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Abstract: Background and Objective. Skin cancer is the most common cancer worldwide. One of the
most common non-melanoma tumors is basal cell carcinoma (BCC), which accounts for 75% of all
skin cancers. There are many benign lesions that can be confused with these types of cancers, leading
to unnecessary biopsies. In this paper, a new method to identify the different BCC dermoscopic
patterns present in a skin lesion is presented. In addition, this information is applied to classify skin
lesions into BCC and non-BCC. Methods. The proposed method combines the information provided
by the original dermoscopic image, introduced in a convolutional neural network (CNN), with deep
and handcrafted features extracted from color and texture analysis of the image. This color analysis
is performed by transforming the image into a uniform color space and into a color appearance
model. To demonstrate the validity of the method, a comparison between the classification obtained
employing exclusively a CNN with the original image as input and the classification with additional
color and texture features is presented. Furthermore, an exhaustive comparison of classification
employing different color and texture measures derived from different color spaces is presented.
Results. Results show that the classifier with additional color and texture features outperforms
a CNN whose input is only the original image. Another important achievement is that a new
color cooccurrence matrix, proposed in this paper, improves the results obtained with other texture
measures. Finally, sensitivity of 0.99, specificity of 0.94 and accuracy of 0.97 are achieved when lesions
are classified into BCC or non-BCC. Conclusions. To the best of our knowledge, this is the first time
that a methodology to detect all the possible patterns that can be present in a BCC lesion is proposed.
This detection leads to a clinically explainable classification into BCC and non-BCC lesions. In this
sense, the classification of the proposed tool is based on the detection of the dermoscopic features
that dermatologists employ for their diagnosis.

Keywords: basal cell carcinoma; color cooccurrence matrix; deep learning; color appearance models;
clinically inspired classification; dermatology

1. Introduction

Skin cancer is the most common cancer worldwide [1]. There are two main types of
skin cancer: melanoma and non-melanoma. The most common non-melanoma tumors
are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC accounts for 75%
of all skin cancers and it is the most common malignant tumor in white populations [2].
The detection of this cancer is executed by visual inspection by a skilled dermatologist, but
there are many benign lesions that can be confused with these types of cancers, leading to
unnecessary biopsies in a proportion of five biopsies versus one actual cancer case [3].
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1.1. Related Work in the Literature

Ruffano et al. published a comparative study of the use of 24 computer-aided diagnosis
(CAD) tools for skin cancer detection and they concluded that CAD systems obtained high
sensitivity and could be used as a back-up for specialist diagnosis in a carefully selected
patient population, but there is no evidence that, for daily clinical practice, they will be
useful to assist clinicians. In this sense, prospective comparative studies are required [4].
Marka et al. present a review of techniques focused on the automatic detection of non-
melanoma skin cancer [5]. Their conclusion is that the overall quality of evidence for the
diagnostic accuracy of the automatic classification of non-melanoma skin cancer is moderate.
The most common limitations of the studies included in the review are the overlapping
training and test sets, the non-biopsy-proven references and the non-consecutive samples.

Lately, the use of artificial intelligence (AI) using deep neural networks in the classi-
fication of images or object recognition has increased. Specifically, convolutional neural
networks (CNN) have become a powerful classification tool. The large databases avail-
able to the research community and the improvements in graphic processing unit (GPU)
capabilities have contributed to this success. Despite all the above, there is still a wide
improvement margin in developing CAD tools in order to be reliable. Most of the AI
works published in the field of skin cancer detection have been focused on melanoma [6–9].
On the other hand, works devoted to detecting non-melanoma skin cancer are uncom-
mon in the literature. Usually, these papers classify skin lesions into different classes of
diseases [10–15].

The main concern about CAD tools based on deep learning (DL) is the lack of explain-
ability of the classification result. Deep neural networks are considered as black boxes,
which give a label for each class, but without revealing the internal decisions that have
been taken to reach this label. Lately, different efforts have been directed towards the
development of CAD tools for a clinical explainable classification of skin cancer [16–19]
In this regard, in this paper, a CAD tool that provides an explainable detection of BCC
is presented.

There are different types of images that physicians use to diagnose the skin lesion (spec-
troscopy [20], optical coherence tomography, thermography, multispectral images, wide
field images [21], ultrasonography [22,23], etc.), but the most used and the simplest one is
the digital dermoscopy—that is, digital color photography enhanced by a dermoscope [24].

Dermatologists diagnose BCC from dermoscopic images by detecting different high-
level features or dermoscopic criteria. BCC has the most clearly defined clinical crite-
ria [2,25]. Dermoscopic criteria for BCC are branching and linear vessels (arborising and
superficial telangiectasia), multiple erosions, ulceration, bluish-gray clods of variable size
(ovoid nests, globules and focused dots), radial lines connected to a common base (leaf-like
areas), radial lines converging to a central dot or clod (spoke-wheel areas), clods within a
clod (concentric structure) and absence of brown reticular lines (pigment network) [2,26].

In the last few years, some works have been focused on the detection of BCC in
dermoscopic images. However, to the best of our knowledge, there are a very limited
number of works devoted to detecting some of the dermoscopic features that dermatologists
employ to diagnose BCC, and none of these works focus on the detection of all the BCC
dermoscopic features. Specifically, Cheng et al. detected telangiectasia [27]. Kharazmi et al.
analyzed vascular structures to classify dermoscopic images into BCC or non-BCC [28,29].
Guvenc et al. [30] put their effort into detecting blue-gray ovoids, furthering the goal
of automatic BCC detection. They extracted 24 color features and concluded that color
features allow accurate localization of these structures. Cheng et al. used different types of
features (patient age, gender, lesion size and location, dermoscopic patterns) to classify BCC
vs. benign lesions with a neural network [31] Kefel et al. extracted measures of smoothness
and brightness in red, green, blue and luminance bands to detect semitranslucent and pink
blush areas in BCCs [32]. One of the problems encountered while trying to solve this issue
is the lack of databases with annotated data (weakly annotated or pixelwise annotated)
regarding the dermoscopic criteria found in BCC.
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Color is a very important feature to be considered in order to detect and classify
images of skin lesions [33–37]. In the particular case of detecting BCC dermoscopic criteria,
the color information of the image is crucial. To the best of our knowledge, papers found in
the literature that apply DL techniques to classify BCC do not analyze the color information
of the image, but they use RGB BCC images without any color processing as inputs to a
CNN. None of the papers found in the literature include a study of the influence of color
on the classification results.

Lessons learned from this literature review are summarized below:

• There are works in the literature that detect one or several BCC patterns, but none of
them detect all the BCC patterns that dermatologists employ to diagnose;

• There are works in the literature that employ deep neural networks (DNN) to classify
BCC versus other dermatological lesions, but attempts to ensure the clinical explain-
ability of the classification are limited;

• Color analysis is crucial to analyze pigmented lesions;
• Existing CAD tools for skin cancer detection lack a prospective study that validates

their results.

The authors have worked for more than two decades in skin lesion analysis. Specifi-
cally, most of their publications have been focused on burn images and dermoscopic images.
They have developed computer-aided diagnosis (CAD) tools for applications focusing on
the detection of both color and texture features [38–41].

Color and texture analysis of this type of image has been crucial in order to obtain
good classification and segmentation results. The authors have developed many different
methods that calculate new color and texture features [34,42,43].

Lately, they have also applied methods based on DL methodology [44,45], but they
came to the conclusion that the classification results attained with these methods are not
easy to explain and the optimum architecture to obtain the classification results is not easy
to determine. This is why, in the proposed method, together with the classification into
BCC or non-BCC, we provide an explanation of this classification.

In this paper, we apply the findings of color science to the detection of BCC dermo-
scopic features and the classification of the lesion into BCC and non-BCC. The intended
use of the proposed method is as a prioritization tool to evaluate all the images received at
the hospital by teledermatology, which have recently seen a significant increase due to the
high incidence of skin cancer, resulting in an overload for dermatologists.

1.2. Our Contributions

The main contributions of the paper to the state-of-the-art can be summarized as follows:

(1) Detection of all BCC dermoscopic features.

To the best of our knowledge, no other works in the literature have developed a
methodology to detect all the possible patterns that can be present in a BCC lesion.

(2) Clinically inspired classification of lesions into BCC/non BCC.

To the best of our knowledge, no other works in the literature have attained this
goal. The detection of BCC dermoscopic patterns has been used in the clinically inspired
classification of a lesion into BCC/non BCC. Physicians prefer to identify the patterns
present in the lesion, instead of only the binary classification into BCC/non BCC. That
is, they need an explainable diagnosis. Most of the works in the literature perform a
binary classification.

There are some works in the literature that, in other applications, have tried to explain
the classification by identifying the main areas of activation of the DNN. Differently, in our
approach, we try to explain the classification based on the clinical signs found in the image.

(3) For BCC dermoscopic feature classification, we propose to combine color and
texture analysis.
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New parameters extracted from a new, perceptually inspired color cooccurrence matrix
have been designed. To the best of our knowledge, no other works in the literature have
considered uniform color spaces and recent advances in color appearance models for the
computation of texture parameters extracted from a cooccurrence matrix.

(4) An annotated database of the main BCC dermoscopic features has been developed. A
software application, so that dermatologists can annotate the images, has been designed.

There are no public annotated databases of all the BCC dermoscopic criteria. In this
project, a new database composed of 692 BCC images and 2221 different patterns has
been collected.

2. Methods
2.1. Design Considerations

The first design consideration is related to the development of the annotated database.
Due to the high care load, physicians have limited time to annotate the database. Thus,
an annotation tool with a user-friendly interface has been designed, where physicians
select, with a simple mouse click, the pattern that they find in the lesion. This tool has been
installed in the computer room of the Dermatology Unit at Hospital Universitario Virgen
Macarena, Seville (Spain).

Due to the small database, a DNN trained exclusively with the BCC pattern images did
not attain good results. Thus, it was decided to add color and texture features to improve
the performance.

On the other hand, a conventional machine learning tool based only on color and
texture features was also tested. However, a DL approach that combined image and color
and texture information improved the classification results.

The drawbacks of DL are the high computational cost and the requirement of a
large database. The first problem was overcome with a computer equipped with a high-
performance GPU. The second problem was overcome with transfer learning and by adding
color and texture handcrafted features, as explained above.

2.2. Database

The first problem encountered is the limited public databases with BCC images. In
the challenges of 2018 and 2019 organized by the International Skin Imaging Collaboration
(ISIC) project, a set of 514 and 3323 BCC dermoscopic images was made available, respec-
tively [46–49]. In Figure 1, three examples of BCC images from ISIC Challenge 2018 are
shown. There are no public databases with the segmentation of the different patterns that
can be found inside a BCC lesion.
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Figure 1. ISIC BCC image samples (Challenge 2018).

In order to collect a database composed of images representing BCC dermoscopic
structures, we have developed a user-friendly program that has been installed on computers
located at the Hospital Universitario Virgen Macarena, Seville, Spain. Using this software,
the experts have been able to manually segment 256 × 256 pixel images, where one or more
patterns are presented. As this is a tedious task, such a software tool can be helpful and
time-saving. Images were collected during 9 months approximately. All the BCC images
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used in the evaluation have been excised and biopsied. The approximate time interval
between the dermatoscopic image acquisition and the dermatologist’s diagnosis was less
than 10 days. The biopsy was performed less than 90 days from the image acquisition.
The eligibility criterion for selecting BCC cases was patients with a BCC diagnosis in
teledermatology consultation, and subsequently confirmed by biopsy. Patients belonged
to the Andalusian Health System and attended medical centers assigned to the area of
influence of Hospital Universitario Virgen Macarena, Seville (Spain). The inclusion criterion
was an age over 18 years (non-pediatric).

All the lesions that were not BCC were extracted from the HAM10000 database,
where more than 50% of lesions have been confirmed by pathology, while the ground
truth for the rest of the cases was either follow-up, expert consensus or confirmation by
in vivo confocal microscopy [49]. Most non-BCC lesions were pigmented benign keratosis,
but other non-BCC lesions have been chosen as well to build the non-BCC database
(nevus, lentigo, seborrheic keratosis, actinic keratosis, melanoma, squamous cell carcinoma
and hemangioma).

In Figure 2, examples of the different patterns that can be found in BCC lesions
extracted with the developed software tool are shown. All of them are positive criteria,
except for the pigment network, which represents a negative criterion. In Table 1, the
number of images for each pattern in the dataset is presented. In total, in the database,
there are 692 BCCs and 671 non-BCC images.
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Figure 2. Top row, from left to right: telangiectasia, multiple B/G globules, ulceration and pigment
network; bottom row: spoke-wheel, blue-gray ovoids and maple leaf.

Table 1. Number of images for each pattern in the database.

Number of Occurrences

Pigment Network 614
Ulceration 352

Blue-Gray Ovoid Nests 338
Multiple B/G Globules 150

Maple Leaf 177
Spoke-Wheel 64

Arborizing Telangiectasia 526

In order to overcome the limitations imposed by our small database, data augmenta-
tion was performed. The number of images in the training database has been multiplied by
4 (from 1371 images to 5484). The transformation applied to each image consisted of 90◦,
180◦ and 270◦ rotations and random horizontal flipping and vertical flipping.
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As stated by Barata et al. [16], the features extracted by CNNs are color-sensitive,
confirming the findings of Mahbod [50], who showed that color normalization has a
positive impact on the performance of a CNN. However, in our case, as the images have
been taken under the same conditions, color normalization has not been necessary.

We have considered that performing a color transformation for data augmentation
should not be applied when dealing with medical images whose diagnosis is based on color.

2.3. Color Processing

In this paper, a color analysis is applied in order to test how color influences the
classification of BCC lesions. For this purpose, an analysis of the main colors present in a
lesion is performed. Different color spaces and color distance metrics are tested.

2.3.1. Uniform Color Spaces and Perceptual Color Differences

Uniform color spaces are color systems where Euclidean distances correlate well with
perceived color differences. In 1976, the Commission Internationale de l’Eclairage (CIE)
standardized two color spaces, L*u*v* and L*a*b*, with the aim of providing a tool to
measure color differences perceived by human observers [51].

The mathematical definition of the CIELAB color difference between two colors, with
color coordinates

(
L∗1 , a∗1 , b∗1

)
and (L∗2 , a∗2 , b∗2), is

∆E∗ab = [(L∗2 − L∗1)
2 + (a∗2 − a∗1)

2 + (b∗2 − b∗1)
2]

1/2
=
[
∆L∗2 + ∆a∗2 + ∆b∗2

]1/2
(1)

The unsatisfactory uniformity of the CIE L*a*b* space prompted researchers to investi-
gate better color difference formulas and new color systems.

CIE color systems can accurately predict whether two colors will match for an average
observer, but cannot provide information about the color appearance of these stimuli.
Colors, usually, do not appear isolated in a scene, and the color appearance is strongly
affected by the viewing conditions and the surroundings of color stimuli [52]. In this work,
the color appearance of the different regions present in a lesion is targeted for analysis. Thus,
a color appearance model is applied in this analysis. Specifically, the recent CIECAM16
color appearance model, recommended by CIE to replace CIECAM02, is used [53].

CIECAM16 needs as inputs the X and Y coordinates of the stimuli from XYZ color
space, the color coordinates of the illuminant and parameters about the viewing surround-
ings and background. Then, it performs an illuminant and color adaptation and it obtains
the following color appearance correlates: lightness J, chroma C, hue composition H, hue
angle h, colorfulness M, saturation s and brightness Q [53]. Following the color appearance
terminology, brightness is the attribute of a visual sensation according to which an area
appears to emit more or less light, and lightness is the brightness of an area judged relative
to the brightness of a similarly illuminated area that appears to be white or highly trans-
mitting. Colorfulness is the attribute of a visual sensation according to which the perceived
color of an area appears to be more or less chromatic; chroma is the colorfulness of an area,
judged as a proportion of the brightness of a similarly illuminated area that appears white
or highly transmitting; and saturation is the colorfulness of an area judged in proportion
to its brightness. Hue is the attribute of a visual sensation according to which an area
appears to be similar to one of the perceived colors—red, yellow, green and blue—or to a
combination of two of them. Hue composition describes the perceived hue in terms of the
percentages of two of the unique hues, whereas the hue angle describes the perceived hue
as a quantity between 0◦ and 360◦ [52].

From this color appearance model, a uniform color space, CAM16-UCS, can be defined.

J′ =
1.7J

1 + 0.007J
(2)

M′ = ln
1 + 0.0228M

0.0228
(3)
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a′ = M′ cos(h) (4)

b = M′ sin(h) (5)

The color difference between two samples can be computed as the Euclidean distance
between them in CAM16-UCS,

∆E′ =
[
∆J′2 + ∆a′2 + ∆J′2 + ∆b′2

]1/2
(6)

For more information about the CIECAM16 color appearance model, please refer to
Appendix A of Li et al. [53].

2.3.2. Perceptual Clustering and Relevant Color Identification

In order to improve and facilitate the learning process of the DNN classifier, we
propose to introduce, as additional information, the main colors present in the lesion. Due
to the small database, we consider that the training process might be facilitated through
the introduction of the significant colors of the dermoscopic patterns.

Quantization of the colors of the images involves the election of a clustering algorithm,
a color space and a distance metric. The use of Euclidean distances in uniform color spaces
provides a perceptual clustering—that is, colors that are perceived as similar by a human
observer will be assigned to the same cluster.

The K-means algorithm is the most popular partitional clustering algorithm [54].
When the distance metric in the partitioning space is Euclidean, cluster centers coincide
with geometric centers (centroids). Thus, the updating of the centroids is trivial. However,
when using non-Euclidean distance formulae, the updating of cluster centers requires
specific algorithms to find them. As the color spaces utilized in this paper are perceptually
uniform, color clustering employing the Euclidean distance is the most adequate to perform
a perceptual clustering.

Identification of the main colors present in each pattern is performed in two steps:

(1) In an initial step, a color clustering is performed for all the training images for each
BCC dermoscopic pattern. The cluster centers are initialized randomly. After this step,
18 color centroids for each pattern are obtained—that is, a total of 126 color centroids
are determined.

(2) Many color centroids from different patterns are very similar. For this reason, in a
second step, two centroids are merged if their distance is below a threshold. This
threshold is automatically adjusted so that 20 color centroids are retained at the end.

Figure 3 shows the most representative colors of each BCC dermoscopic pattern in
RGB color space.
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In Figure 4, an example of the quantization into the main BCC representative colors
is presented. As can be observed in Figure 4, the pink color detected in the RGB color
quantization does not match exactly with the pink color in the original image. Some pink
regions in the original image are assigned to a gray centroid in the RGB quantization. These
problems are observed in the two uniform color spaces, CIECAM16 and CIELAB. Both of
them preserve well the color appearance of the image.
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Figure 4. Color quantization in different color spaces. (a) Original image. (b) Image quantized in
RGB color space (20 colors). (c) Image quantized in L*a*b* color space (18 colors). (d) Image quantized
in CIECAM16-UCS (18 colors).

2.4. Texture Analysis

In the analysis of BCC patterns, texture plays an important role. Thus, the intro-
duction of texture features as additional information in the neural network could help in
the classification.

The gray-level cooccurrence matrix (GLCM) is a very useful tool in texture analysis,
because it is based on an estimation of second-order gray-level statistics [55] (A GLCM
defines the frequency of the cooccurrence of two gray levels at a given relative location
in an image. Specifically, defining a gray level i, in a particular position, and gray level j,
at a particular spatial relationship with the first one, GLCM provides an estimate, Pij, of
the probability of having pixel values i and j in these relative positions. However, some
authors [56,57] have demonstrated that the introduction of color information facilitates the
classification of color texture.
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In this paper, two different methods to combine color and texture have been investigated:

(1) GLCM applied to the L* channel in the uniform color space L*a*b* along with color
information, introduced to the network via the image quantized into the main col-
ors. The L* channel represents the perceived relative brightness, and, thus, spatial
distribution information can be captured with GLCM in L*.

(2) A new color cooccurrence matrix (CCM) applied to the color-quantized images ac-
cording to color appearance information. The cooccurrence of the main colors present
in the image is analyzed. As 20 main colors are detected, a matrix of 20 × 20 is ob-
tained. For each element in the matrix, the probability of cooccurrence of color index
i and color index j, Pij in a particular pair of relative spatial positions, is estimated.
In this case, when the different parameters extracted from the cooccurrence matrix
are calculated, color information and color distances are taken into account. Instead
of calculating differences such as |i− j|, where i and j are the color indexes of the
quantized image, color differences, ∆E, between a color with index i, Ci and a color
with index j, Cj, are calculated (∆E is defined in Equations (1) and (6) for L*a*b* and
CAM16-UCS color spaces, respectively). Thus, the main parameters extracted from
this cooccurrence matrix are calculated as follows:

Homogeneity H =
20,20
∑
i,j

Pij

1+(∆E(Ci ,Cj) )2

Mean µ =
20,20
∑
i,j

CiPij

Variance σ2 =
20,20
∑
i,j

(∆E(Ci, µi) )
2Pij

Correlation ρ =
20,20
∑
i,j

∆E(Ci ,µi)∆E(Cj ,µj)√
σ2

i σ2
j

Pij

Entropy S =
20,20
∑
i,j
−Pij ln

(
Pij

)

Homogeneity measures the spatial closeness of the distribution of elements in the
CCM to the diagonal. The CCM mean coincides with the image mean. CCM variance is a
measure of the contrast between a pixel and its neighbors. Correlation is a measurement
of how a pixel correlates to its neighbor across the entire image. Entropy is a measure of
variability and it is 0 for a constant image.

In this sense, perceptual color differences are taken into account, and a new color cooc-
currence matrix has been defined. Cooccurrence matrix parameters are color perception-
adapted because, in all these parameters, perceptually uniform color differences, ∆E,
are applied.

Texture information is then employed in a conventional machine learning module
that is combined with the deep learning architecture. Two different configurations of this
machine learning module are tested:

(1) The inputs to the module are the GLCM parameters calculated from the L* channel;
(2) The inputs to the module are the new CCM parameters.

Both architectures are described in Section 2.5, Test 3.

2.5. Classification

For the classification into the different BCC patterns, three different architectures are
proposed. These architectures employ the convolutional layers of a deep convolutional
network, fully connected layers optimized for this application and a multilayer perceptron
to concatenate the outputs of the different blocks, as shown in Figures 5 and 6.
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To choose the convolutional layers, different neural networks were tested: Inception
V3, Vgg16, ConvNet and EfficientNetB0. VGG16 obtained the best classification, so the
VGG16 neural network has been chosen [58]. Specifically, the first convolutional layers
have been pre-trained with the ImageNet dataset [59] and these layers have been employed
as building blocks in the different architectures proposed.

Subsequently, new fully connected layers (FCL) designed specifically for this problem
have been added. These FCLs, along with the last convolutional layers, were fine-tuned for
this specific problem. The number of neurons of these FCLs has been optimized to obtain
the best classification results.

2.5.1. Architecture 1: Classification with Original RGB Images

In the first scenario, the inputs to the CNN were the original RGB images (256 × 256
pixel images, where one or more patterns are present). The images were weakly annotated
by specialists. The CNN in this architecture consists of the convolutional layers of a VGG16
and one fully connected layer.

2.5.2. Architecture 2: Classification with Original RGB Images along with Color-Quantized
Images in Different Color Spaces (Dual Classification)

In the dual configuration, the original RGB image and the color-quantized one are the
inputs to the convolutional layers of two VGG16 CNNs, respectively, followed by one fully
connected layer, as shown in Figure 5. The outputs of the two CNNs are then concatenated
and feed a multilayer perceptron (MLP) classifier.

2.5.3. Architecture 3: Classification with Original RGB Images, Color-Quantized Images in
Different Color Spaces and Texture Features (Triple Classification)

In an attempt to overcome the problems of a small database, we introduce a conven-
tional machine learning module, where texture features are extracted. The classification
architecture is described in Figure 6. The texture features used in this test are described
in Section 2.4. Thus, two tests have been performed. In the first triple configuration test,
the GLCM texture features were calculated. In the second triple configuration test, the
CCM texture features were computed. Before concatenating them with the dual classifi-
cation module, the texture descriptors pass through an MLP classifier. The architecture
of this MLP has been optimized by classifying the training images exclusively with these
texture parameters.

As multiple BCC dermoscopic features can be found in the same image, the three
proposed architectures have been trained as follows. A common architecture with 7 neurons
in the last layer, corresponding to the 7 BCC patterns given in Table 1, was utilized. Each
neuron in this last layer provides a probability, which is thresholded to provide the final
classification. The area under the curve (AUC) is determined by varying the threshold.
This network was trained with binary cross-entropy loss to take into account that multiple
classes can be assigned to the same image.

2.5.4. Classification of BCC and Non-BCC

According to Peris et al. and Menzies et al. [2,25,60], dermoscopic criteria for BCC are
the absence of brown reticular lines (pigment network) together with the presence of any
of the following 6 dermoscopic features: telangiectasia, ulceration, blue-gray ovoid nests
and globules, leaf-like areas, spoke-wheel areas and clods.

Thus, in the proposed algorithm, once these 7 dermoscopic features have been identi-
fied, all the lesions are classified into BCC or non-BCC following this clinical criterion.

2.6. Description of the Hardware and Software Used

The proposed method has been implemented in a computer with an Intel Core i9 with
a Nvidia Titan RTX 24GB GPU.



J. Imaging 2022, 8, 197 12 of 20

The code corresponding to the algorithms described in this paper can be found at
https://github.com/ManuelL4z0/dermaBCC (accessed on 7 July 2022). The software has
been developed with Python 3.8.5, the Anaconda 4.9.2 environment and Spyder 4.1.5.

3. Results

A summary of the flow diagram followed by the participants in the tests conducted in
this work is presented in Figure 7.
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The four tests carried out are as follows:
Test 1: Architecture 1 is used with the original RGB images as inputs. The classifica-

tion’s objective is to classify the dermoscopic patterns present in the lesions.
Test 2: Architecture 2 is used with the original RGB images and the color-quantified

images as inputs. The classification’s objective is to classify the dermoscopic patterns
present in the lesions.

Test 3: Architecture 3 is used, where the inputs are the original RGB images, the
color-quantified images and the texture features extracted from the cooccurrence matrix
as inputs. The classification’s objective is to classify the dermoscopic patterns present in
the lesions.

Test 4: Classification of the images into BCC and non-BCC lesions. If one or more BCC
patterns are detected in the images using one of the above tests, the image is classified as
BCC. If a pigment network pattern or no pattern is detected using one of the above tests,
the image is classified as non-BCC.

For the training of the CNNs, a batch size of 32 was used. The learning rate was
adaptive and the optimization algorithm was AdamGrad. The loss function was the
binary cross-entropy.

Table 2 provides an analysis of how the information about the distribution of colors
in the image influences the final classification. To this aim, in Test 1, whose results are
shown in the first row, the network was fed exclusively with the original images. The
rest of the rows show the classification results when, along with the original image, the
quantized image with the distribution of the main colors was introduced as input to the
neural network. Three different color spaces were analyzed.

As shown in Table 2, the configuration of Test 1 attained poor results. In this regard,
sensitivity of 0.48 is achieved for the spoke-wheel dermoscopic features and specificity
under 0.7 is attained for three dermoscopic features.

When the configuration of Test 1 is compared to Test 2, the best classification results are
attained with the dual network when it is fed with the original image plus the CIECAM16-
quantized image, which improves the AUC obtained with CIELAB quantization for all
the BCC dermoscopic features except for spoke-wheel. The poor results obtained for
spoke-wheel and multi-globules, with AUC under 0.8, can be explained by the limited
training data available for these BCC dermoscopic features. In the same way, the sensitivity
obtained for these dermoscopic features is poor, which can be explained by the class
imbalance present in the database.

https://github.com/ManuelL4z0/dermaBCC
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Table 2. Evaluation results for Test 1 and Test 2 classifications. SPEC: specificity; SENS: sensitivity;
AUC: area under the curve.

SPEC SENS AUC

Original RGB

Pigment network 0.89 0.91 0.95

Ulceration 0.74 0.87 0.87

Ovoid nest 0.61 0.83 0.77

Multiple globules 0.69 0.66 0.74

Maple leaf 0.69 0.76 0.79

Spoke-wheel 0.90 0.48 0.83

A. telangiectasia 0.71 0.88 0.88

Average 0.75 0.77 0.83

Dual
original + RGB

quantization

Pigment network 0.95 0.97 0.99

Ulceration 0.82 0.70 0.85

Ovoid nest 0.70 0.68 0.77

Multiple globules 0.74 0.63 0.75

Maple leaf 0.86 0.72 0.86

Spoke-wheel 0.95 0.36 0.88

A. telangiectasia 0.77 0.79 0.85

Average 0.83 0.69 0.85

Dual
original +
CIELAB

quantization

Pigment network 0.94 0.95 0.98

Ulceration 0.81 0.86 0.91

Ovoid nest 0.65 0.73 0.76

Multiple globules 0.60 0.68 0.71

Maple leaf 0.78 0.72 0.82

Spoke-wheel 0.84 0.73 0.85

A. telangiectasia 0.73 0.88 0.87

Average 0.77 0.79 0.84

Dual original +
CIECAM16

quantization

Pigment network 0.95 0.96 0.98

Ulceration 0.86 0.79 0.92

Ovoid nest 0.71 0.76 0.80

Multiple globules 0.65 0.72 0.77

Maple leaf 0.69 0.78 0.83

Spoke-wheel 0.80 0.61 0.78

A. telangiectasia 0.75 0.87 0.88

Average 0.78 0.78 0.85

As described in the Materials and Methods section, due to the small number of training
images, it was considered that the classification results could be improved if texture hand-
crafted features were introduced to the classifier along with the image. In the first few
rows of Table 3, results obtained when the handcrafted features introduced to the classifier
were GLCM parameters extracted from the lightness component, L*, are shown. In the last
few rows of Table 3, the handcrafted features introduced to the network are the proposed
CCM features.
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Table 3. Evaluation results for Test 3 classification SPEC: specificity; SENS: sensitivity; AUC: area
under the curve.

SPEC SENS AUC

Triple
original +
CIELAB

Quantization +
GLCM L*

Pigment netw. 0.92 0.99 0.99

Ulceration 0.80 0.82 0.90

Ovoid nest 0.71 0.68 0.80

Multiple globules 0.78 0.77 0.86

Maple leaf 0.77 0.69 0.81

Spoke-wheel 0.72 0.86 0.89

A. telangiectasia 0.72 0.85 0.87

Average 0.77 0.81 0.87

Triple
original +

CIECAM16
quantization +

GLCM L*

Pigment netw. 0.97 0.97 0.98

Ulceration 0.76 0.81 0.87

Ovoid nest 0.60 0.88 0.79

Multiple globules 0.78 0.79 0.86

Maple leaf 0.80 0.77 0.85

Spoke-wheel 0.79 0.71 0.89

A. telangiectasia 0.73 0.79 0.89

Average 0.78 0.82 0.88

Triple
original +
CIELAB

quantization+
CIELAB CCM

Pigment netw. 0.98 0.97 0.99

Ulceration 0.82 0.75 0.89

Ovoid nest 0.74 0.84 0.86

Multiple globules 0.78 0.68 0.80

Maple leaf 0.78 0.68 0.85

Spoke-wheel 0.89 0.97 0.96

A. telangiectasia 0.76 0.87 0.91

Average 0.82 0.82 0.89

Triple
Original +

CIECAM16
quantization+
CIECAM 16

CCM

Pigment netw. 0.98 0.97 0.99

Ulceration 0.86 0.92 0.94

Ovoid nest 0.85 0.83 0.91

Multiple globules 0.79 0.87 0.89

Maple leaf 0.72 0.82 0.82

Spoke-wheel 0.87 0.93 0.96

A. telangiectasia 0.68 0.99 0.91

Average 0.82 0.90 0.92

As can be observed in Table 3, the introduction of GLCM parameters to the classi-
fier improves slightly the classification results. Again, when CIECAM16 quantization is
employed, the results are slightly better.

Another important observation is that CCM parameters improve the classification.
First, the AUC is over 0.8 for all BCC feature classifications when CCM features are
applied. Secondly, the sensitivity, specificity and AUC are higher than those obtained
with GLCM parameters.

Finally, in Table 4, results when classifying all the lesions into BCC versus non-BCC
are shown, wherein the BCC dermoscopic features have been estimated with the triple
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network and CCM features. As can be observed, the best results are attained when color
differences are estimated in CIECAM16, achieving sensitivity of 0.9934. Figure 8 shows the
confusion matrix of the classification into BCC versus non-BCC.

Table 4. Results of the classification into BCC versus non-BCC. ACC: accuracy; PPV: positive
predictive value; SPEC: specificity; SENS: sensitivity.

ACC PPV SPEC SENS

CIELAB 0.9685 0.9789 0.9703 0.9673

CIECAM16 0.9699 0.9527 0.9423 0.9934
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4. Discussion

This work is focused on the detection of specific patterns belonging to BCC. Given
the presence or absence of these patterns, dermatologists diagnose BCC. In this sense, this
work tries to emulate the dermatologist’s assessment in order to detect BCC.

To the best of our knowledge, no other work in the literature detects all the BCC
dermoscopic clinical features that clinicians use to diagnose BCC lesions. There are some
works focusing on the detection of one or several dermoscopic criteria [29,61], but none of
them use them to give an explainable classification into BCC and non-BCC.
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Most of the works found in the literature classify skin lesions into several diseases, in-
cluding BCC as one of these diseases. Usually, they employ conventional machine learning
algorithms [62,63] or deep learning-based methods [10,64]. These methods do not provide
an explanation of this classification, which could assist the physician in their assessment.

Color is one of the main attributes on which physicians base their diagnosis of skin
lesions. Different authors have employed color features to classify skin lesions. We demon-
strate that the introduction of the spatial distribution of the main colors present in the
image, i.e., a quantized image, improves the classification results compared to the results
using only the original images (AUC = 0.85 vs. 0.83). It should be noted that this color
quantization is perceptual, in the sense that colors that are perceptually similar have been
grouped within the same color cluster.

In a recent paper, in a prospective study Sies et al. compared a conventional machine
learning method with a CNN to classify skin lesions [65]. They concluded that the CNN
method outperformed methods based on handcrafted features. However, in this paper, we
demonstrate that the addition of handcrafted features to a CNN architecture can improve
the results, especially when the number of training samples is small. Specifically, an AUC
equal to 0.92 has been achieved, versus an AUC equal to 0.85 when the classifier is a CNN
architecture whose input is exclusively the original image.

Different authors have demonstrated that color–texture features outperform texture
features [56]. Thus, the investigation of new color–texture features is of great interest
in color image classification. In this paper, new color–texture features based on a color
cooccurrence matrix resulting from the perceptually quantized color image are proposed.
The improvement of this proposed color cooccurrence matrix (CCM) versus the gray-level
cooccurrence matrix (GLCM), even when color information has been previously introduced
to the network, has been demonstrated (AUC = 0.92 vs. 0.88).

Finally, the classification into BCC and non-BCC based on the patterns found in the
lesions has been performed. The high classification rate obtained (SE = 0.99) demonstrates
that a classification based on the clinical diagnostic criteria can attain very good results. In
addition, this classifier provides an explainable classification to the clinician.

In this paper, the STARD 2015 updated list of essential items for reporting diagnostic
accuracy in studies has been followed [66].

4.1. Future Plans

The proposed work shows promising results. However, the small database has limited
the quality of the results. Thus, we are working on a new version of the annotation software
tool with the ability of creating segmentation masks, which will facilitate and accelerate
the annotation task and, consequently, will allow the database to increased. This tool will
provide not only a weakly annotated database, but also the location of the BCC feature
within the image.

If the database keeps improving and growing, the methods shown should also increase
in their classification capability, making easier and more profitable the integration with
the current teledermatology system. If it were to become operative, as the amount of BCC
cases processed at Hospital Universitario Virgen Macarena is around 300 in a month, the
algorithm could become more and more efficient and generalized as time goes by.

A prospective study is intended to be carried out. The developed tool will be installed
in the computers of the hospital. The tool will be employed to evaluate all the images
received at the hospital by the teledermatology team, and the classification results will
be compared with the dermatologist’s diagnosis and with the clinical judgement of the
general practitioner who acquires the dermoscopic image at the primary health center. At
the Virgen Macarena Hospital and its healthcare area, involved in this project, there are
315 dermatology teleconsultations in a month on average, and 100 of these teleconsultations
result in a BCC diagnosis. This can serve as an estimation of the amount of data that could
be available for a prospective study.
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4.2. Strength and Limitation

In summary, the main strength of this study is that it provides a classification ac-
companied by an explanation, which includes information about the BCC dermoscopic
features found in the lesion. Physicians prefer an explained classification rather than a
binary classification.

On the other hand, the main limitation is that all the results have been obtained with
images collected retrospectively. Most of the results published in the literature are based
on retrospective studies. Thus, although the accuracy of computer-aided diagnosis for
skin lesion detection is comparable to that of experts, the real-world applicability of these
systems is unknown.

5. Conclusions

In this paper, we propose a DNN architecture to detect the dermoscopic patterns
that clinicians employ to discriminate between BCC and non-BCC skin lesions. In this
architecture, together with the original image, a quantized color image and color–texture
handcrafted features are introduced as inputs to the network, improving the classification
results. The quantized color images have been quantized according to perceived color
differences obtained from a uniform color space derived from CIECAM16 [53]. Color–
texture handcrafted features are new, perceptually inspired color features derived from a
color cooccurrence matrix.

The improvement achieved with this methodology over a DNN fed only with original
RGB images is the following: the specificity parameter has increased from 0.75 to 0.82, the
sensitivity parameter has increased from 0.77 to 0.90, and the AUC has increased from 0.83
to 0.92.

Finally, when the lesion is classified into BCC or non-BCC based on the dermoscopic
features found, sensitivity of 0.9934 is achieved.

Thus, this classification can provide an accurate and explainable classification to
the physician.
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