there was an increase in HR and
response time to sound stimuli while decreasing the number
of steps taken just by modifying the height in the virtual
environment, which is consistent with the increase in HR and
Ts variables and the decrease in Pk that has been detected in
our trials.

A. LIMITATIONS
As this is a pilot study, the participant population was small.
To achieve a precision level of 5% with a confidence level of
95% according to Cochran’s equation, a sample of 385 people
would be necessary.

VI. CONCLUSION
A rehabgame had been developed to check how mental
load in light intensity exercises affects different variables,
both physiological and non-physiological ones, and to try
to determine whether the volunteer is -or is not- in a state
of mental load while playing the game. With respect to the
physiological variables analyzed, the experiment results show
that a variation in the instantaneous heart rate (1IHR) and a
variation in the kinetic power (1Pk ) were themost significant
ones, achieving an accuracy of 82.3% by using a SVM with
a linear kernel. On the other hand, the selection time (Ts) and
errors - both wrong target (WT) andMT -were also indicative
of mental load, since they increased as the difficulty of the
game grew. Thus, these variables could be used in adaptive
difficulty rehabgames to keep people within the target zones
for a greater amount of time.

As a future study, the effect of a decrease in the window
size used for the classifier could be studied, and the results
between different types of classifiers could be checked. How-
ever, the selected variables should also be checked to ensure
that they are still viable inmoderate or vigorous physical exer-
cise, since in more intense activities, it may be difficult for
physical fatigue itself or the increase in cognitive load during
exercise to produce any measurable variations in heart rate.
Furthermore, it would be useful to study what physiological
changes occur when invalid targets are selected; to study the
effect of figure color and shape on hit and miss rates; and
to analyze the similarities and differences between the right
and left hemispheres of the body in the EDA channels, using

the second EDA channel that has not been analyzed in the
present study.
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