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A B S T R A C T

In this paper, two often-employed alternatives to the semi-recursive method are described and
compared in terms of velocity transformation. The text offers a simplified way to understand the
theory behind the two semi-recursive approaches. Focusing on planar cases, particular attention
is given to reference and joint coordinates. Consequently, a multibody modeling analyst that
is familiar with global formulations can easily extend his/her knowledge to the semi-recursive
approach.

Using semi-recursive methods, the open loops are formulated with a reduced set of
coordinates, and the constraint equations are avoided in the dynamic equations of motion.
Accordingly, computationally efficient forms of matrices and vectors will be generated to
represent the dynamic equations of motion, which leads to enhanced numerical efficiency.
The difference between the two studied alternatives is the definition of the reference point
(i.e., the origin of the body frame) used to define the reference coordinates of the body. The
reference point could be either (1) rigidly attached to the moving body for semi-recursive I
or (2) coincident with the origin of the global frame for semi-recursive II. The latter leads to
simple expressions of velocity transformation.

. Introduction

In computational dynamics, a number of formalisms have been introduced to analyze the dynamics of mechanical systems.
mong these formalisms, multibody system dynamics (MSD) offers a reliable, and easy-to-use tool to analyze the dynamics of
omplex systems. It is a systematic approach that can be applied to a wide range of problems [1].

hy semi-recursive methods?

As the word multibody implies, the approach is developed, in particular, to describe systems consisting of multiple bodies [2]. The
ultibody system dynamics approach is effective at analyzing the dynamics of bodies that interact through mechanical joints. In fact,

oints are a fundamental aspect of a multibody dynamics system. They control and limit relative movement between interconnected
odies. In general, a system of interconnected bodies can be described using global methods [3]. The set of coordinates that defines
bsolute translations and rotations of each body of the system is used in global methods. In the global formulations, joints are
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accounted for by employing constraint equations that couple dependent coordinates. This way, the movement of one body influences
the movement of other bodies based on joint interconnection types [4].

Semi-recursive dynamic algorithms are widely used in multibody applications. Their popularity is due to their numerical
fficiency, which makes them suitable for computationally critical applications such as real-time simulation [5]. The approach
as been implemented in commercial multibody software, such as RecurDyn, and has been successfully used in many practical
pplications. Joint coordinates are used between the bodies in semi-recursive methods [6,7]. When using the semi-recursive
pproach, it is often possible to synchronize computational time with actual time. This real-time simulation produces a number
f benefits as it allows the user, hardware, and/or software to be engaged with the multibody simulation [8]. Naturally, real-time
imulation requires that the methods used to solve the equations of motion and the hardware used are capable of carrying out the
omputation within a pre-defined time period. Therefore, the description of the equations of motion must be optimal for the system
nder investigation. Because the approach is often case dependent, it can be challenging to determine the most efficient multibody
pproach. However, it has been demonstrated that semi-recursive methods perform more efficiently than global approach when
system consists of a large number of bodies [9–11]. In addition, the semi-recursive method has proven to be faster than the

rticulated inertia method for the five-bar pendulum example in [12].

brief literature review of semi-recursive methods

To improve the computational efficiency of the multibody dynamics formulations, several authors from robotic fields developed
he fully recursive algorithm [13–15] and composite inertia method [16–18] to solve open loop systems. Both approaches are based
n using inverse dynamics to solve the recursive Newton–Euler formulation. Furthermore, using variational and vector calculus,
ae et al. [14,15,19] formulated the dynamic equations of motion with a minimal set of joint coordinates, which is well suited for
he parallel computation of open and closed loop systems. Employing the concept of velocity transformations, Jerkovsky [20] first
roposed the semi-recursive method for the dynamic formulation to transform Cartesian coordinates into joint coordinates. With
he semi-recursive method, the joints of the closed loops must be cut open to form the spanning tree. The joint reaction forces in the
pen loops are eliminated due to velocity transformations. Therefore, the differential and algebraic equations (DAE) and constraint
tabilization are not required in the open loop mechanism, which greatly reduces the complexity of the problem. Using the same
dea, different semi-recursive methods were proposed by Avello et al. [21], Negrut et al. [22], Kim [23] and Jalón et al. [24].
he main difference among those works is the location of the reference points (origin of body frame) that define the Cartesian
oordinates. The reference point is located at the body in [21–23] and at the origin of the global frame in [24]. In addition, a
ubsystem synthesis method in [23] has proven to be more efficient than the conventional recursive method for the dynamic analysis
f vehicle applications consisting of more than two suspension subsystems.

The closed loops in the semi-recursive method need to be handled by imposing a set of closure of the open-loop constraint
quations. Consequently, different constraint stabilization approaches can be used to fulfill the closure of the open-loop constraint
quations in semi-recursive methods at the position, velocity and acceleration levels. Among these stabilization approaches, coor-
inate partitioning [12,25], the penalty method [21,26], and augmented Lagrangian index-3 formulations with projections [9,11]
re actively used in the semi-recursive formulation.

otivation of educational purpose for semi-recursive methods

In terms of theoretical explanation, the design of student projects, and the manual of multibody software, the educational
iterature of multibody dynamics is extensive. The methods of teaching and applying multibody system are presented in [27]
or undergraduate, graduate and doctoral student levels. A variety of different issues that can be taught for multibody dynamics
raining of engineering students is explained in [28]. Later, [29] illustrates how to design specific courses on multibody systems
nd emphasizes the importance of software development. The multibody modeling of bicycle dynamics is introduced in [30]. In
he bicycle framework, a detailed derivation of a bicycle model for educational purposes is offered in [31]. A course to teach the
inematic and dynamic analysis of three-dimensional multibody systems based on natural coordinates and MATLAB programming
anguage is presented in [32,33]. [34] describes a multi-disciplinary project in the field of multibody system modeling and computer
imulation to educate undergraduate-level students. The educational software for teaching the kinematic analysis of planar and
patial mechanisms is described in the work of [35]. Each of above mentioned studies offers a unique viewpoint for enhanced
nderstanding of multibody system dynamics. This is important to ensure proper use of multibody system dynamics methods.

There are a large number of studies, textbooks, and book chapters related to semi-recursive approaches. However, the literature
vailable on semi-recursive approaches mainly explains the approach for spatial cases. As is well known, the spatial implementation
s often difficult as it involves rotations in three-dimensional space. Realizing a full understanding of the semi-recursive approach
s challenging, particularly for analysts without a history in multibody system dynamics. The available literature concerning semi-
ecursive approaches typically targets multibody researchers and doctoral level students. A good entry-level explanation that relates
emi-recursive approaches to the often-used global formulation does not exist. To address this missing aspect, this paper focuses
nly on simple planar cases and examines the nature of the physical interpretation of velocity transformation matrices for two
emi-recursive methods. In addition, the principle of virtual work is introduced to formulate the dynamic equations of motion,
hich can treat all coordinate systems generally.

This paper introduces an ‘‘original’’ semi-recursive approach as explained in the work of [3,21]. As there have been significant
2

evelopments since the publication of the book, the paper will also explain a recently introduced semi-recursive approach which is
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Fig. 1. A planar open loop system consists of two bodies that is constrained by one revolute joint and one prismatic joint. The kinematics are described in
erms of reference point coordinates.

ased on the intermediate body reference coordinates [24]. The rest of this paper is organized as follows: Section 2 introduces the
eview of two coordinates reduction methods. The recursive kinematics for semi-recursive I are presented in Section 3. Section 4
ntroduces a variant of semi-recursive II. Section 5 compares the kinematics of two semi-recursive methods through one open loop
xample. Section 6 studies the equations of motion for an open loop and the equations of motion for a closed loop with using both
f the semi-recursive methods introduced in Section 7. Finally, Section 8 provides a summary and conclusion.

. Review of coordinates reduction method

In the kinematics of a multibody system, the position, velocity and acceleration of each particle in the system are defined.
articles in a rigid body are assumed not to move relative to each other [4]. For this reason, describing their location with respect
o the global frame by introducing a body-specific frame of reference is advised. This body frame is a mathematical representation
ithout physical significance and can be located anywhere, even on non-material points of the body. Motion of the body frame

an be described via reference point coordinates. These coordinates determine the position of the reference point of the body with
artesian coordinates and a set of orientation coordinates of the body frame with respect to the global frame [3]. In planar cases,
he number of reference point coordinates can be computed as 3𝑛𝑏 (two Cartesian coordinates and one rotation angle for one body).
he designation ‘‘𝑛𝑏’’ signifies the number of the bodies.

Fig. 1 shows a planar open loop system that consists of two bodies. The first body is constrained by the ground using revolute
oint, and the second body is constrained by the first body using prismatic joint. The system is described via reference point
oordinates. In this case, the vector of reference point coordinates 𝐪 of the system consists of a total of six components:

𝐪 =
[

𝐑𝑇
1 𝜃1 𝐑𝑇

2 𝜃2
]𝑇 , (1)

here 𝐑1 and 𝐑2 are the position vectors of the body frames with respect to the global frame, 𝜃1 and 𝜃2 are the rotational angles,
hich describe the orientation of the body frames with respect to the global frame.

.1. Constrained kinematics

When using reference point coordinates, motion limitations due to joints in Fig. 1 are accounted for using a set of constraint
quations. The body 1 and the ground are connected via a revolute joint at point 𝑃 , and therefore the position vector of point 𝑃
emains the same for both body 1 and the ground while constrained by the revolute joint. In addition, the prismatic joint allows
nly relative translation between the two bodies along the prismatic joint axis. One constraint equation will eliminate the relative
3

otation between the two bodies, and another will eliminate the relative translation between the two bodies which is perpendicular
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to the prismatic joint axis [4]. Therefore, the constraint equations of the open loop system in Fig. 1 are written as a function of
reference point coordinates in a vector form as:

𝐂(𝐪) =
⎡

⎢

⎢

⎣

𝐑1 + 𝐮𝑃 − 𝐫𝑃
𝜃2 − 𝜃1 − 𝜃𝑐

(�̃�2𝐡1)𝑇 (𝐑1 + 𝐮𝑄 − 𝐑2 − 𝐮𝑆 )

⎤

⎥

⎥

⎦

= 𝟎, (2)

where 𝐫𝑃 is the position vector of revolute joint point 𝑃 , 𝐮𝑃 is the position vector of the joint point 𝑃 with respect to the origin of
body frame of body 1, 𝜃𝑐 is the constant rotation angle between two body frames, 𝐮𝑄 is the position vector of the joint point 𝑄 with
respect to the origin of body frame of body 1, 𝐮𝑆 is the position vector of the joint point 𝑆 with respect to the origin of body frame
of body 2, 𝐡1 is the unit vector that points in the direction of the prismatic joint axis as shown in Fig. 1, �̃�2𝐡1 represents one of the
two possible unit vectors that are perpendicular to the vector 𝐡1, the local representation of the vector 𝐡1 and the skew symmetric
matrix �̃�2 are given by as:

𝐡1 =
𝐮𝑆1 − 𝐮𝑄1
𝑙𝑄,𝑆

, �̃�2 =
[

0 −1
1 0

]

, (3)

where 𝐮𝑆1 and 𝐮𝑄1 are the local representation of vectors 𝐮𝑆 and 𝐮𝑄 with respect to body 1, and 𝑙𝑄,𝑆 is the distance between points
and 𝑆.
The velocity constraint equations are obtained by differentiating Eq. (2) with respect to time as:

�̇� = 𝐂𝐪�̇� = 𝟎, (4)

here 𝐂𝐪 is the constraint Jacobian matrix. It is written as follows:

𝐂𝐪 =
⎡

⎢

⎢

⎣

𝐈2 �̃�2𝐮𝑃 𝟎 𝟎
0 −1 0 1

−𝐡𝑇1 �̃�2 −𝐡𝑇1 (𝐑1 − 𝐑2 − 𝐮𝑆 ) 𝐡𝑇1 �̃�2 −𝐡𝑇1 𝐮
𝑆

⎤

⎥

⎥

⎦

, (5)

here 𝐈2 is the identity matrix with 2 × 2 dimensions. A more detailed derivation of the Jacobian matrix is given in Appendix A.
Since the number of kinematic constraint equations is less than the number of reference point coordinates, the set of reference

oint coordinates can be reduced as a function of a subset of the independent coordinates [4] using constraint kinematics. In this
ection, two different coordinate reduction methods are reviewed: (a) the coordinate partitioning method and (b) the semi-recursive
method. For the simplification, only scleronomic constraints are considered for open loops.

.2. Coordinate partitioning method

The Jacobian matrix 𝐂𝐪 from Eq. (5) has the full row rank in the example of Fig. 1, at least one nonsingular square submatrix
f 𝐂𝐪 will exist with the rank of 𝑛𝑐 [36]. To apply the coordinate partitioning method [36], the Jacobian matrix 𝐂𝐪 is partitioned
nto 𝐂𝐪𝑑 ∈ R𝑛𝑐×𝑛𝑐 and 𝐂𝐪𝑖 ∈ R𝑛𝑐×(3𝑛𝑏−𝑛𝑐 ), where 𝐂𝐪𝑑 is the dependent columns and 𝐂𝐪𝑖 is the independent columns of the Jacobian
atrix. The 𝑛𝑐 is the number of constraint equations. The velocity constraint equations from Eq. (4) can be rewritten as:

𝐂𝐪𝑑 �̇�𝑑 + 𝐂𝐪𝑖 �̇�𝑖 = 𝟎, (6)

here �̇�𝑑 is the dependent reference point velocities and �̇�𝑖 is the independent reference point velocities.
Therefore, the reference point coordinates can be reduced to a minimum number of independent coordinates at the velocity level

s follows.

�̇� =
[

�̇�𝑑
�̇�𝑖
]

=

[

−(𝐂𝐪𝑑 )−1𝐂𝐪𝑖

𝐈3𝑛𝑏−𝑛𝑐

]

�̇�𝑖 = 𝐇�̇�𝑖, (7)

here 𝐈3𝑛𝑏−𝑛𝑐 is an identity matrix with (3𝑛𝑏 − 𝑛𝑐 ) × (3𝑛𝑏 − 𝑛𝑐 ) dimensions and velocity transformation matrix 𝐇 relates the reference
oint velocities and independent reference point velocities. The velocity transformation matrix 𝐇 is written as:

𝐇 =

[

−(𝐂𝐪𝑑 )−1𝐂𝐪𝑖

𝐈3𝑛𝑏−𝑛𝑐

]

∈ R3𝑛𝑏×𝑛𝑐 . (8)

.3. Semi-recursive I

Semi-recursive I is another option that can reduce the size of the coordinates used to model the system. In semi-recursive I,
he closed loop system must be partitioned into several open loops. Contrary to reference point coordinates, a number and type of
oint coordinates describe the relative body motion at the joints under investigation. This is because joint coordinates only describe
otions that are kinematically admissible. Accordingly, the number of joint coordinates is equal to the number of degrees of freedom

f a multibody system in open loop multibody systems.
As shown in Fig. 2, the same open loop system as in Fig. 1 is expressed using joint coordinates. By accounting for kinematic

imitations due to the joints, the system can be described using joint coordinates as:
[ ]𝑇
4

𝐳 = 𝑧1 𝑧2 , (9)
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w

Fig. 2. Same open loop system as Fig. 1, but the kinematics are described in terms of joint coordinates.

here the joint coordinate 𝑧1 is associated with the revolute joint 𝑃 , defined using the angle measured from the 𝑋 axis of the global
frame to the 𝑋 axis of the body frame 1. Joint coordinate 𝑧2 is associated with the prismatic joint. It is a translation coordinate and
measured from the joint point 𝑄 to point 𝑆.

As can be seen in Fig. 2, the reference point coordinates for the system are expressed recursively as a function of the joint
coordinates as:

𝐪(𝐳) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐫𝑃 − 𝐮𝑃
𝑧1

𝐫𝑃 − 𝐮𝑃 + 𝐮𝑄 + 𝑧2𝐡1 − 𝐮𝑆
𝑧1 + 𝜃𝑐

⎤

⎥

⎥

⎥

⎥

⎦

. (10)

Differentiating the reference point coordinates from Eq. (10) with respect to time yields:

�̇�(𝐳, �̇�) = 𝐕�̇�, with 𝐕 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�2(𝐑1 − 𝐫𝑃 ) 𝟎
1 0

�̃�2(𝐑2 − 𝐫𝑃 ) 𝐡1
1 0

⎤

⎥

⎥

⎥

⎥

⎦

, (11)

where �̇� is the reference point velocities, �̇� is the relative velocities, 𝐕 is the velocity transformation matrix that relates the reference
point velocities and relative velocities. A more detailed derivation of the velocity transformation matrix is provided in Appendix A.

According to Eqs. (5) and (11), the following relationship can be obtained.

𝐂𝐪𝐕 = 𝟎, (12)

where the matrix 𝐕 is the null space of the Jacobian matrix of the constraints in Eq. (5).
Both coordinate reduction methods will lead to a minimal set of independent coordinates to define total system kinematic re-

sponse. However, some differences can be found when comparing the velocity transformation matrix for the coordinate partitioning
method in Eq. (8) and semi-recursive I in Eq. (11).

• The shortcoming of the coordinate partitioning method is that an incorrect selection of independent coordinates can lead to
an ill-conditioned or singular matrix [37] of the velocity transformation matrix 𝐇. For the example of the open loop in Fig. 2,
𝜃1 and 𝜃2 cannot be selected together as independent coordinates, according to Eq. (5), due to the singular square matrix 𝐂𝐪𝑑 .
Usually, this selection can be carried out manually or using Gaussian elimination with column pivoting [38]. But Gaussian
elimination might be computationally expensive.

• The velocity transformation matrix 𝐕 in semi-recursive I has a triangular structure with all zeros above the diagonal. It
is obtained directly without any factoring matrix operations, which greatly reduces the numerical effort. In addition, the
sparse part of matrix 𝐕 in semi-recursive I can lead to efficient computation, and it can be used for the subsequent matrix
5

operation [3].
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Since the coordinate partitioning method is not the focus of this paper, only the semi-recursive method is studied in the rest of
he work.

. Recursive kinematics for semi-recursive I

As explained earlier, the reference point coordinates for the open loop system can be related to joint coordinates using velocity
ransformations. In this way, the reference point velocities �̇� can be projected into a set of independent relative velocities �̇� [21].

�̇� = 𝐕�̇�. (13)

here the velocity transformation matrix 𝐕 can be obtained directly by taking the partial derivative of the reference point
oordinates with respect to the joint coordinates as follows.

𝐕 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐪1
𝜕𝑧1

𝜕𝐪1
𝜕𝑧2

⋯
𝜕𝐪1
𝜕𝑧𝑛𝑐

𝜕𝐪2
𝜕𝑧1

𝜕𝐪2
𝜕𝑧2

⋯
𝜕𝐪2
𝜕𝑧𝑛𝑐

⋮ ⋮ ⋱ ⋮
𝜕𝐪𝑛𝑏
𝜕𝑧1

𝜕𝐪𝑛𝑏
𝜕𝑧2

⋯
𝜕𝐪𝑛𝑏
𝜕𝑧𝑛𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R3𝑛𝑏×𝑛𝑐 , (14)

here it is assumed that the open loop system comprises 𝑛𝑏 rigid bodies and allows 𝑛𝑐 degrees of freedom. Clearly, the row
orresponds to the body and the column corresponds to the joint coordinates of the open loop system.

One advantage of semi-recursive I is that the matrix 𝐕 can be obtained on an element-by-element basis, using a parallel
omputation technique. In the following sections, the velocity transformation matrix 𝐕 is explained by means of recursive position
nd velocity problems.

.1. Semi-recursive I : revolute joint kinematics

Consider an open loop multibody system that comprises a base element and a branch with an arbitrary number of rigid bodies.
he position vector and rotation angle of the arbitrary body can be computed recursively starting from the base body to the branch.
ith body 𝑖 in Fig. 3 for example, two contiguous bodies 𝑖−1 and 𝑖 are connected by a revolute joint 𝐽𝑗 that constrains the relative

otation of body 𝑖−1 with respect to body 𝑖 in the direction of the revolute joint axis (perpendicular to the 𝑋𝑌 plane). The position
ector and rotation angle of previous body 𝑖−1 are presumed known. The reference point coordinates for body 𝑖 are described using
he reference point coordinates of the previous body and the joint coordinates as follows.

𝐪𝑖 =
[

𝐑𝑖−1 + 𝐚𝑖−1 + 𝐛𝑖
𝜃𝑖−1 + 𝑧𝑗

]

, with 𝐚𝑖−1 = 𝐫𝑗 − 𝐑𝑖−1, 𝐛𝑖 = 𝐑𝑖 − 𝐫𝑗 , (15)

here 𝐫𝑗 is the position vector of the revolute joint point 𝐽𝑗 , 𝐚𝑖−1 is the translational vector that goes from the origin of body frame
𝑖−1 to revolute joint point 𝐽𝑗 , 𝐛𝑖 is the translational vector that goes from the revolute joint point 𝐽𝑗 to the origin of body frame 𝑜𝑖,
𝑗 is the relative angle associated with revolute joint 𝐽𝑗 , which is measured from the 𝑋 axis of body frame 𝑖 − 1 to 𝑋 axis of body
rame 𝑖.

The time derivative of the reference point coordinates of Eq. (15) is given by:

�̇�𝑖 =
[

�̇�𝑖−1 + �̇�𝑖−1 �̃�2(𝐫𝑗 − 𝐑𝑖−1) + (�̇�𝑖−1 + �̇�𝑗 )�̃�2(𝐑𝑖 − 𝐫𝑗 )
�̇�𝑖−1 + �̇�𝑗

]

, (16)

here �̇�𝑖−1 is the time derivative of 𝐑𝑖−1, �̇�𝑖−1 is the angular velocity of body 𝑖 − 1, and �̇�𝑗 is the relative velocity.
Eq. (16) can be reorganized in a matrix manner as follows.

�̇�𝑖 = 𝐁𝑖−1
𝑖 �̇�𝑖−1 + 𝐕𝑗

𝑖 �̇�𝑗 , (17)

here �̇�𝑖−1 is the reference point velocities for body 𝑖 − 1, the matrix 𝐁𝑖−1
𝑖 is the transformation matrix associated with bodies 𝑖 − 1

nd 𝑖, and the vector 𝐕𝑗
𝑖 is the component of the velocity transformation matrix 𝐕 from independent to dependent velocities, which

ives the unit translational and rotational direction to the relative velocity �̇�𝑗 . Both are expressed as:

𝐁𝑖−1
𝑖 =

[

𝐈2 �̃�2(𝐑𝑖 − 𝐑𝑖−1)
𝟎 1

]

∈ R3×3, 𝐕𝑗
𝑖 =

[

�̃�2(𝐑𝑖 − 𝐫𝑗 )
1

]

∈ R3×1, (18)
6

here 𝐈2 is the identity matrix of 2 × 2 size.
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Fig. 3. Two bodies connected by revolute joints in the planar case. The kinematics are described in terms of reference point coordinates and joint coordinates.

Fig. 4. Two bodies connected by prismatic joints in the planar case. The kinematics are described in terms of reference point coordinates and joint coordinates.

3.2. Semi-recursive I : prismatic joint kinematics

As shown in Fig. 4, two contiguous bodies 𝑖 − 1 and 𝑖 are connected by a prismatic joint. The prismatic joint constrains the
relative translation of body 𝑖−1 with respect to body 𝑖 in the direction of the prismatic axis. Again, the reference point coordinates
or body 𝑖 are described as the function of joint coordinates as:

𝐪𝑖 =
[

𝐑𝑖−1 + 𝐚𝑖−1 + 𝑧𝑗𝐡𝑖−1 + 𝐛𝑖
𝜃𝑖−1 + 𝜃𝑐

]

, with 𝐚𝑖−1 = 𝐫𝑄 − 𝐑𝑖−1, 𝐛𝑖 = 𝐑𝑖 − 𝐫𝑆 , (19)

here joint coordinate 𝑧𝑗 is the translation coordinate associated with the prismatic joint. It is a signed distance and measured from
oint point 𝑄 to point 𝑆 along the direction of 𝐡𝑖−1. The 𝐡𝑖−1 is the unit vector that points in the direction of the prismatic axis, 𝐫𝑄
s the position vector of starting point 𝑄, and 𝐫𝑆 is the position vector of ending point 𝑆. All vectors are shown in Fig. 4.

The reference point velocities are computed as the time-derivative of the reference point coordinates of Eq. (19), which results
n the same formulation as Eq. (17). Matrix 𝐁𝑖−1 maintains the same form as Eq. (18), but the vector 𝐕𝑗 , which is the unit direction
7

𝑖 𝑖
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vector of body 𝑖 given by prismatic joint 𝐽𝑗 , is expressed as follows.

𝐕𝑗
𝑖 =

[

𝐡𝑖−1
0

]

∈ R3×1. (20)

To understand the derivation of velocity transformation matrix 𝐕, the revolute and prismatic joints in planar cases are considered
n Sections 3.1 and 3.2. The introduced procedure can be applied to more complex mechanical constraints, such as point-to-line
nd cam-follower constraints. A more detailed derivation can be found in Appendix B.

As explained in Eq. (17), the reference point velocity of body 𝑖 is expressed recursively in terms of the reference point velocity
f the previous body 𝑖−1 and the relative joint velocity between 𝑖−1 and 𝑖. The process of eliminating the reference point velocity

�̇�𝑖−1 in Eq. (17) can continue in the same manner with the help of the recursive relations. Finally, the vector of the generalized
global velocity for body 𝑖 arrives at the linear combination of matrix 𝐕𝑖 and the components of �̇�, as:

�̇�𝑖 = 𝐕𝑖�̇�, with 𝐕𝑖 =
[

𝐕1
𝑖 ⋯ 𝐕𝑛𝑐

𝑖
]

∈ R3×𝑛𝑐 , �̇� =
⎡

⎢

⎢

⎣

�̇�1
⋮
�̇�𝑛𝑐

⎤

⎥

⎥

⎦

∈ R𝑛𝑐×1, (21)

where 𝐕𝑖 is the base of the allowable velocities �̇�𝑖 and the components of �̇� are the coefficients of that base [3]. More detailed
information related to dimension reduction is explained in Appendix C.

The reference point accelerations can be written as the time derivative of Eq. (21), as:

�̈�𝑖 = 𝐕𝑖�̈� + �̇�𝑖�̇�, with �̇�𝑖 =
[

�̇�1
𝑖 ⋯ �̇�𝑛𝑐

𝑖

]

∈ R3×𝑛𝑐 , �̈� =
⎡

⎢

⎢

⎣

�̈�1
⋮
�̈�𝑛𝑐

⎤

⎥

⎥

⎦

∈ R𝑛𝑐×1, (22)

where �̇�𝑖 is the time-derivative of 𝐕𝑖, and �̈� is the vector of relative accelerations. The time derivative of 𝐕𝑗
𝑖 is expressed according

to the type of kinematic joints.

Revolute joint: �̇�𝑗
𝑖 =

[

�̃�2(�̇�𝑖 − �̇�𝑗 )
0

]

∈ R3×1,

Prismatic joint: �̇�𝑗
𝑖 =

[

�̇�𝑖 �̃�2𝐡𝑖−1
0

]

∈ R3×1.
(23)

4. Semi-recursive method II

With using semi-recursive methods, the dynamic equations for open loops are first formulated in reference coordinates.
Afterwards, those reference coordinates are projected onto a set of joint coordinates via velocity transformation. Normally, the
definition of reference coordinates depends on the location of the reference point. With different reference point locations, the
semi-recursive method can be classified into two groups.

• As explained in Section 2, the reference point of the body frame can be rigidly attached to the material point (including the
center of gravity) or non-material point of the moving body. This reference coordinate is referred to as the reference point
coordinate. In semi-recursive I , velocity transformation is used to project the reference point velocities onto relative velocities.

• In some cases, however, the reference point coincides with the origin of the global frame but is rigidly attached to the moving
body [24,39]. This reference coordinate is referred to here as the intermediate body reference coordinate. Therefore, velocity
transformation in semi-recursive II is used to project the intermediate body reference velocities onto relative velocities.

In the following paragraphs, semi-recursive II for planar cases is described in detail.

4.1. Reference point and intermediate body reference coordinates

In many practical cases, it is beneficial to locate the reference point of the body frame at the origin of the global frame. In
this paper, this body frame is called the intermediate body reference frame. The origin of the intermediate body reference frame
coincides with the origin of the global frame. The orientation of the intermediate body reference frame is rigidly attached to the
moving body, which has the same orientation as the body frame [24]. For this reason, all bodies in the mechanical system share the
same reference point over time. In such cases, the recursive kinematics for contiguous bodies is simpler than those obtained when
the reference point is rigidly attached to the body.

To understand the relationship between reference point coordinates and intermediate body reference coordinates, the kinematics
of the intermediate body reference frame at different locations is introduced below in Fig. 5. As depicted in Fig. 5(a), the origin of
the intermediate body reference frame 𝑜′𝑖 is located at the material point of the moving body 𝑖. According to Eq. (41), the position
and velocity vectors of the point 𝑜′𝑖 with respect to the origin of the global frame is expressed as:

𝐬𝑖 = 𝐑𝑖 + 𝐀𝑖𝐭𝑖,
̇ ̃

(24)
8

�̇�𝑖 = 𝐑𝑖 + �̇�𝑖𝐈2𝐀𝑖𝐭𝑖,
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Fig. 5. Kinematics of intermediate body reference frame at different locations.

where 𝐬𝑖 is the position vector of reference point 𝑜′𝑖 with respect to the origin of the global frame 𝑂, �̇�𝑖 is the time derivative of
vector 𝐬𝑖, and 𝐭𝑖 is the position vector of reference point 𝑜′𝑖 with respect to body frame in the body frame 𝑖.

However, this intermediate body reference frame can also be located at a non-material point of the moving body, such as the
rigin of the global frame, as shown in Fig. 5(b). In this case, the position vector of reference point 𝐬𝑖 is a null vector, and the local

position vector 𝐭𝑖 can be expressed as:

𝐭𝑖 = −𝐀𝑇
𝑖 𝐑𝑖. (25)

Substituting 𝐭𝑖 from Eq. (25) into Eq. (24) results in the following.

�̇�𝑖 = �̇�𝑖 + �̇�𝑖 �̃�2𝐑𝑖, (26)

The intermediate body reference velocities are introduced here to describe the kinematics of the body 𝑖 as:

�̇�𝑖 =
[

�̇�𝑖
�̇�𝑖

]

. (27)

According to Eq. (26), the reference point velocities and their time derivatives are expressed as a relationship between
ntermediate body reference velocities and accelerations, as:

�̇�𝑖 = 𝐃𝑖�̇�𝑖, with 𝐃𝑖 =
[

𝐈2 �̃�2𝐑𝑖
𝟎 1

]

∈ R3×3,

�̈�𝑖 = 𝐃𝑖�̈�𝑖 + 𝐞𝑖, with 𝐞𝑖 = �̇�𝑖�̇�𝑖 =
[

−�̇�2𝑖 𝐑𝑖
0

]

∈ R3×1,
(28)

here �̈�𝑖 is the vector of intermediate body reference acceleration.

.2. Projection of intermediate body reference coordinates into joint coordinates based on a physical explanation

To understand the relationship between intermediate body reference coordinates and joint coordinates, revolute and prismatic
oints in a planar case are considered in the following sections for semi-recursive II. Projection kinematics are introduced using a
hysical explanation. A mathematical explanation to obtain the projection matrix is presented in Appendix D.

emi-recursive II: revolute joint kinematics

Analogous to Fig. 3, two contiguous bodies 𝑖 − 1 and 𝑖 are connected by a revolute joint 𝐽𝑗 in Fig. 6. However, the system is
described with using intermediate body reference coordinates. The origin of both intermediate body reference frames coincide with
the origin of the global frame. As depicted in Fig. 6, the position vector of revolute joint 𝐽𝑗 and the rotation angle of body 𝑖 can be
expressed as the function of the intermediate body reference coordinates.

𝐫𝑗 = 𝐬𝑖−1 + 𝐀𝑖−1𝐫
𝐽𝑗
𝑖−1 = 𝐬𝑖 + 𝐀𝑖𝐫

𝐽𝑗
𝑖 ,

(29)
9

𝜃𝑖 = 𝜃𝑖−1 + 𝑧𝑗 ,
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Fig. 6. Two bodies connected by revolute joints in planar case (as in Fig. 3). In this case, the kinematics are described in terms of intermediate body reference
coordinates and joint coordinates.

where 𝐬𝑖−1 and 𝐬𝑖 are position vectors of the intermediate body reference frames with respect to the global frame, 𝐫𝐽𝑗𝑖−1 and 𝐫𝐽𝑗𝑖 are
the position vectors of revolute joint 𝐽𝑗 with respect to the intermediate body reference frame in intermediate body reference frames
𝑖 − 1 and 𝑖, and 𝑧𝑗 is the relative angle associated with revolute joint 𝐽𝑗 , which is measured from the 𝑋 axis of the intermediate
body reference frames 𝑖 − 1 to 𝑖.

Therefore, according to Eq. (29), the intermediate body reference coordinates for body 𝑖 can be obtained from the intermediate
body reference coordinates of the previous body 𝑖 − 1 and the joint coordinates.

𝐙𝑖 = 𝐙𝑖−1 +

[

𝐀𝑖−1𝐫
𝐽𝑗
𝑖−1 − 𝐀𝑖𝐫

𝐽𝑗
𝑖

𝑧𝑗

]

. (30)

The intermediate body reference velocities and accelerations for body 𝑖 are computed as the time-derivatives of the intermediate
ody reference coordinates from Eq. (30):

�̇�𝑖 = �̇�𝑖−1 + 𝐛𝑗 �̇�𝑗 , with 𝐛𝑗 =
[

−�̃�2𝐫𝑗
1

]

∈ R3×1,

�̈�𝑖 = �̈�𝑖−1 + 𝐛𝑗 �̈�𝑗 + 𝐝𝑗 , with 𝐝𝑗 = �̇�𝑗 �̇�𝑗 =
[

(�̇�2𝑖 − �̇�2𝑖−1)𝐫𝑗
0

]

∈ R3×1.
(31)

Semi-recursive II: Prismatic joint kinematics

Analogous to Fig. 4, two contiguous bodies 𝑖−1 and 𝑖 are connected by a prismatic joint 𝐽𝑗 in Fig. 7. But the system is described
with using intermediate body reference coordinates. The origin of both intermediate body reference frames coincide with the origin
of the global frame. As depicted in the figure, the position vector of prismatic end point 𝑆 and the rotation angle of body 𝑖 can be
expressed as the function of the intermediate body reference coordinates.

𝐫𝑆 = 𝐬𝑖−1 + 𝐀𝑖−1𝐫
𝑄
𝑖−1 + 𝐡𝑖−1𝑧𝑗 = 𝐬𝑖 + 𝐀𝑖𝐫

𝑆
𝑖 ,

𝜃𝑖 = 𝜃𝑖−1 + 𝜃𝑐 ,
(32)

where 𝐫𝑄𝑖−1 is the position vector of starting point 𝑄, 𝐫𝑆𝑖 is the position vector of ending point 𝑆, and 𝑧𝑗 is the relative distance
associated with the prismatic joint 𝐽𝑗 , which is measured from the starting point 𝑄 to ending one 𝑆 as shown in Fig. 7. Both are
written with respect to the origin and within the intermediate body reference frame.

Therefore, according to Eq. (32), the vector of the intermediate body reference coordinates for body 𝑖 can be obtained according
to the intermediate body reference coordinates of previous body 𝑖 − 1 and the joint coordinates.

𝐙𝑖 = 𝐙𝑖−1 +

[

𝐀𝑖−1𝐫
𝑄
𝑖−1 + 𝐡𝑖−1𝑧𝑗 − 𝐀𝑖𝐫

𝑆
𝑖

]

. (33)
10

𝜃𝑐
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Fig. 7. Two bodies connected by prismatic joints in the planar case (as in Fig. 4). The kinematics are described in terms of intermediate body reference
coordinates and joint coordinates.

The intermediate body reference velocities and accelerations for body 𝑖 are computed as the time-derivatives of the intermediate
body reference coordinates from Eq. (33).

�̇�𝑖 = �̇�𝑖−1 + 𝐛𝑗 �̇�𝑗 , with 𝐛𝑗 =
[

𝐡𝑖−1
0

]

∈ R3×1,

�̈�𝑖 = �̈�𝑖−1 + 𝐛𝑗 �̈�𝑗 + 𝐝𝑗 , with 𝐝𝑗 = �̇�𝑗 �̇�𝑗 =
[

2�̇�𝑗 �̇�𝑖−1 �̃�2𝐡𝑖−1
0

]

∈ R3×1.
(34)

Therefore, in view of Eqs. (31) and (34), a velocity transformation matrix 𝐖𝑖 can be defined to relate the relative and the
intermediate body reference coordinates.

�̇�𝑖 = 𝐖𝑖�̇� = 𝐓𝑖𝐑𝑑 �̇�, �̈�𝑖 = 𝐖𝑖�̈� + �̇�𝑖�̇� = 𝐓𝑖(𝐑𝑑 �̈� + 𝐝), (35)

here 𝐖𝑖 ∈ R3×𝑛𝑐 is the base of allowable velocities �̇�𝑖, 𝐓𝑖 is the 𝑝𝑎𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 that defines the connectivity of the mechanism for
ody 𝑖 in the open loop system, and the matrix 𝐑𝑑 , vectors 𝐝 and 𝐓𝑖𝐝 are written as:

𝐑𝑑 =
⎡

⎢

⎢

⎣

𝐛1
⋱

𝐛𝑛𝑐

⎤

⎥

⎥

⎦

, 𝐝 =
⎡

⎢

⎢

⎣

𝐝1
⋮
𝐝𝑛𝑐

⎤

⎥

⎥

⎦

, 𝐓𝑖𝐝 =
d(𝐓𝑖𝐑𝑑 )

d𝑡 �̇�. (36)

5. A discussion of kinematics of two semi-recursive methods through one example

To be able to apply both semi-recursive methods efficiently, it is important that the velocity transformation matrix for the open
loop must be implemented correctly. In this section, an example is provided to introduce how the velocity transformation matrix is
used for both semi-recursive methods.

An example of a closed loop system is depicted in Fig. 8(a). By cutting one revolute joint at point 𝐷 and one prismatic joint
between body 5 and ground, the closed-loop systems can be opened to make use of recursive kinematics and dynamics. Consequently,
the open loop system has a tree structure with two branches. See Fig. 8(b). In this system, the ground is acting as the base body
(body 0). The bodies and joints are labeled from the base to the branch. There is a total number of five degrees of freedom, which
leads to a set of relative coordinates.

𝐳 =
[

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5
]𝑇 , (37)

where 𝑧1, 𝑧3, 𝑧4 and 𝑧5 are rotational angles which correspond to revolute joints and 𝑧2 is the translation coordinate that corresponds
11

to prismatic joint in Fig. 8(b).
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Fig. 8. Open and closed loop for quick return system.

The velocity transformation matrix 𝐕 from Eq. (21) for open loop multibody system with using the semi-recursive I is written as:

𝐕 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐕1
1

𝐕1
2 𝐕2

2
𝐕1

3 𝐕2
3 𝐕3

3
𝐕1

4 𝐕4
4

𝐕1
5 𝐕4

5 𝐕5
5

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̃�2(𝐑1 − 𝐫1)
1

�̃�2(𝐑2 − 𝐫1) 𝐡2
1 0

�̃�2(𝐑3 − 𝐫1) 𝐡2 �̃�2(𝐑3 − 𝐫3)
1 0 1

�̃�2(𝐑4 − 𝐫1) �̃�2(𝐑4 − 𝐫4)
1 1

�̃�2(𝐑5 − 𝐫1) �̃�2(𝐑5 − 𝐫4) �̃�2(𝐑5 − 𝐫5)
1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

here 𝐑1, 𝐑2, 𝐑3, 𝐑4, and 𝐑5 are the position vectors of the origin of the body frames. And 𝐫1, 𝐫3, 𝐫4, and 𝐫5 are the position vectors
f the revolute joints. All of them are calculated recursively from the base body to the branch. See Eqs. (15) and (19). 𝐡2 is the unit
ector of the translation direction.

The velocity transformation matrix 𝐖 from Eq. (35) for open loop multibody system with using the semi-recursive II is written as:

𝐖 = 𝐓𝐑𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈3
𝐈3 𝐈3
𝐈3 𝐈3 𝐈3
𝐈3 𝐈3
𝐈3 𝐈3 𝐈3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−�̃�2𝐫1
1

𝐡2
0

− �̃�2𝐫3
1

−�̃�2𝐫4
1

−�̃�2𝐫5
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (39)

As can be observed from the above Eqs. (38) and (39), the velocity transformation matrices for both approaches behave like the
patial cases [3,24]. Both can introduce the topology of the spanning tree, and the velocity transformation matrix in semi-recursive
I can be straightforwardly obtained with the help of path matrix.
12
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6. Equations of motion for the open loops

In this section, the principle of virtual work is introduced to formulate the dynamic equations of motion for planar cases
aking it possible for a multibody modeling analyst that is familiar with global formulations to easily extend that knowledge to a

emi-recursive approach.
The virtual work done by the inertial forces of body 𝑖 can be written as:

𝛿𝑊𝑖𝑛𝑡,𝑖 = ∫𝑉𝑖
𝜌�̈�𝑇𝑖 d𝑉𝑖𝛿𝐫𝑖,= ∫𝑉𝑖

𝜌�̈�𝑇𝑖
𝜕𝐫𝑖
𝜕𝐳

d𝑉𝑖𝛿𝐳 = 𝐐𝑇
𝑖𝑛𝑡,𝑖𝛿𝐳, (40)

where 𝜌 is the body density, 𝑉𝑖 is the volume of the body 𝑖, 𝛿𝐫𝑖 is the virtual displacement vector of the arbitrary point on a planar
rigid body, and �̈�𝑖 is the second time-derivatives of 𝐫𝑖. Both are written as [4]:

𝛿𝐫𝑖 = 𝐋𝑖𝛿𝐪𝑖, with 𝐋𝑖 =
[

𝐈2 �̃�2𝐮𝑖
]

,

�̈�𝑖 = 𝐋𝑖�̈�𝑖 + �̇�𝑖�̇�𝑖, with �̇�𝑖 =
[

𝟎2 − �̇�𝑖𝐮𝑖
]

,
(41)

where 𝐮𝑖 is the position vector of an arbitrary point with respect to the body frame.

6.1. Semi-recursive I : Equations of motion for the open loops

According to Eqs. (21), (22), and (41), the components
𝜕𝐫𝑖
𝜕𝐳

and �̈�𝑖 from Eq. (40) can be expressed with the kinematic relationship
rom semi-recursive I.

𝜕𝐫𝑖
𝜕𝐳

=
𝜕𝐫𝑖
𝜕𝐪𝑖

𝜕𝐪𝑖
𝜕𝐳

= 𝐋𝑖𝐕𝑖

�̈�𝑖 = 𝐋𝑖(𝐕𝑖�̈� + �̇�𝑖�̇�) + �̇�𝑖𝐕𝑖�̇�.
(42)

Finally, substituting �̈�𝑖 from Eq. (42) into Eq. (40), the generalized inertial forces 𝐐𝑖𝑛𝑡,𝑖 (associated with joint coordinates for
emi-recursive I) can be expressed as:

𝐐𝑖𝑛𝑡,𝑖 = ∫𝑉𝑖
𝜌𝐕𝑇

𝑖 𝐋
𝑇
𝑖
(

𝐋𝑖(𝐕𝑖�̈� + �̇�𝑖�̇�) + �̇�𝑖𝐕𝑖�̇�
)

d𝑉𝑖 = 𝐌𝑖�̈� −𝐐𝑣,𝑖, (43)

where the mass matrix 𝐌𝑖 and quadratic velocity vector 𝐐𝑣,𝑖 associated with joint coordinates for semi-recursive I are expressed as:

𝐌𝑖 = 𝐕𝑇
𝑖 𝐌𝑖𝐕𝑖, 𝐐𝑣,𝑖 = 𝐕𝑇

𝑖 (𝐐𝑣,𝑖 −𝐌𝑖�̇�𝑖�̇�), (44)

where the mass matrix is 𝐌𝑖 = ∫𝑉𝑖 𝜌𝐋
𝑇
𝑖 𝐋𝑖d𝑉𝑖 and the quadratic velocity vector is 𝐐𝑣,𝑖 = ∫𝑉𝑖 𝜌𝐋

𝑇
𝑖 �̇�𝑖�̇�𝑖d𝑉𝑖.

Similarly, the external force vector 𝐐𝑒,𝑖 associated with joint coordinates for semi-recursive I can be expressed as follows.

𝐐𝑒,𝑖 = 𝐕𝑇
𝑖 𝐐𝑒,𝑖, (45)

where 𝐐𝑒,𝑖 includes all generalized external forces and is associated with reference point coordinates.
The virtual work of all forces and torques in a multibody system, including the applied and inertia forces from Eqs. (43) and

(45), equals to zero.
𝑛𝑏
∑

𝑖=1
𝛿�̇�𝑇 (𝐌𝑖�̈� + 𝐂𝑇

𝐳𝝀 −𝐐𝑣,𝑖 −𝐐𝑒,𝑖) = 𝟎, (46)

where −𝐂𝑇
𝐳𝝀 is the vector of the system generalized constraint forces of the open loop associated with joint coordinates. It can be

written in terms of open loop constraint Jacobian matrix 𝐂𝐳 with respect to joint coordinates and the vector of Lagrange multipliers
𝝀. The Jacobian matrix 𝐂𝐳 is expressed with using the chain rule:

𝐂𝐳 = 𝜕𝐂
𝜕𝐪𝑖

𝜕𝐪𝑖
𝜕𝐳

= 𝐂𝐪𝑖
𝐕𝑖, (47)

here 𝐂 is the open loop constraint equations. The velocity transformation matrix 𝐕𝑖 is the null space of Jacobian matrix 𝐂𝐪𝑖
, and

herefore the generalized constraint force 𝐂𝑇
𝐳𝝀 from Eq. (46) is eliminated.

Considering that the virtual relative velocities are independent, the resulting differential equation for this planar open loop
ultibody system from Eq. (46) is:

𝐌�̈� −𝐐𝑣 −𝐐𝑒 = 𝟎, (48)

where 𝐌 is the system mass matrix, 𝐐𝑣 and 𝐐𝑒 are system quadratic velocity and external force vectors that contain the matrices
𝐌 , 𝐐 and 𝐐 .
13

and vectors of individual 𝑖 𝑣,𝑖 𝑒,𝑖
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6.2. Semi-recursive II: equations of motion for open loop

According to Eqs. (28), (35), and (41), the components
𝜕𝐫𝑖
𝜕𝐳

and �̈�𝑖 from Eq. (40) can be expressed with the kinematic relationship
rom semi-recursive II.

𝜕𝐫𝑖
𝜕𝐳

=
𝜕𝐫𝑖
𝜕𝐪𝑖

𝜕𝐪𝑖
𝜕𝐙𝑖

𝜕𝐙𝑖
𝜕𝐳

= 𝐋𝑖𝐃𝑖𝐓𝑖𝐑𝑑

�̈�𝑖 = 𝐋𝑖𝐃𝑖𝐓𝑖(𝐑𝑑 �̈� + 𝐝) + 𝐋𝑖𝐞𝑖 + �̇�𝑖𝐃𝑖𝐓𝑖𝐑𝑑 �̇�
(49)

Similarly, substituting �̈�𝑖 from Eq. (49) into Eq. (40), the generalized inertial forces 𝐐𝑖𝑛𝑡,𝑖 associated with joint coordinates for
emi-recursive II can be expressed as follows.

𝐐𝑖𝑛𝑡,𝑖 = ∫𝑉𝑖
𝜌𝐑𝑇

𝑑𝐓
𝑇
𝑖 𝐃

𝑇
𝑖 𝐋

𝑇
𝑖
(

𝐋𝑖𝐃𝑖𝐓𝑖(𝐑𝑑 �̈� + 𝐝) + 𝐋𝑖𝐞𝑖 + �̇�𝑖𝐃𝑖𝐓𝑖𝐑𝑑 �̇�
)

d𝑉𝑖 = 𝐌𝑖�̈� −𝐐𝑣,𝑖, (50)

where the mass matrix 𝐌𝑖 and quadratic velocity vector 𝐐𝑣,𝑖 associated with joint coordinates for semi-recursive II are expressed
s:

𝐌𝑖 = 𝐑𝑇
𝑑𝐓

𝑇
𝑖 𝐃

𝑇
𝑖 𝐌𝑖𝐃𝑖𝐓𝑖𝐑𝑑 , 𝐐𝑣,𝑖 = 𝐑𝑇

𝑑𝐓
𝑇
𝑖 𝐃

𝑇
𝑖 (𝐐𝑣,𝑖 −𝐌𝑖𝐞𝑖 −𝐌𝑖𝐃𝑖𝐓𝑖𝐝). (51)

Similarly, the external force vector 𝐐𝑒,𝑖 associated with joint coordinates for semi-recursive II can be expressed as:

𝐐𝑒,𝑖 = 𝐑𝑇
𝑑𝐓

𝑇
𝑖 𝐃

𝑇
𝑖 𝐐𝑒,𝑖. (52)

The virtual work of all forces and torques in a multibody system including the applied and inertia forces from Eqs. (50) and
52), equals zero.

𝑛𝑏
∑

𝑖=1
𝛿�̇�𝑇 (𝐌𝑖�̈� + 𝐂𝑇

𝐳𝝀 −𝐐𝑣,𝑖 −𝐐𝑒,𝑖) = 𝟎, (53)

The Jacobian matrix 𝐂𝐳 is expressed with using the chain rule.

𝐂𝐳 = 𝜕𝐂
𝜕𝐪𝑖

𝜕𝐪𝑖
𝜕𝐙𝑖

𝜕𝐙𝑖
𝜕𝐳

= 𝐂𝐪𝑖
𝐃𝑖𝐓𝑖𝐑𝑑 , (54)

here it is noted that the term 𝐃𝑖𝐓𝑖𝐑𝑑 is the null space of Jacobian matrix 𝐂𝐪𝑖
, and therefore the generalized constraint force 𝐂𝑇

𝐳𝝀
rom Eq. (53) is eliminated.

Again, assuming that the relative virtual velocities 𝛿�̇� are independent, the resulting differential equation for this planar open
oop multibody system from Eq. (53) is:

𝐌�̈� −𝐐𝑣 −𝐐𝑒 = 𝟎, (55)

where 𝐌 is the system mass matrix and 𝐐𝑣 and 𝐐𝑒 are system quadratic velocity and external force vectors that collect the matrices
nd vectors of individual 𝐌𝑖, 𝐐𝑣,𝑖 and 𝐐𝑒,𝑖.

Both approaches are derived based on the virtual work from Eq. (40). They theoretically lead to exactly the same equations with
he same system matrix. Compare Eqs. (48) with (55).

. Equations of motion for closed loop with multiple bodies

The dynamics of a closed loop system can be analyzed by adding constraint equations to enforce the closure of the open loops.
ake the example in Fig. 8. Fig. 8(b) depicts a tree structure open loop that consists of five rigid bodies constrained by different
echanical joints. To form the closed loop in Fig. 8(a), the open loop from Fig. 8(b) can be closed by enforcing one revolute

onstraint between body 3 and ground and one prismatic constraint between body 5 and ground. Those constraints are called
losure of the open-loop constraints.

The position vector of point 𝐷 from Fig. 8(a) remains the same for both body 3 and the ground while constrained by the revolute
joint. The constraint equation associated with point 𝐷 can be written as follows.

𝐂
𝑟
(𝐳) = 𝐫𝐷3 − 𝐫𝐷 = 𝟎, (56)

where 𝐫𝐷3 is the position vector of point 𝐷 from body 3 and 𝐫𝐷 is the position vector of point 𝐷 from the ground.
In Fig. 8(a), one constraint equation will eliminate the relative rotation, and another will eliminate the relative translation

between body 5 and ground 𝐸. The kinematic constraint conditions of the prismatic joint can be written as:

𝐂
𝑝
(𝐳) =

[

𝜃5 − 𝜃𝑔 − 𝜃𝑐
(�̃�2𝐡𝑔)𝑇 (𝐫𝐸 − 𝐫𝐹5 )

]

= 𝟎, (57)

where 𝜃5 is the rotation angle of body 5, 𝜃𝑔 is the rotation angle of the ground, 𝐡𝑔 is the unit vector of the translational direction
𝐸 𝐹
14

along the ground, 𝐫 is the position vector of point 𝐸 and 𝐫5 is the position vector of point 𝐹 on body 5.
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The position, velocity and acceleration vectors of the closure of the open-loop constraint are subsequently written in the following
eneral form.

𝐂(𝐳, 𝑡) = 𝟎,

�̇� = 𝐂𝐳�̇� + 𝐂𝑡 = 𝟎,

�̈� = 𝐂𝐳�̈� + �̇�𝐳�̇� + �̇�𝑡 = 𝟎,

(58)

where 𝐂𝐳 is the closure of the open-loop constraint Jacobian matrix, 𝐂𝑡 is the partial derivative of the closure of the open-loop
constraint equations with respect to time, �̇�𝐳 is the time-derivative of 𝐂𝐳, and �̇�𝑡 is the time-derivative of 𝐂𝑡.

7.1. Semi-recursive I : Equation of motion for closed loops

In the closed loop system, the components of the vector of joint coordinates 𝐳 cannot be independent due to the closure of the
open-loop constraints. As for the closed loop system, reaction forces that correspond to closure of the open-loop constraints can be
accounted for by incorporating Lagrange multipliers 𝝀 into the equations of motion of the open loops from Eq. (48). The constraint
equations at the position level from (58) can be included into the equations of motion to ensure virtual displacements do not violate
the constraints. The set of equations of motion from Eq. (48) for an open loop is a system of ordinary differential equations (ODE),
and the constraint equations from Eq. (58) are a set of algebraic equations. Combining both sets, a system of differential algebraic
equations (DAE) can be generated as follows.

𝐌�̈� + 𝐂
𝑇
𝐳𝝀 = 𝐐𝑣 +𝐐𝑒,

𝐂(𝐳, 𝑡) = 𝟎.
(59)

The second-order equations from Eq. (59) might be unstable during numerical time integration due to the amplified numerical
rrors introduced by the integration procedure [38]. Therefore, Baumgarte constraint stabilization [40] is used here to ensure that
losure of the open-loop constraint equations fulfilled. When using Baumgarte constraint stabilization method, the right hand of
q. (58) can be rewritten as:

𝐂𝐳�̈� −𝐐𝑐 + 2𝑎�̇� + 𝑏2𝐂 = 𝟎, (60)

here 𝐐𝑐 = −�̇�𝐳�̇�− �̇�𝑡, parameter 𝑏 is the spring constant and 𝑎 is the damping coefficient [3] that weight the velocity and position
constraint violations.

By combining Eq. (60) with Eq. (59), the equations of motion incorporating Baumgarte constraint stabilization for semi-recursive
I can be written as follows.

[

𝐌 𝐂
𝑇
𝐳

𝐂𝐳 𝟎

]

[

�̈�
𝝀

]

=

[

𝐐𝑣 +𝐐𝑒

𝐐𝑐 − 2𝑎�̇� − 𝑏2𝐂

]

, (61)

7.2. Semi-recursive II : equation of motion for closed loops

Similarly, reaction forces that correspond to closure of the open-loop constraints from Eq. (58) can be accounted for by employing
Lagrange multipliers 𝝀 into the equations of motion of the open loops from Eq. (55) for a closed loop system as follows.

𝐌 + 𝐂
𝑇
𝐳𝝀 = 𝐐𝑒 +𝐐𝑣,

𝐂(𝐳, 𝑡) = 𝟎.
(62)

Similarly, by combining Eq. (60) with Eq. (62), the equations of motion incorporating Baumgarte constraint stabilization for
emi-recursive II can be written:

[

𝐌 𝐂
𝑇
𝐳

𝐂𝐳 𝟎

]

[

�̈�
𝝀

]

=

[

𝐐𝑣 +𝐐𝑒

𝐐𝑐 − 2𝑎�̇� − 𝑏2𝐂

]

. (63)

8. Conclusion

With the help of the constraint kinematics of the open loop, the multibody system can be described with a reduced number of
dynamic equations by using semi-recursive approaches. Therefore, this method is also referred to as the coordinate reduction method.
The semi-recursive formulations described in this work are not new, but entry level explanations that not currently available in the
literature are provided here. Therefore, this theoretical derivation, which relates the semi-recursive approach to the often-used global
formulation using simple planar cases, is novel.

The pros and cons of two coordinate reduction methods, i.e., coordinate partitioning and semi-recursive I, are introduced and
compared. The semi recursive method is superior in terms of the selection of independent coordinates and more sparse matrices. Two
semi-recursive methods are introduced using a planar multibody mechanism. The difference between both methods is the location
of the reference point that is usually used to compute the kinematics of the body. One is rigidly attached to the moving body, and
the other coincides with the origin of the global frame. As all bodies share the same reference point with using the semi-recursive
II, the topology of the spanning tree are simpler than those obtained with using semi-recursive I.
15
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ppendix A. Derivation of Jacobian matrix and velocity transformation matrix for open loop system in Fig. 1

The time derivative of constraint equations in Eq. (2) is given by:

�̇�(1, 1) = �̇�1 + �̇�1 �̃�2𝐮𝑃 = 𝟎,
�̇�(2, 1) = −�̇�1 + �̇�2 = 0,

�̇�(3, 1) = �̇�1𝐡𝑇1 �̃�2 �̃�2(𝐑1 + 𝐮𝑄 − 𝐑2 − 𝐮𝑆 ) − 𝐡𝑇1 �̃�2(�̇�1 + �̇�1 �̃�2𝐮𝑃 − �̇�2 − �̇�2 �̃�2𝐮𝑆 ),
= −𝐡𝑇1 �̃�2�̇�1 − �̇�1𝐡𝑇1 (𝐑1 − 𝐑2 − 𝐮𝑆 ) + 𝐡𝑇1 �̃�2�̇�2 − �̇�2𝐡𝑇1 𝐮

𝑆 = 0,

(A.1)

where 𝐮𝑃 = 𝐀1𝐮
𝑃
1 , 𝐀1 is the rotation matrix of body 1, 𝐮𝑃1 is the local representation of 𝐮𝑃 , �̇�𝑃 = �̇�1𝐮

𝑃
1 = �̇�1 �̃�2𝐮𝑃 , �̃�𝑇2 = −�̃�2, and

�̃�2 �̃�2 = −𝐈2. Thus the Jacobian matrix can be organized as Eq. (5).
The time derivative of Eq. (10) is given by:

�̇� =

⎡

⎢

⎢

⎢

⎢

⎣

−�̇�1 �̃�2𝐮𝑃
�̇�1

−�̇�1 �̃�2𝐮𝑃 + �̇�1 �̃�2𝐮𝑄 + �̇�2𝐡1 + 𝑧2�̇�1 �̃�2𝐡1 − �̇�1 �̃�2𝐮𝑆
�̇�1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�̇�1 �̃�2(𝐑1 − 𝐫𝑃 )
�̇�1

�̇�1 �̃�2(𝐑2 − 𝐫𝑃 ) + �̇�2𝐡1
�̇�1

⎤

⎥

⎥

⎥

⎥

⎦

. (A.2)

Appendix B. Velocity transformation matrix for more complex mechanical joints

B.1. Point to line constraint

Fig. B.9 depicts a system where a rigid body is constrained such that one end of beam-like body can slide along a line that makes
an angle of 𝜃𝑐 with respect to the global frame. Using the relative coordinates approach, this constraint can be expressed using a
combination of a prismatic joint and a revolute joint. This system has a total of two degrees of freedom, which leads to a set of
relative coordinates:

𝐳 =
[

𝑧1 𝑧2
]𝑇 , (B.1)

where 𝑧1 is the relative coordinate associated with the prismatic joint and 𝑧2 is the relative coordinate associated with the revolute
joint.

In the case of the system shown in Fig. B.9, the reference point coordinates of body 1 are described with respect to the relative
coordinates as follows:

𝐪1 =
[

𝐫1 + 𝑧1𝐡𝑐 + 𝐚1
𝜃𝑐 + 𝑧2

]

, with 𝐚1 = 𝐑1 − 𝐫𝑃 , (B.2)

where 𝐫1 is the position vector of the starting point of prismatic joint, 𝐚1 is the translational vector that goes from the revolute joint
point 𝑃 to the origin of body frame 𝑜1, 𝐫𝑃 is the position vector of point 𝑃 , and 𝐑1 is the position vector of the origin of body frame
𝑜1.

The velocity transformation for the body 1 can be obtained by taking the partial derivative of 𝐪1 from Eq. (B.2) with respect to
𝐳.

𝐕1 =
[

𝐡𝑐 �̃�2(𝐑1 − 𝐫𝑃 )
]

. (B.3)
16
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Fig. B.9. Combination of revolute joint and prismatic joint.

.2. Cam-follower constraint

Fig. B.10(a) shows a cam follower system with the cam constrained by one revolute joint to the ground. The cam and follower
re always assumed to be in contact at point 𝑃 . There are three degrees of freedom, which leads to a set of relative coordinates.

𝐳 =
[

𝑧1 𝑧2 𝑧3
]𝑇 , (B.4)

here 𝑧1 is the polar coordinate for the cam in Fig. B.10(b), 𝑧2 is the relative angle that is associated with the revolute joint and
3 is associated with the rotational angle of body 2. See Fig. B.10(a).

As shown in Fig. B.10(b), the outline of the cam can be described in polar coordinates. The rotational angle 𝑧1 increases
ounterclockwise from 0 to 2𝜋 and 𝑠1 = 𝑠1(𝑧1) is the corresponding radii [41]. Accordingly, the position vector of contact point

with respect to the revolute joint 𝐽1 in the local frame is not a constant vector, which is the function of the angle 𝑧1.

�̄�1 = �̄�1
(

𝑧1, 𝑠1(𝑧1)
)

. (B.5)

In the case of the system shown in Fig. B.10(a), the reference point coordinates of body 2 are described with respect to the
elative coordinates as follows:

𝐪2 =
[

𝐫1 + 𝐚1 + 𝐛2
𝑧3

]

, with 𝐚1 = 𝐫𝑃 − 𝐫1, 𝐛2 = 𝐑2 − 𝐫𝑃 , (B.6)

here 𝐫1 is the position vector of the revolute joint 𝐽1, 𝐚1 is the translational vector that goes from the revolute joint point 𝐽1 to
ontact point 𝑃 , 𝐛2 is the translational vector that goes from the contact point 𝑃 to the origin of body frame 𝑜2, 𝐫𝑃 is the position
ector of point 𝑃 , and 𝐑2 is the position vector of the origin of body frame 𝑜2.

The velocity transformation for the body 2 can be obtained by taking the partial derivative of 𝐪2 from Eq. (B.6) with respect to
.

𝐕2 =
⎡

⎢

⎢

⎣

𝜕𝐚1
𝜕𝑧1

�̃�2(𝐫𝑃 − 𝐫1) �̃�2(𝐑2 − 𝐫𝑃 )

0 0 1

⎤

⎥

⎥

⎦

. (B.7)

Appendix C. Dimensional reduction through velocity transformations

According to Eq. (17), the reference point velocities for body 𝑖 − 1 can be expressed explicitly as:

�̇�𝑖−1 = 𝐁𝑖−2
𝑖−1�̇�𝑖−2 + 𝐕𝑗−1

𝑖−1 �̇�𝑗−1, (C.1)

here �̇�𝑖−2 is the reference point velocities for body 𝑖 − 2, the matrix 𝐁𝑖−2
𝑖−1 is the transformation matrix associated with bodies 𝑖 − 2

𝑗−1
17

and 𝑖 − 1, and the vector 𝐕𝑖−1 is the component of velocity transformation matrix 𝐕 associated with joint 𝐽𝑗−1 for body 𝑖 − 1.
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Fig. B.10. Kinematics of cam follower mechanism.

Substituting Eq. (C.1) into Eq. (17), the reference point velocity �̇�𝑖−1 will be eliminated from the equation as:

�̇�𝑖 = 𝐁𝑖−2
𝑖 �̇�𝑖−2 + 𝐕𝑗−1

𝑖 �̇�𝑗−1 + 𝐕𝑗
𝑖 �̇�𝑗 , (C.2)

where the matrix 𝐁𝑖−2
𝑖 is the transformation matrix associated with bodies 𝑖 − 2 and 𝑖. It is given by:

𝐁𝑖−2
𝑖 = 𝐁𝑖−1

𝑖 𝐁𝑖−2
𝑖−1 =

[

𝐈2 �̃�2(𝐑𝑖 − 𝐑𝑖−2)
𝟎 1

]

, (C.3)

where 𝐑𝑖−2 is the position vector of the origin of the body frame 𝑖−2, and the vector 𝐕𝑗−1
𝑖 is the component of velocity transformation

matrix 𝐕 that represents the unit direction of body 𝑖 given by revolute or prismatic joints 𝐽 𝑗−1.
Vector 𝐕𝑗−1

𝑖 for both joint take the form:

Revolute joint: 𝐕𝑗−1
𝑖 = 𝐁𝑖−1

𝑖 𝐕𝑗−1
𝑖−1

(18)
=

[

�̃�2(𝐑𝑖 − 𝐫𝑗−1)
1

]

,

Prismatic joint: 𝐕𝑗−1
𝑖 = 𝐁𝑖−1

𝑖 𝐕𝑗−1
𝑖−1

(20)
=

[

𝐡𝑖−2
0

]

,
(C.4)

where 𝐫𝑗−1 is the position vector of revolute joint 𝐽𝑗−1, and 𝐡𝑖−2 is the unit vector of the prismatic joint 𝐽𝑗−1.

Appendix D. Semi-recursive II: a mathematical method to obtain the projection matrix

To project the intermediate body reference velocities �̇�𝑖 onto the relative velocities �̇�, one can easily substitute �̇�𝑖 and �̇�𝑖−1 from
Eq. (28) into the recursive relation of Eq. (17) as:

𝐃𝑖�̇�𝑖 = 𝐁𝑖−1
𝑖 (𝐃𝑖−1�̇�𝑖−1) + 𝐕𝑗

𝑖 �̇�𝑗 . (D.1)

Since matrices 𝐃𝑖 and 𝐁𝑖 have following expressions.

𝐃−1
𝑖 =

[

𝐈2 −�̃�2𝐑𝑖
𝟎 1

]

, 𝐃−1
𝑖 𝐁𝑖−1

𝑖 𝐃𝑖−1 = 𝐈3. (D.2)

Multiplying 𝐃−1
𝑖 with Eq. (D.1) leads to:

̇ ̇
18

𝐙𝑖 = 𝐙𝑖−1 + 𝐛𝑗 �̇�𝑗 , (D.3)
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where the vector of 𝐛𝑗 appearing in Eqs. (D.3) is associated with different types of mechanical joints 𝐽𝑗 , as:

Revolute joint: 𝐛𝑗 = 𝐃−1
𝑖 𝐕𝑗

𝑖
(18)
=

[

−�̃�2𝐫𝑗
1

]

∈ R3×1,

Prismatic joint: 𝐛𝑗 = 𝐃−1
𝑖 𝐕𝑗

𝑖
(20)
=

[

𝐡𝑖−1
0

]

∈ R3×1,
(D.4)

where above expression is same as Eqs. (31) and (34).
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