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Abstract: Adolescence is a period of intense growth and endocrine changes, and obesity and insulin-
resistance processes during this period have lately been rising. Selenium (Se) homeostasis is related
to lipid metabolism depending on the form and dose of Se. This study tests the actions of low-dose
selenite and Se nanoparticles (SeNPs) on white (WAT) and brown adipose tissue (BAT) deposition,
insulin secretion, and GPx1, IRS-1 and FOXO3a expression in the WAT of adolescent rats as regards
oxidative stress, adipocyte length and adipokine secretion. Four groups of male adolescent rats
were treated: control (C), low selenite supplementation (S), low SeNP supplementation (NS) and
moderate SeNP supplementation (NSS). Supplementation was received orally through water intake;
NS and NSS rats received two- and tenfold more Se than C animals, respectively. SeNPs were
obtained by reducing Se tetrachloride in the presence of ascorbic acid. For the first time in vivo,
it was demonstrated that low selenite supplementation contributed to increased adipogenesis via
the insulin signaling pathway and LCN2 modulation, while low SeNP administration prevented
fat depots in WAT via the decrease in insulin signaling and FOXO3a autophagy in WAT, lowering
inflammation. These effects were independent of GPx1 expression or activity in WAT. These findings
provide data for dietary approaches to prevent obesity and/or anorexia during adolescence. These
findings may be relevant to future studies looking at a nutritional approach aimed at pre-venting
obesity and/or anorexia in adolescence.

Keywords: selenite; nanoparticles; adipose tissue; insulin

1. Introduction

Adolescence is a period of intense development, associated with important physical,
endocrine and neurodevelopmental changes, resulting in the modulation of body weight
and composition [1]. Therefore, it has long-term implications for health, especially if obesity
appears and/or insulin resistance (IR) occurs; both situations are currently increasing
dramatically in this period [2]. Furthermore, the prevalence of eating disorders among
adolescents, such as anorexia nervosa, is also increasing [3] and is associated with severe
alterations in the metabolism of central and peripheral adipose tissue (AT), affecting overall
health during this vulnerable phase [4].

AT can be classified into brown adipose tissue (BAT) and white adipose tissue (WAT)
with different morphological and functional profiles. BAT confers the ability to produce
heat through thermogenesis and WAT has the capacity to store energy. The BAT/WAT ratio
indicates the homeostasis of AT and its response to energy or nutritional demands. WAT
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can be classified into visceral and subcutaneous [5]. A high amount of visceral WAT is
specifically associated with obesity and metabolic dysregulation, promoting glucose intoler-
ance and IR [6]. This is in part because visceral WAT has higher levels of mature adipocytes,
which are also larger than in other AT [7]. Mature adipocytes act as an energy reservoir and
are capable of secreting endocrine molecules that regulate metabolism, such as adipokines.
During obesity, adipocyte hypertrophy promotes hypoxia and induces WAT inflammation
and oxidative stress (OS), leading to low-grade chronic inflammation [8], associated with
metabolic disturbances [9–11]. Moreover, adipokine secretion changes dramatically [12].
These peptides act as classic hormones that affect tissue and organ metabolism, contribut-
ing to a decrease in insulin sensitivity of tissues and inducing inflammation [13]. On the
other hand, the absence or loss of WAT that occurs through lipodystrophy and anorexia–
cachexia contributes to the development of hepatic steatosis and IR, since the circulating
fat is deposited on the liver [14,15]. In addition, a distinct adipokine dysregulation profile
appears during anorexia nervosa, following the anticipated pattern of low weight and
WAT loss [16].

Selenium (Se) is a trace element with important antioxidant and anti-inflammatory
properties mediated by different selenoproteins [17]. Selenoproteins, such as glutathione
peroxidase (GPx) and thioredoxin reductases (TXNRDs), were initially recognized as
antioxidants. Currently, it is established that the 25 known selenoproteins intricately
regulate the functioning of the endocrine system and intracellular signaling [18]. Se also
modulates preadipocyte proliferation and adipogenic differentiation, and it interferes with
insulin signaling in WAT, which regulates lipolysis [19]. These effects are due in part to the
antioxidant activity of GPx1, GPx3, GPx4 and TXNRDs but also to selenoproteins SELENOS
and SELENOW, resident in the endoplasmic reticulum, and hepatokine SELENOP [20]. This
occurs because reactive oxygen species (ROS) play a dual role in the regulation of both the
differentiation and function of adipocytes [21]. Adipogenesis is accompanied by an increase
in ROS generation, mainly during the differentiation and maturation of adipocytes [20,22].
Moreover, insulin signaling increases ROS production in WAT, leading to lipogenesis [23];
however, excessive ROS generation also impairs insulin sensitivity [24]. Thus, the balance
activity of antioxidant selenoproteins ensures tight control of ROS generation during
adipocyte differentiation (GPx1, GPx4, GPx3 and TXNRDs) and in mature adipocytes
(GPx3 and SELENOP) [20,25–27]. However, these effects on adipogenesis depend on Se
form and dose, being its safety range rather narrow [19].

Nanoparticles are characterized by high surface area, high solubility, thermal resis-
tance, low toxicity, slow excretion rate and sustained release, which have beneficial effects
on the metabolic, physiological and biological functions of animals [28]. Therefore, Se
nanoparticles (SeNPs) can offer interesting chemical properties that improve the photo-
electric, biological and therapeutic properties of Se [29]. SeNPs have been outlined for
having some advantages over other organic and non-organic Se forms; for instance, they
can be used at smaller concentrations to exert the same pharmacological effect, being more
soluble and showing better bioavailability, since they can interact through covalent and non-
covalent bonds and can easily indistinctly conjugate with various positively and negatively
charged moieties [30,31]. Unfortunately, high doses of SeNP are often related not only to
toxic effects but also to pro-oxidant properties and the ability to disrupt the cell-membrane
integrity [32,33]. Currently, SeNPs are commonly used in the areas of biomedicine, cancer
therapy and neurological diseases, and as anti-inflammatory, anti-apoptotic, anti-bacterial
and antiviral agents [30]. Recently, they were used in the IR diabetic process [34]. In this
context, Hassan et al. [29] showed that SeNPs in diabetic rats improved the expression of
adipocyte peroxisome proliferator-activated receptor (PPARγ) in WAT; the expression in the
liver of insulin receptor substrate-1 (IRS-1); and serum levels of IL-6. However, to the best
of our knowledge, there are no studies analyzing the use of SeNPs in WAT development.
Therefore, the aim of this study is to analyze the effects of low doses of oral selenite and
SeNPs in WAT mass and function of adolescent rats to find if they exert different biological
effects among these compounds.
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2. Materials and Methods
2.1. Animals

Twenty-four adolescent male Wistar rats (Centre of Production and Animal exper-
imentation, Vice-rector’s Office for Scientific Research, University of Seville) were used
in these experiments. The rats were received at 21 days of age and housed in groups of
two rats per cage with enrichment of the environment for one week, to acclimate them to
housing and handling conditions. The experimental protocol was conducted over a 3-week
period, beginning when the rats reached the postnatal day (PND) of 28 days of age and
ending at 47 days of age. This period corresponds to adolescence in Wistar rats [35]. The
animals were kept at an automatically controlled temperature (22–23 ◦C) and in a 12 h
light–dark cycle (09:00 to 21:00).

On PND 28, when the adolescent period began, rats with an initial weight of 49.8 ± 3.3 g
were randomly assigned to four experimental groups (n = 6/group) according to their
treatments (Figure 1): control group (C), rats received control diet and drinking water ad
libitum; low-selenite-supplementation group (S), rats received control diet and low sodium
selenite supplementation in drinking water ad libitum; low-SeNP-supplementation group
(NS), rats were exposed to control diet and low SeNP supplementation in drinking water
ad libitum; moderate-SeNP-supplementation group (NSS), rats were given the control diet
and moderate SeNP supplementation in drinking water ad libitum. This latter group was
studied to control the potential adverse effects of SeNP administration.
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The standard pellet diet (LASQCdiet® Rod14-R; Märkische, Germany) that contained
0.20 ppm of Se in the form of sodium selenite was available ad libitum in all experimental
groups. Low-Se-supplementation groups (S and NS) received 0.14 ppm extra Se as anhy-
drous sodium selenite (Panreac, Barcelona, Spain) and SeNPs (devoloped at the Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Spain) in
drinking water during all experimental periods. The NSS group received 1.4 ppm extra Se
as SeNPs in drinking water.

Sodium selenite supplementation was estimated in order to obtain the highest GPx
activity in rat plasma and liver, which, as reported by Yang et al. using sodium selenate as
the Se source, was obtained with 500 µg/kg dietary Se [36]. Thus, since adolescent rats in the
C group ingested about 18 g of diet/rat/day and 20 mL of water/day, a supplementation
with 0.14 ppm of Se in drinking water was chosen. With this supplementation, the rats
consumed about 6 µg/day of Se, which is equivalent to 500 µg/kg of dietary Se. Based
on this, the amount of SeNPs was calculated to supplement adolescent rats with the same
amount of Se (0.14 ppm: low supplementation) to test whether it produced a similar effect
to oral selenite supplementation or not, whereas moderate SeNP supplementation (1.4 ppm
Se) was tenfold higher in order to study, as described above, its potential toxic effect.

Animal-care procedures and experimental protocols were in accordance with EU
regulations (Council Directive 86/609/EEC; 24 November 1986) and were approved by the
Ethics Committee of University of Seville (CEEA-US2019-4).

2.2. SeNP Development

Chemical Se tetrachloride (SeCl4), ascorbic acid (C6H8O6), poly(sodium 4-styrenesulfo
nate) (PSSS) and solvents were purchased and used without further purification from
Sigma-Aldrich (Madrid, Spain).

SeNPs were freshly prepared, prior to use, following the procedure previously de-
scribed by Gangadoo et al. [31], in which the use of optimal quantities of ascorbic acid as a
chemical reductor represents a very convenient as well as biocompatible choice to avoid
other more toxic alternatives, such as sodium borohydride (Figure 2). In this method, the
Se acid generated from Se tetrachloride in water was reduced with ascorbic acid. In this
case, PSSS was employed to achieve better stabilization and minimize electric repulsion or
aggregation, to obtain the best hydrodynamic diameter of the nanoparticles as an intense
and red suspension. In a second step, the precipitation of the corresponding SeNPs was
performed to obtain the portion of smaller nanoparticles (less than 50 nm). The delivery of
uniform SeNPs, which were synthesized via a fast and reproducible methodology, provided
a more soluble and biocompatible material that could allow us to obtain a convenient,
low-toxic nutrient, characterized by higher thermal resistance and slower excretion rates,
with antibacterial and antioxidant behaviors.

2.3. Nutritional Control

Body weight, and liquid and solid consumed by rats were monitored daily until the
end of the experimental period. The amount of food and water ingested was calculated by
measuring the difference between these parameters every morning and the next day using
an analytical balance. Knowing the concentration of Se (ppm) in the diet and drinking
water, Se intake was calculated by multiplying by the food and water ingested every day.
All measurements were taken at 9:00 a.m. to avoid changes due to the circadian rhythm.
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2.4. Samples and Anthropometric Measurements

At the end of the experimental period, the rats were fasted for 12 h using individual
metabolic cages; afterwards, the adolescent rats were anesthetized with an i.p. injection
of 28% w/v urethane (0.5 mL/100 g of body weight). Immediately, the cranium–caudal
length (CCL) and the abdominal circumference (AC) were measured using a metric caliper,
and the AC/CCL ratio was determined. The body mass index (BMI) was also calculated
using the corresponding formula: body weight (g)/length2 (cm2). Blood was obtained via
heart puncture and collected in tubes. Serum was prepared using low-speed centrifugation
for 15 min at 1300× g. The abdomen was opened with a midline incision in order to
obtain whole organ samples. Liver, kidneys, heart, pancreas, brain, WAT and BAT were
removed, weighed, frozen in liquid nitrogen and stored at −80 ◦C prior to biochemical
determinations. The BAT/WAT ratio was determined and the somatic index of each organ
(LSI, KSI, HSI, PSI, BSI, WATSI and BATSI) was calculated by dividing the organ weight by
the total animal weight.

2.5. Biochemical Measurements in Serum

In serum, insulin and glucose levels as well as the lipid profile (triglycerides (TG),
cholesterol and HDL) were measured with an automated analyzer (Technicon RA-1000;
BayerDiagnostics). VLDL and LDL serum values were estimated as follows: VLDL = TG/5;
and LDL = Cholesterol − HDL − VLDL. The HDL/LDL ratio was calculated from these data.

2.6. Antioxidant GPx Activity and Oxidative Stress Markers in WAT

In order to measure the activity of the antioxidant enzyme GPx as well as oxidative
stress markers, WAT samples from adolescent rats were homogenized (1:4 w/v) using a
Potter homogenizer (Pobel 245432; Madrid, Spain) in a sucrose buffer (15 mM Tris/HCl
(pH 7.4), 250 mM sucrose, 1 mM EDTA and 1 mM dithiothreitol) in an ice bath. The
homogenates were centrifuged at 900× g for 10 min at 4 ◦C. Then, the resulting supernatant
was employed for the biochemical assay. GPx activity (mU/mg) was determined in serum
and WAT homogenates according to the technique described by Lawrence and Burk,
in which GPx catalyzes the oxidation of glutathione using hydrogen peroxide and the
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absorbance decrease due to the oxidation of NADPH is measured at 340 nm for 3 min [37].
The oxidative stress status in WAT was evaluated via lipid and protein oxidation levels.
Lipid peroxidation was determined with the colorimetric method described by Draper
and Hadley, where malondialdehyde (MDA) (mol/mg protein), the end-product of the
oxidative degradation of lipids, reacts with thiobarbituric acid and the final product is
quantified at 535 nm [38]. Protein oxidation was measured according to the technique
proposed by Reznick and Packer, in which carbonyl groups (CGs) (nmol/mg protein) are
quantified at 366 nm, due to the reaction of 2,4-dinitrophenylhydrazine with CGs [39].

2.7. Immunoblotting Assays

WAT samples were homogenized (1:10 w/v) in 50 mM phosphate buffer (K2HPO4 50 mM,
KH2PO4 50 mM, EDTA 0.01 mM, protease inhibitor 1:10 (Complete Protease Inhibitor
Cocktail Tablets, ROCHE, Madrid, Spain)) using a Potter homogenizer (Pobel 245432;
Madrid, Spain). Then, the homogenates were centrifuged at 2000 r.p.m at 4 ◦C for 10 min,
and the final supernatant was aliquoted and frozen at −80 ◦C until analysis.

The expression of selenoproteins GPx1, IRS-1, FOXO3a and β-actin (as load control)
in WAT homogenates was determined with the protein immunodetection technique or
Western blot. The protein content of the samples was analyzed using the method by Lowry
et al., and the samples for Western blot contained 25 µg of protein [40]. Proteins were
separated on a polyacrylamide gel (9%) and transferred to a nitrocellulose membrane
(Immobilon-P Transfer Membrane; Millipore, Billerica, MA, USA) using a blot system
(Transblot; BioRad Madrid, Spain). Nonspecific membrane sites were blocked for one
hour with a blocking buffer: TTBS (50 mM Tris-HCl, 150 mM NaCl, 0.1% (v/v) Tween 20;
pH 7.5) and 5% milk powder (BioRad, Madrid, Spain). Then, they were probed overnight
at 4 ◦C with specific primary antibody dilutions: GPx1 rabbit polyclonal IgG (Santa Cruz
Biotechnology) (1:1000); IRS-1 rabbit polyclonal IgG (Santa Cruz Biotechnology) (1:500);
FOXO3a mouse monoclonal IgG (Santa Cruz Biotechnology) (1:500); and monoclonal mouse
anti β-actin IgG1A5441 (Sigma-Aldrich) (1:10,000). The next day, the probed membranes
were incubated with the secondary antibody: goat Anti-Rabbit IgG (H + L) Horseradish
Peroxidase Conjugate (BioRad Madrid, Spain) in dilutions of 1:3000 for GPx and 1:1500
for IRS-1 and goat Anti-Mouse IgG (H + L)-HRP Conjugate (BioRad, Madrid, Spain) in
dilutions of 1:1500 for FOXO3a and 1:8000 for β-actin. Subsequently, the membranes were
incubated for 1 min with a commercial developer solution, Luminol ECL reagent (GE
Healthcare and Lumigen Inc., Buckinghamshire, UK), and analyzed with an Amersham
Imager 600 (GE Healthcare, Buckinghamshire, UK). The quantification of the blots was
performed using densitometry with the ImageJ program. The results were expressed as
percent arbitrary relative units, referring to values in control animals, which were defined
as 100%.

2.8. Adipocyte Size

To measure adipocyte size, a scanning electron microscope (SEM) operating under
ultra-high vacuum (Phenom Pro desktop SEM) was used. With this microscope, informa-
tion about the surface topography and composition of WAT could be recorded in 3Ds. The
size of 100 adipocytes from heterogeneous areas was measured in each of the groups.

2.9. Adipokines

Serum adipokines such as adiponectin, resistin, adipsin, lipocalin (LCN2), plasmino-
gen activator inhibitor-1 (PAI-1) and tumor necrosis factor (TNF)-alpha were measured
using MILLIPLEX® MAP Rat Adipokine Panel (Millipore Corp., St. Charles, MO, USA)
based on immunoassays on the surface of fluorescent-coded beads (microspheres), follow-
ing the manufacturer’s specifications (50 events per bead, 50 µL of sample, gate settings
of 8000–15,000, time out of 60 s, melatonin bead set of 34). The plate was read with a
LABScan 100 analyzer (Luminex Corp., Austin, TX, USA) with xPONENT software for
data acquisition. The average values for each set of duplicate samples or standards were
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within 15% of the mean. Adipokine concentrations in plasma samples were determined by
comparing the mean of duplicate samples with the standard curve for each assay.

2.10. Statistical Analysis

The results were expressed as means ± standard errors of the mean (SEMs), and the
number of animals in each group was 6. Data from study were analyzed using statistical
software (GraphPad InStat 3; San Diego, CA, USA) with the analysis of variance (one-way
ANOVA). Statistical significance was established at p < 0.05. When ANOVA resulted in
differences with values of p < 0.05, significant differences between means were studied
with the Tukey–Kramer test.

3. Results

Table 1 shows that the applied low selenite and SeNP therapies enlarged the Se intake
twice as much as the control and that moderate SeNP supplementation increased this
intake 10 times more than in C rats. Supplemented rats (S, NS and NSS) had higher
serum GPx activities than C rats; NSS rats presented higher significant values. S and NS
rats ingested the same amount of food and showed a weight increase similar to that of
C rats; however, NSS ones ingested less food and water, leading to a lower increase in
body weight. S rats presented a longer longitude and a larger abdominal perimeter, but
this increase was compensated, as the AC/CCL ratio was not affected. S rats presented
higher pancreatic and BAT relative weight, being the ratio BAT/WAT augmented. NS
animals had longer lengths than C ones, but they had lower BMIs and AC/CCL ratios,
and lower WATSI and BAT/WAT ratios. NS rats also had a smaller abdominal perimeter,
AC/CCL ratio, and a lower pancreas and BAT relative mass than S animals. Finally, NSS
rats presented a lower BMI than C ones, a shorter length than S and NS rats and a higher
AC/CCL than NS animals. NSS rats showed the significantly highest kidney relative
weight and a higher heart mass than S rats. They also presented a lower BAT/WAT ratio
than low-supplementation rats (S and NS).

Table 1. Nutritional and anthropomorphic parameters at the end of the experimental period.

Parameter C S NS NSS

Body weight increase (g/day) 6.01–0.1 6.07–0.2 5.98–0.2 5.13–0.2
* s

Solid intake (g/day) 18.26–0.35 18.58–0.18 18.28–0.09 16.54–0.19
*** sss ppp

Liquid intake (mL/day) 21.4–0.66 21.54–0.7 19.16–0.77 16.67–0.45
*** sss pp

Total Se intake (µg/day) 3.48–0.08 6.81–0.14
**

6.59–0.09
**

31.35–1.43
*** sss ppp

Serum GPx activity (mU/mg protein) 59.7–2.2 73.3–3.5
*

74.8–3.4
*

80.4–3.7
**

BMI
(Kg/m2) 51.65–0.8 48.72–00.5 47.46–0.9

**
47.99–0.6

*

CCL
(cm) 18.22–0.11 19.68–0.19

***
19.6–0.2

***
18.87–0.18

s p

AC
(cm) 10.56–0.46 11.52–0.26

*
10.16–0.35

ss 10.75–0.25

AC/CCL 0.57–0.01 0.59–0.01 0.51–0.01
** sss

0.57–0.01
p

LSI
(%) 3.73–0.09 3.65–0.1 3.93–0.09 3.97–0.06
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Table 1. Cont.

Parameter C S NS NSS

KSI
(%) 1.04–0.04 0.99–0.03 0.98–0.02 1.19–0.03

*** ss ppp

HSI
(%) 0.51–0.02 0.49–0.01 0.53–0.01 0.56–0.02

s

PSI
(%) 0.72–0.02 0.89–0.03

**
0.70–0.02

ss 0.81–0.02

BSI
(%) 1.08–0.02 1.17–0.02 1.07–0.02 1.14–0.03

WATSI
(%) 0.62–0.02 0.59–0.03 0.50–0.02

* 0.59–0.02

BATSI
(%) 0.24–0.01 0.28–0.01

*
0.25–0.02

s 0.22–0.01

BAT/WAT 0.4–0.02 0.48–0.02
*

0.49–0.02
*

0.38–0.02
s p

BMI
(Kg/m2) 51.65–0.8 48.72–00.5 47.46–0.9

**
47.99–0.6

*

The results were expressed as means ± SEMs and analyzed using a multifactorial one-way ANOVA followed
by Tukey’s test. The number of animals in each group was 6. BMI, body mass index. CCL, cranium–caudal
length. AC, abdominal circumference. LSI, liver somatic index. KSI, kidney somatic index. HSI, heart somatic
index. PSI, pancreas somatic index. BSI, brain somatic index. WATSI, white-adipose-tissue somatic index. BATSI,
brown-adipose-tissue somatic index. BAT/WAT, brown–white adipose tissue ratio. SEM, standard error of the
mean. Groups: C, control group; S, low-selenite group; NS, low-selenite-nanoparticle group; NSS, moderate-
selenite-nanoparticle group. Significance: vs. C, * p < 0.05, ** p < 0.01, *** p < 0.001; vs. S, s p < 0.05, ss p < 0.01,
sss p < 0.001; vs. NP, p p < 0.05, pp p < 0.01, ppp p < 0.001.

Regarding the lipid profile, S rats had lower TG and VLDL serum values than C rats
(Figure 3). NS animals presented significantly higher TG and VLDL serum levels than the
rest of the groups. NSS rats showed the lowest HDL/LDL ratio.

Figure 4 displays the data relative to oxidative balance in WAT, showing that the three
supplementation groups had significantly higher GPx1 expression and GPx activity than C
rats. There were no differences in these parameters among the supplementation groups;
however, NSS rats presented more significant GPx activity than C ones. The oxidative lipid
and protein damage was similar among the four studied groups, but NSS rats had higher
levels of CGs than NS ones.

Relative to insulin function, Figure 5 shows that insulin serum levels were significantly
increased in S rats vs. the rest of the groups and decreased in NS rats vs. C ones. Glucose
serum values were only enlarged in NS rats with respect to C and S animals. The expression
of WAT IRS-1 was increased in the three supplementation groups with respect to the C
one; however, this increase was greater in NS and NSS rats, without differences among
them. The marker of lipogenesis via autophagy, FOXO3a, in WAT was reduced after low
exposure to SeNP compared with the expression found in S and NSS animals.

The results obtained using a scanning electron microscope (SEM) operating under
ultra-high vacuum (Phenom Pro desktop SEM) are reported in Figure 6 and showed that
S rats presented the largest adipocytes (115 µm) in WAT; however, when 100 adipocytes
were measured, the median data were not significantly higher than those for the control
adipocytes (C, 75.4 ± 2.03 µm; S, 81.6 ± 2.03 µm). SeNP groups (NS and NSS) presented
significantly lower median adipocyte size than C (p < 0.001) and S (p < 0.001) rats, which
present a higher proportion of connective tissue fibers. Moreover, in SeNP-treated rats,
adipocyte size was more homogeneous.
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Figure 3. Lipid profile. Triglycerides (a). VLDL (b). Cholesterol (c). LDL (d). HDL (e). HDL/LDL
ratio (f). The results were expressed as means ± SEMs and analyzed using a multifactorial one-way
ANOVA followed by Tukey’s test. The number of animals in each group was 6. SEM, standard error
of the mean. Groups: C, control group; S, low-selenite group; NS, low-selenite-nanoparticle group;
NSS, moderate-selenite-nanoparticle group. Significance: vs. C, * p < 0.05, ** p < 0.01; vs. S, s p < 0.05,
ss p < 0.01, sss p < 0.001; vs. NP, p p < 0.05, pp p < 0.01.

Finally, these differences in WAT tissue affected the adipokine secretion profile among
groups (Table 2). S rats had the lowest adiponectin and LCN2 serum values of all ex-
perimental groups. As for NS and NSS groups, S rats also presented lower adipsin and
TNF-alfa and higher t-PAI values than C animals. NS and NSS rats had higher adiponectin
levels than C and S rats, especially NSS animals. Furthermore, NS and NSS animals had
increased resistin and reduced TNF-alfa serum values compared with S ones.
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Figure 4. Implication of GPx1 in WAT oxidative balance. Antioxidant activity of GPx-1 (a). Expression
of GPx-1 (expressed as percent arbitrary relative units, referring to values in control animals, which
were defined as 100%) (b). Representative Western blot for the expression of GPx-1 and β-actin (as
load control) (c). Lipid oxidation expressed by the levels of malondialdehyde (MDA) (d). Protein
oxidation expressed by the levels of carbonyl groups (CGs) (e). The results were expressed as
means ± SEMs and analyzed using a multifactorial one-way ANOVA followed by Tukey’s test. The
number of animals in each group was 6. SEM: standard error of the mean. Groups: C, control group;
S, low-selenite group; NS, low-selenite-nanoparticle group; NSS, moderate-selenite-nanoparticle
group. Significance: vs. C, * p < 0.05, ** p < 0.01; vs. NP, p p < 0.05.
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Figure 5. Pro-adipogenic pathways: insulin signaling and FOXO3a-autofaghy. Expression of IRS-1
(expressed as percent arbitrary relative units, referring to values in control animals, which were
defined as 100%) (a). Representative Western blot for the expression of IRS-1 and β-actin (as load
control) (b). Insulin levels (c). Glucose levels (d). Expression of FOXO3 (expressed as percent arbitrary
relative units, referring to values in control animals, which were defined as 100%) (e). Representative
Western blot for the expression of FOXO3 and β-actin (as load control) (f). The results were expressed
as means ± SEMs and analyzed using a multifactorial one-way ANOVA followed by Tukey’s test. The
number of animals in each group was 6. SEM: standard error of the mean. Groups: C, control group;
S, low-selenite group; NS, low-selenite-nanoparticle group; NSS, moderate-selenite-nanoparticle
group. Significance: vs. C, * p < 0.05, *** p < 0.001; vs. S, s p < 0.05, sss p < 0.001; vs. NP, p p < 0.05.
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Table 2. Adipokines, hormones secreted by WAT against different stimuli, most of them metabolic
and energetic.

Adipokine C S NS NSS

Adiponectin
(pg/mL) 71.1–4.9 29.2–1.1

**
99.2–8.1

* sss
362–9.7

*** sss ppp
Resistin
(pg/mL) 48.1–2.9 41.5–1 53.5–1.9

ss
54.1–1.9

ss
Adipsin
(pg/mL) 319–12 112.7–1

***
108–1.6

***
112–3.5

***
Lipocalin
(LCN2)
(pg/mL)

26.3–1.5 13.8–0.7
***

29.4–1.1
sss

28.9–1.1
sss

PAI-1
(pg/mL) 70.2–1.1 90.8–1.8

***
85.2–1.5

***
83.4–0.7

*** s
TNF-alfa
(pg/mL) 13.7–0.8 9.9–0.3

**
2.7–0.2

*** s
3.1–0.2

*** s
The results are expressed as mean ± SEM and analysed by a multifactorial one-way ANOVA followed by Tukey’s
test. The number of animals in each group is 6. WAT: white adipose tissue. SEM: standard error of the mean.
Groups: C, control group; S, low-selenite group; NS, low-selenite-nanoparticle group; NSS, moderate-selenite-
nanoparticle group. Signification: vs. C: * p < 0.05, ** p < 0.01, *** p < 0.001; vs. S: s p < 0.05, ss p < 0.01,
sss p < 0.001; vs. NP: ppp p < 0.001.

4. Discussion

Low-Se-supplementation adolescent rats (S and NS) ingested the same amount of Se
via the same oral route, with both forms of administration promoting bone growth and
higher serum antioxidant activity of GPx. This increase in length has been previously
described after the administration of selenite and SeNPs [41,42]. There is animal evidence
to support the direct role of Se in bone biology not only via its promotion of osteoblastic
differentiation via the inhibition of OS, ERK activation and inflammation [42,43] but also via
its modulation of osteoclastogenic genes via SELENOW [44]. Moreover, Se has important
endocrine functions related to growth, especially in periods of intense metabolism such as
pregnancy, lactation, embryogenesis and probably adolescence, since it is an essential com-
ponent of deiodinases (DIOs), regulating the contents of thyroid hormones [45–47]. It also
regulates the transcription levels of hypothalamic and GH/IGF-axis-related genes, responsi-
ble for growth promotion [48]. Similar results have been found in different aquatic animals
in which SeNP have been used for growth-promoting and feed-utilization effects [49–51].

However, the form of Se administration, dissolved sodium selenite or SeNPs in water,
has important different impacts on abdominal circumference, a parameter associated with
visceral WAT deposition [52], and increases after selenite consumption. Despite this fact, the
AC/CCL ratio, a useful anthropometric correlation to detect obesity and cardiovascular and
metabolic risks [53], is not affected after selenite supplementation. In accordance with this,
S adolescent rats did not have larger visceral WAT depots; moreover, they presented higher
BAT levels and BAT/WAT ratio than control animals, indicating that lipid homeostasis
is turned towards thermogenesis, avoiding excessive lipid deposits. Therefore, S rats
presented a proportionate increase in bone and lipid growth, effects that have also been
detected in the progeny of dam rats supplemented with low selenite [47]. These effects of
oral selenite supplementation are attributed in part to insulin up-regulation via the increase
in β-cell function [17], as dietary Se is considered an insulin mimetic that, when arriving
at the adipocyte, encourages adipogenesis [54]. According to that, S rats had a higher
pancreatic relative mass than C rats.

In contrast, compared with selenite, SeNP supplementation did not affect pancreatic
development or abdominal circumference but significantly decreased the BMI, visceral
WAT depots and the AC/CCL ratio. The decrease in visceral WAT mass could be ex-
plained by the fact that SeNP are more liposoluble seleno-compounds than their anionic
counterparts and easily arrive at WAT, without the need for biotransformation or specific
transporters to be incorporated, unlike selenite, which is actively metabolized in cells,
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increasing selenoprotein synthesis [55,56]. To highlight the differences between Se nanopar-
ticles, bearing oxidation state 0, and selenite with high oxidation state (+4), the former are
known to provide slower drug delivery of Se, which would induce different bioavailability,
as described by Zhang et al. [57,58]. Additionally, SeNPs may induce completely different
biological interactions if compared with the ionic forms of Se to favor better adherence or
larger and more reactive surfaces that catalyze binding to specific proteins [59]. Addition-
ally, other in vivo studies have shown that SeNPs played a critical role in the up-regulation
of IGF-1 gene expression and the activation of different digestive enzymes to promote
and enhance intestinal-villi integrity [60,61]. The final result is that SeNPs can easily cross
intestinal physiological barriers and are better absorbed in several animal models to be
easily available in immunity, antioxidation and metabolism routes because of their high
solubility, small size and spherical shape.

Interestingly, three Se transports have been described in WAT; these pathways are: Se
uptake via anion transporters (inorganic Se), methionine transporters (selenomethionine)
and SELENOP-mediated transport, which uses receptors LRP2 and LRP8 to introduce
SELENOP via endocytosis [62–65]. It is known that PPARγ, an important adipocyte-
differentiation marker, up-regulates LRP2 expression, providing a link between adipogene-
sis accompanied by PPARγ and increased SELENOP uptake [66]; additionally, SELENOP
plays a pivotal role during adipocyte maturation and fat deposition [20]. This route of Se
transport via SELENOP could be involved during the uptake of selenite to WAT, which
is less important when SeNPs are supplied, since these particles easily cross cell mem-
branes by themselves. Therefore, a probably greater amount of direct inorganic Se in its
original form arrives to adipocytes (Figure 7). According to that, in vitro studies using
3T3-L1 murine pre-adipocytes have found that direct selenite administration decreases
lipid accumulation during differentiation, preventing adipogenesis. This effect could be
obtained because, during physiological adipocyte differentiation and lipid accumulation,
ROS signals are necessary. 3T3-L1-adipocyte exposure to selenite causes an increase in
SELENOW >> GPx1 > SELENOP, leading to a significant decrease in ROS, inflammatory
mediators and adipocyte-differentiation markers such as PPARγ, interfering with lipid
deposition without cytotoxic effects [20]. In vivo studies using oral selenite may lead to
different results.

Donma and Donma have argued that in vivo low selenite supplementation has pro-
adipogenic effects via the increase in PPARγ signaling in adipocytes, which is associated
with SELENOP [67] and that high selenite supply could present anti-obesity effects via
the decrease PPARγ signaling; therefore, the development of lipophilic Se compounds
capable of binding PPARγ could be a particular interesting approach. With the lipophilic
SeNPs used in this study, this important challenge could be solved with a low dose of
Se. Wang et al. have also pointed to the activation of GPx1 and SELENOP as responsible
for the crossroad of the biological effect of Se in adipocytes depending on both dose and
administration via the modulation of PPARγ and adipogenic differentiation in some cases
and via altering the PKA/HSL pathway, which reinforces lipolysis, in other cases [68].
Since this is preliminary research, many more studies related to the SeNPs used and their
adipogenic mechanisms in WAT are still necessary.

However, all data measured in this work pointed to this antagonistic effect of selenite
and SeNPs on WAT homeostasis in vivo. From a lipid-profile point of view, S rats presented
lower TG and VLDL serum values than C rats, avoiding ectopic lipid deposition, and NS
animals had significantly higher TG and VLDL serum levels than the rest of the groups,
showing that lipolysis took place. Furthermore, adipocytes from S groups were larger and
presented a wider size range, indicating a correct adipogenesis process with the presence
of mature adipocytes. By contrast, WAT from NS rats presented smaller fat cells, with
a narrower size range and a proportionally larger amount of connective tissue fibers.
Therefore, from a microscopical point of view, adipogenesis and fat depots were impaired.
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Figure 7. Possible mechanisms implicated in the antagonistic effects of low selenite and SeNP sup-
plementation on WAT homeostasis during adolescence. Selenite supplementation favors adipocyte
maturation and fat deposition in WAT by increasing insulin secretion and IRS-1 expression, en-
hancing the insulin signaling pathway and adipogenesis. It also reduces LCN2, a PPARγ inhibitor,
and abrogates adipogenesis arrest. As a hypothesis, selenite could be previously transformed into
SELENOP, which when arrives to LRP2 and activates PPARγ. By contrast, SeNP supplementation
impairs insulin secretion, which cannot properly activate the insulin signaling pathway and adipoge-
nesis, despite high amounts of IRS-1 being expressed and adiponectin being secreted. SeNPs also
decreased FOXO3a expression, related to lipid accumulation and inflammation in adipocytes, by
promoting autophagy.

SeNPs at moderate doses, although they increased serum GPx activity to a greater
extent than the rest of the supplementation groups, appeared to adversely affect solid and
liquid intake, leading to lower body weight and BMI and no effects on length. Furthermore,
NSS adolescent rats had significantly higher relative kidney weight. These effects on solid
intake and kidney development have previously been described and could suggest that
toxicity occurred [30,69]. The potential toxic effects of this amount of SeNPs are primarily
associated with their pro-oxidant properties and with the ability to disrupt the integrity
of cell membranes [32,33]. In rats, the excess of SeNPs has been proven to induce an
excessive accumulation of Se in the kidneys, which affects their correct functioning as a
result of OS [70]. With respect to lipid metabolism, moderate doses of SeNPs did not affect
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the relative weight of WAT; nonetheless, the adipocyte size was decreased, probably in
accordance with the lower weight and the appearance of dyslipidemia.

Although WAT is a tissue with relatively low Se content under physiological con-
ditions, in the respective processes of primary preadipocytes undergoing adipocyte dif-
ferentiation, ROS and selenoprotein expression in WAT drastically change, modulating
adipogenesis [20,71]. An increase in H2O2 and H2S is needed for adipocyte differentiation,
together with lower GPx1 and higher DIO2 and SELENBP1 expression. In vitro studies
have found that direct selenite supplementation to 3T3-L1 preadipocytes impairs adipo-
genesis by increasing selenoprotein expression and decreasing ROS and inflammatory
markers; however, GPx1 expression was increased in a non-dose-dependent manner [20].
Consequently, in this study, WAT GPx1 expression and activity were higher in the three
supplementation groups than in control rats but without differences among them. More-
over, although ROS were not measured, indirect OS markers MDA and CGs indicated
that lipids and proteins were not oxidized in WAT. GPx1 does not seem to be related to
the different actions of selenite and SeNPs on WAT development. Other selenoproteins or
proteins associated with Se could be involved, such as SELENOP, SELENOW or SELENBP1.
Recently, interest has grown around the implication of GPx3 in obesity and IR, identifying
GPx3 as a potentially novel regulator of IRS-1 expression and insulin sensitivity in WAT [72].
Insulin signaling is crucial for WAT function, since a lack of it causes adipocyte dysfunction
with a marked reduction in WAT mass but not in BAT [73].

Oral bulk sodium selenite supplementation, as in a multitude of previous works [17],
leads to an increase in serum insulin levels, since β cells are highly vulnerable to ROS action
and their antioxidant system mainly depends not only on the main antioxidant enzymes
but also on TXNRDs [74]. β-cell oxidation compromises insulin secretion. Additionally, in
the pancreas, GPx1 protects from β-cell loss by inducing transcriptional factors related to
proliferation and differentiation, as well as insulin production, associated with an increase
in β-cell mass and insulin content [75–77]. A high pancreatic mass also appeared in
adolescent S rats, together with normal glucose serum values and increased IRS-1 WAT
expression, which supported the fact that the IR process did not appear. In addition,
increased insulin secretion was related to the general anabolic process that presented in
S rats. Furthermore, these effects of selenite supplementation have been used to avoid
IR induced by a high-fat diet, since it alleviated IR, decreased tissue inflammation and
elevated IRS-1 expression in the WAT of mice. On the contrary, low SeNPs administered to
adolescent rats lead to a decrease in insulin secretion; a clear hypothesis to describe this
outcome has not been found yet. To counteract the effects of hypoinsulinemia, WAT tissue
expresses a much greater amount of IRS-1. However, it is not enough since the adipogenesis
process is stopped and hyperglycemia further appears. According to these results, in a
recent multidisciplinary study, in vivo selenite vs. in vitro selenite supplementation have
been found to show different effects on WAT-insulin sensitivity during obesity and high-
fat diet exposure [78]. In this case, in vitro selenite supplementation protects against IR
in 3T3-L1 preadipocytes, despite in vivo studies in mice showing no selenite-induced
improvement in insulin sensitivity, with only a modest effect on adipocyte morphology
and enhanced insulin production in the pancreas. Once again, the way in which selenite
arrives at seems to play an important role in its biological properties in this tissue. In
that study, as in the study by Hauffe et al., in 3T3-L1 preadipocytes, selenite treatment
via Gpx3 expression has been observed to enhance IRS-1 expression via the activation of
transcription factor Sp1 [72].

FOXO3a, a Forkhead box O member of the transcription factor family, plays a critical
role in a variety of biological processes. Recently, it has been described as a protein that
regulates lipid accumulation and adipocyte inflammation in adipocytes through autophagy
in visceral AT from obese mice and during the differentiation of 3T3-L1 adipocytes [79].
These authors have concluded that FOXO3a could promote lipid accumulation and inflam-
mation in adipocytes by targeting autophagy. Furthermore, other authors have described
that FOXO3a-dependent genes are significantly up-regulated in AT in a direct relationship
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with PPARγ activity [80]. With these premises, the results found in the FOXO3a expression
of rats supplemented with S and NS were in consonance with the rest of the observed data.
NS rats had lower expression of FOXO3a, indicating that lipid accumulation in adipocytes
did not take place and inflammation was decreased, which was probably related to lower
PPARγ activity and was in agreement with the lower WAT mass detected. Once again, the
form of selenite administration differently affected adipocyte function.

Finally, moderate SeNP supplementation did not affect insulin secretion and glycaemia
but highly increased IRS-1 in WAT; nonetheless, adipogenesis and FOXO3a seemed not to
be affected. In this case, not only the form of administration but also the dose of SeNP had
repercussions on WAT function in different ways.

AT is considered a dynamic endocrine organ, as it secretes a wide range of adipokines,
depending on its own metabolic and energy homeostasis. Therefore, the administration of
dissolved bulk selenite and SeNPs altered adipokine homeostasis in adolescent rats. In this
context, independently of the dose or form of Se supplementation to adolescent rats, serum
adipsin and TNF-alfa levels were decreased, and PAI-1 increased. The lower TNF-alfa
values detected indicated that Se supplementation had anti-inflammatory properties, which
were higher when it was supplied as SeNPs. This specific and high anti-inflammatory
effect of SeNPs has been extensively described in the literature [81]. Furthermore, these
results indicated that bulk selenite supplementation, despite the increased anabolism, was
not related to low-grade inflammation, an important step to deliver obesity. Adipsin is
known to stimulate insulin secretion from β cells and improve glucose tolerance; it also
modulates WAT homeostasis and is down-regulated during obesity [82]. Because of that, it
has been extensively analyzed in the IR process and pointed at as a biomarker in diabetes;
it preserves β-cell mass by improving β-cell survival and maintaining their transcriptional
identity [83]. In S adolescent rats, adipsin detriment did not affect insulin secretion, since
bulk selenite is directly associated with an increase in β-cell mass and insulin secretion [17];
however, this decrease could be responsible, in part, for the lower insulin secretion found in
NS animals in response to glucose. PAI-1 is an acute-phase protein expressed in adipocytes,
but it can be highly expressed by other cells, such as hepatocytes in response to stress. Its
classical role is to inhibit the plasminogen activator, blocking fibrinolysis and contributing
to endothelial dysfunction. Adipocyte-derived PAI-1 is released into the circulation in
parallel with increased fat mass and plays crucial roles in the insulin actions in the liver,
muscle and fat. Adipocyte-derived PAI-1 influences metabolism towards TG release [84].
In addition, PAI-1 secretion is modulated by TGs in the liver, since Se is a mineral intimately
related to lipid homeostasis [85,86]; perhaps, Se supplementation therapies (S, NS, NSS)
and PAI-1 synthesis could be related via lipid homeostasis, which was altered in the three
experimental groups.

Although these three adipokines are modulated in the same direction after Se supple-
mentation, in this study, the form of Se administration, but not the dose, differently affected
two adipokine secretions, Lipocalin-2 (LCN2) and resistin; the former was down-regulated
after selenite supplementation, and the latter was up-regulated after SeNP treatments.
LCN2 is also known as neutrophil gelatinase-associated lipocalin (NGAL), responsible
for the transport of small and hydrophobic molecules; it plays different functions, such
as antibacterial, anti-inflammatory and protection against cell stress; clinically, it is used
as a biomarker for renal injury [87]. Recent reports have indicated a role for LCN2 in
the modulation of insulin sensitivity, glucose and lipid metabolism. LCN2 expression is
elevated by agents that promote IR and is reduced by PPARγ agonists thiazolidinediones
(TZDs), an important class of insulin sensitizers used in the treatment of diabetes [88]. In
this case, the selenite supplementation used in this study mimicked the activity of TZDs;
this similitude has been previously reported by Wang et al. [68]. These authors have de-
scribed that selenite supplementation increased adipocyte differentiation and fat deposits
in AT, reducing ectopic lipid content, ROS generation and mitochondrial dysfunction in the
liver and protecting against high-fat-diet-induced IR, such as TZDs [68]. Supplementation
with SeNPs did not affect LCN2 secretion, but as compared with S rats, their use increased
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serum resistin values. Resistin is expressed in AT, but it is also found in other tissues;
notably, its content in AT is proportional to the intensity of macrophage infiltration, which
is the main source of this adipokine. Therefore, it has been recently described as a novel
host defense peptide of innate immunity [89]. In WAT, it can stimulate lipolysis to promote
the inappropriate release of fatty acids into the circulation [90], sometimes linked to IR
development; both situations seemed to be stablished in SeNP-treated animals.

Finally, adiponectin secretion was very sensitive to the form and dose of Se adminis-
tration, as it was down-regulated after bulk selenite supplementation and up-regulated in a
dose-dependent manner after SeNP administration. This anti-inflammatory adipokine with
adipogenic and insulin sensitizing effects affects fatty acid oxidation and glucose uptake in
peripheral tissues, promoting appropriate lipid storage to avoid ectopic fat storage [91]. In
WAT, it increases glucose uptake and adipogenesis and decreases inflammation; moreover,
it specifically contributes to the increase in IRS-1 expression in WAT [92]. This promotion
of WAT IRS-1 expression was clearly detected in SeNP-supplemented rats. Moreover,
adiponectin also promotes beta-cell survival; it stimulates insulin secretion by enhancing
the exocytosis of insulin granules and upregulating the expression of the insulin gene.
In addition, it has antiapoptotic properties in β cells [91,93]. Maybe for this reason, its
value was not increased in S rats, since they presented a great amount of insulin serum
levels, and it was increased in NS rats, since their insulin Se levels were decreased. The
higher adiponectin secretion found in NSS rats could be related to the weight loss that
they suffered, since anorexia nervosa, anti-obesity medication, weight-loss diet or bariatric
surgery deeply increased the overall adiponectin concentration [94].

5. Conclusions

For the first time, in an experimental in vivo study, it was demonstrated that the form
of oral low Se administration, dissolved sodium selenite or SeNPs in water, differently
affected WAT homeostasis and function. Selenite supplementation during adolescence
favored adipogenesis by promoting insulin secretion and sensitivity leading to a general
anabolism, without obesity or inflammation, in which the adipokine LCN2 played a pivotal
role. By contrast, SeNP supplementation during adolescence impaired adipogenesis and
fat deposits in WAT. These effects were due in part to lower insulin secretion, which could
not properly activate the insulin signaling pathway in WAT, despite the high amount of
IRS-1 that was expressed and the adiponectin amount secreted. Moreover, SeNPs have
a well-known anti-inflammatory action in WAT, in part by decreasing the lipogenic and
pro-inflammatory FOXO3a expression. Therefore, low selenite may be considered as a
pro-adipogenic therapy, while low SeNP administration prevented adipocyte differentia-
tion. These findings could provide important novel dietary approaches to prevent obesity
and/or anorexia nervosa during adolescence, two important metabolic disturbances that
are dangerously increasing in the adolescent population.

Despite a control animal group was included during the whole experimental protocol,
general growth and metabolic data at baseline were not collected. For this reason, a major
limitation of this study was the fact that the design was based on a single time point.
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