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ABSTRACT
This study develops a geometrically nonlinear model of a

wind turbine blade utilizing finite strain theory for the calcula-
tion of elastic forces. The model is based on the floating frame
of reference (FFR) formulation, which is a common choice in the
modeling of long and flexible wind turbine blades. To model the
nonlinear deformation of blades, the FFR formulation divides
the structure into several substructures, which involves a signifi-
cant increase of the system degrees of freedom. In the presented
model, a nonlinear description of the elastic forces is introduced
to achieve the convergence of the dynamic blade model at a lower
number of substructures. The nonlinear elastic forces are for-
mulated according to the Euler-Bernoulli beam theory, and they
account for third-order terms of the potential elastic energy, the
so-called geometric stiffness. The developed blade model is for-
mulated in two dimensions and tested in a blade of 44.8 m length,
which corresponds to a 2.75 MW wind turbine. Firstly, the re-
sults show that linear models do not accurately represent tip
blade transverse displacement, and the substructuring technique
becomes necessary to account for geometric nonlinearity. Sec-
ondly, using nonlinear elastic models significantly reduces the
number of substructures needed to achieve convergence of the
solution.
Keywords: Nonlinear phenomena, Structural dynamics, Wind
energy, Rigid- and flexible-body dynamics
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1 Introduction
Wind turbine blades have features that make their modeling

a complex task. Firstly, they undergo large displacements and ro-
tations during working operations, which leads to nonlinear de-
formation of the blade. Secondly, the section is nonhomogeneous
along its length and is made of composite material. Thirdly, the
blade shape is pre-bent and pre-twisted to enhance the aeroelas-
tic interaction during operation. Finally, they are subjected to
complex loading scenarios due to wind.

Several methodologies can be used to meet these model-
ing requirements. For instance, OpenFast [1] software devel-
oped by NREL (National Renewable Energy Laboratory) im-
plements BeamDyn [2], which uses geometrically exact beam
theory based on the Legendre spectral Finite Element method.
The software BHawC is an in-house code developed by the wind
energy company Siemens-Gamesa, which uses a co-rotational
formulation [3]. The Technical University of Denmark (DTU)
and the certification company, DNV, have also developed their
codes, HAWC2 [4] and Bladed [5], respectively, both based on
the floating frame of reference (FFR) [6]. These models have
the capability of formulating blade models capturing geometric
nonlinearities.

Since blades have been continuously increasing in size and
slenderness during the last decades, many researchers have paid
attention to the potential effect of geometric nonlinearity on wind
turbines performance. Manolas et al. [7] concluded that linear
models are still acceptable in 5MW wind turbines (with blade
lengths between 60 and 65m), and around that value, nonlinear
models become necessary. However, Wu et al. [8] obtained clear
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different results between linear and non-linear models in a 5 MW
blade. Moreover, centrifugal stiffening Burton et al. [?] predicted
a significant centrifugal stiffening of a 40m blade corresponding
to a 2 MW wind turbine. Newly projected wind turbines reach 15
MW, with blade lengths about 117m [9]. Therefore, the models
intended to predict the response of new blades should pay special
attention to geometrical nonlinear effects.

The FFR formulation used in Bladed and HAWC2 can ac-
count for geometric nonlinearity by introducing substructuring
of the bodies [10]. However, the use of substructures increases
the number of system degrees of freedom (DoF) and constraints.
Therefore, an optimum number of substructures should be cho-
sen to retain the geometric nonlinear effects while keeping the
computational cost as low as possible. Moreover, the assessment
of a blade model requires the simulation of a large number of
load cases, and therefore the computational cost becomes an is-
sue of utmost importance. Gözcü and Verelst [11] studied the
minimum number of substructures required to capture nonlinear
phenomena in the IEA (International Energy Agency) [12] and
DTU (Technical University of Denmark) [13] reference 10 MW
wind turbines. They conclude that 15 substructures are necessary
to reach the problem convergence.

Geometric nonlinearities can be also accounted for in FFR
formulation by introducing a nonlinear definition of the elastic
force. Bakr and Shabana [14] propose a methodology to in-
clude nonlinear elastic forces resulting from some of the third-
order terms of the potential elastic energy. The results are tested
in a slider-crank mechanism. Later, Mayo et al. [15] defines a
FFR formulation including all nonlinear forces due to third and
fourth-order terms of the potential elastic energy. Finally, the
performance of substructuring, nonlinear elastic modelling, to-
gether with the absolute nodal coordinate formulation is com-
pared by Mayo et al. [16] for the case of the rotating beam intro-
duced by Wu and Haug [10].

This study assesses the potential benefit of combining both
substructuring and nonlinear elastic forces. In this way, it might
be possible to achieve an accurate description of the nonlinear
blade dynamics with a lower number of substructures, and there-
fore a lower number of DoF. The nonlinear elastic force defi-
nition accounts for the bending-stretching coupling and retains
some of the third-order nonlinear terms in the strain-energy. The
proposed methodology is tested in a 44.8 m long blade from a
2.75 MW wind turbine. The model is limited to a planar case
using Euler-Bernoulli theory and does not account for other cou-
pling phenomena like bending-twist. Initial configurations where
the blade is pre-bent or pre-twisted are not considered. Load-
ing conditions are approximated by including gravitational loads
and a rotational driving constraint, which ramps up the rotational
motion to the nominal angular velocity of the wind turbine. The
results show that a single substructure with a linear elastic model
is not appropriate for modeling a wind turbine blade. To achieve
the convergence of the blade transverse tip displacement, about

10 substructures using linear elastic forces are necessary. How-
ever, the blade model using 4 substructures achieves convergence
when nonlinear elastic forces are introduced.

2 Multibody formulation
The multibody formulation applied in this study to model

the flexibility of the wind turbine blade is based on the FFR
formulation further developed by Shabana [6]. Flexibility is in-
troduced in the multibody formulation using the Finite Element
(FE) Method based on prismatic Euler-Bernoulli beam elements.
A substructuring technique is implemented in the multibody for-
mulation, which divides the elastic body into a finite number of
substructures.

2.1 Generalized coordinates
The generalized coordinates, qi, for an flexible body i used

in a multibody dynamic system consists of reference and elas-
tic coordinates, qi

r and qi
f , respectively. Moreover, qi

r can be
partitioned into translational coordinates, Ri, in a Cartesian co-
ordinates system and rotational coordinates, ΘΘΘ

i. The vector of
generalized coordinates reads

qi =

[
qi

r
qi

f

]
=

Ri

ΘΘΘ
i

qi
f

 . (1)

In a two-dimensional case qi
r can be described by two trans-

lational coordinates, xi and yi, and one rotational coordinate, θ i,
such that qi

r =
[

xi yi θ i ]T . Regarding qi
f , it is an n-dimensional

vector, in which the choice of a finite set of elastic coordinates is
based on the Rayleigh-Ritz assumption.

The global position vector ri
P of an arbitrary point P within

the flexible body i is defined as

ri
P = Ri +Aiūi, (2)

where Ri denotes the global position of the body frame, Ai is
transformation matrix between the i-th body frame and the global
frame, and ūi defines the position of the arbitrary point in the
body frame, which can be defined by rigid and flexible contribu-
tion, ūi

o and ūi
f , respectively, as shown in Fig. 1. The operator

(¯) denotes that the vector is defined in a body frame Therefore,
Eqn. (2) becomes

ri
P = Ri +Ai (ūi

o + ūi
f
)
, (3)

where the flexible contribution is determined by utilizing the
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Rayleigh-Ritz assumption as

ūi
f = S̄iq̄i

f , (4)

being Si the space-dependent shape function matrix.

FIGURE 1. Global description of arbitrary point P in flexible body i
applying reference and flexible coordinates

2.2 Equations of motion
The equations of motion are written using the Lagrange mul-

tipliers technique, yielding:

Mq̈+CT
q λλλ = Qe +Qv +Qelas +Qdamp, (5)

where M is the mass matrix, Cq is the Jacobian of the constraint
equations, λλλ contains the Lagrange multipliers and Qe, Qv, Qelas
and Qdamp, are the vectors including the external, quadratic ve-
locity, elastic and damping forces, respectively.

Equation (5) is augmented with the constraint equations at
acceleration level as

Cqq̈ =−Ċqq̇− Ċt , (6)

which is solved by numerical integration. Baumgarte stabiliza-
tion method is used to avoid the drift of the constraints.

2.3 Finite Element discretization
The flexible bodies are discretized by using FE. Subse-

quently, model order reduction is performed based on the eigen-
value problem. The FE mesh is also used to calculate the con-
tribution of nonlinear forces. Euler-Bernoulli beam elements are
utilized to assembly the mass and stiffness matrices of the body.
The eigenvectors resulting from the eigenvalue analysis are the
columns of the modal matrix, Φ̄ΦΦ, that relates the nodal degrees
of freedom belonging to the FE mesh, n̄i, with the elastic coordi-
nates as

n̄i = Φ̄ΦΦ
i q̄i

f . (7)

A reduced modal matrix, Φ̄ΦΦ
i
r is used to decrease the compu-

tational cost. The vibration modes from the modal matrix with
the lowest associated natural frequencies are selected.

The shape function matrix used to describe the flexibility of
element e that belongs to body i is now defined in terms of ΦΦΦ

i
r as

S̄ie = ĀeS̄eĀe
6C̄ieB̄i

Φ̄ΦΦ
i
r, (8)

where Āe and Āe
6 define the transformation from element to

global frame, S̄e is the FE shape function matrix, C̄ie is the con-
nectivity matrix describing how the FE are connected and B̄i is a
matrix that result from the boundary conditions of the FE mesh.
The superscript e in the two transformation matrices denotes that
they are element-dependent, which means that they are depen-
dent on where along the discretized body the shape function ma-
trix is evaluated. It is necessary to evaluate in which FE the point
P lies at, in order to evaluate S̄e corresponding to that FE.

The slope of the midline of a bar-type flexible element e of
body i is obtained as the spatial derivative of Eqn. (8), which
leads to

∂ S̄ie

∂ x̄i = Āe ∂ S̄e

∂ x̄ei Āe
6C̄ieB̄i

Φ̄ΦΦ
i
r, (9)

where x̄i and x̄ei are the longitudinal coordinates in the i body
frame and in the e element, belonging to the same body, respec-
tively.

2.4 Substructuring
To capture geometrical nonlinearity using the FFR ap-

proach, the substructuring technique is utilized (Fig. 2). The
method adds more generalized coordinates to the system since
each substructure is described with its own body frame. Simi-
larly, each substructure adds a set of new constraint equations.
In turn, each substructure has its own FE mesh to determine the
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corresponding modal shapes. For each body frame, a set of ref-
erence coordinates defines the position and orientation in space
while a set of modal coordinates describes the deformation of the
elements.

FIGURE 2. Flexible wind turbine blade divided into three substruc-
tures, where each substructure is discretized into a set of Finite Elements

The generalized coordinates of the substructures are re-
lated by translation and rotation compatibility conditions at each
substructure interface. Fixed-free reference conditions are as-
sumed for the substructures. Therefore, FE models use cantilever
boundary conditions. The local reference frame is placed at the
fixed end of each substructure. The implementation of the sub-
structuring technique has been validated by recreating the re-
sults of a highly flexible spinning beam from the paper by Wu
& Haug [10]. The disadvantage of this method is that the in-
creased number of generalized coordinates and constraints lead
to a decrease in computational efficiency.

To improve the computational efficiency of the substructur-
ing technique, nonlinear beam FE could be used, since each ele-
ment then will be able to describe accurately large displacements,
which means that fewer substructures would be necessary to ac-
count for the geometric nonlinear behaviour of a wind turbine
blade. Large deformation may occur even when strain is kept

small if components are large enough, as it is the case with a wind
turbine blade. It can experience geometric nonlinearity and large
displacements considering the small change in strain rate [10].

3 Elastic nonlinear model
The procedure for developing the linear and nonlinear elastic

models is taken from the work of Mayo et al. [17].

3.1 Displacement field
The displacement field in a two-dimensional beam obeying

Euler-Bernoulli theory reads

ū =

[
ū
v̄

]
=

[
ū0 − ȳ ∂ v̄0

∂ x̄
v̄0

]
, (10)

where x and y are the longitudinal and transverse coordinates,
respectively, ū and v̄ are the longitudinal and transverse displace-
ments, respectively, and the subscript 0 refers to the value at
ȳ = 0, the neutral axis.

3.2 Strain
The assumptions in infinitesimal strain theory are not valid

when considering large deformations and therefore a strain
model from finite strain theory must be used. The Green-
Lagrange strain tensor [18, 19] reads

ε̄i j =
1
2

(
∂ ūi

∂ x̄ j
+

∂ ū j

∂ x̄i
+

2

∑
k=1

∂ ūk

∂ x̄i

∂ ūk

∂ x̄ j

)
, i, j = 1,2, (11)

where subscript 1 and 2 refer to x and y directions, respectively.
The axial strain (ε̄xx) is given by:

ε̄xx =
∂ ū
∂ x̄

+
1
2

[(
∂ ū
∂ x̄

)2

+

(
∂ v̄
∂ x̄

)2
]
. (12)

A simplification of the axial strain for the beam element is pro-
posed by Sharf [20], where the first term inside the brackets is
neglected since longitudinal deformation is expected to be negli-
gible as compared with transverse deformation, simplifying Eqn.
(12) to

ε̄xx ≈
∂ ū
∂ x̄

+
1
2

(
∂ v̄
∂ x̄

)2

= ε̄
l
xx + ε̄

nl
xx , (13)

where ε̄xxl ans ε̄nl
xx are the linear and nonlinear axial strains, re-

spectively. By using the definition of the displacement field in
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Eqn. (10) both components of the strain yield

ε̄
l
xx =

∂ ū0

∂ x̄
− ȳ

∂ 2v̄0

∂ x̄2 , (14)

ε̄
nl
xx =

1
2

(
∂ v̄0

∂ x̄

)2

. (15)

3.3 Strain energy
For a linear elastic material that obeys Hooke’s law, the

strain energy for a beam-like body experiencing only axial strain
reads

U =
1
2

∫
V

τ̄xxε̄xxdV̄ , (16)

where τxx is the axial stress and V is the volume of the elas-
tic body. Shearing strains have been neglected in this analysis,
under the assumption that blades are rather slender structures,
and their contribution to the strain energy has therefore been ex-
cluded. Nevertheless, this assumption is a subject of further con-
firmation. By using the constitutive relations, τ̄xx = E ε̄xx, where
E is the Young’s modulus, along with Eqn. (13), the Eqn. (16)
can be divided into three separate volume integrals

U =
1
2

∫
V

E
(

ε̄
l
xx

)2
dV̄ +

∫
V

E
(

ε̄
l
xxε̄

nl
xx

)
dV̄

+
1
2

∫
V

E
(

ε̄
nl
xx

)2
dV̄ =UL +UG +UH . (17)

The terms in the strain energy in Eqn. (17) are labelled as
UL, UG and UH , respectively. UL retains all terms to develop
the constant conventional linear stiffness matrix. UG constitutes
what is described as the geometric stiffness matrix and is depen-
dent on the axial elastic coordinates of the body. With respect
to UH , a second-order nonlinear stiffness matrix can be devel-
oped [17]. The second-order nonlinear stiffness matrix is highly
nonlinear and requires a large number of high-frequency axial
modes. This is due to the axial deformation being affected both
by axial forces, but also by the foreshortening effect due to bend-
ing [17]. Capturing accurately the foreshortening effect requires
accounting for a large number of axial modes. It would increase
significantly the computational cost of the simulation since they
are related to high natural frequencies. Because of this reason,
along with the fact that second-order nonlinearities are expected
to have a reduced impact as compared with first-order nonlinear-
ity, UH is excluded from this analysis.

By using Eqn. (14) into UL and after some mathematical
treatment, it yields

UL =
1
2

[∫
L

EA
(

∂ ū0

∂ x̄

)2

dx̄+
∫

L
EIz

(
∂ 2v̄0

∂ x̄2

)2

dx̄

]
, (18)

FIGURE 3. Two dimensional beam element

where L is the length of the beam, A is the cross-sectional area
and Iz is the second moment of area. It should be noted that the
area integral makes vanishing those terms proportional to ȳ.

The second part of the strain energy, UG, can be expanded
and treated in similar manner as UL, yielding

UG =
1
2

∫
V

2E

[(
∂ ū0

∂ x̄
− ȳ

∂ 2v̄0

∂ x̄2

)
1
2

(
∂ v̄0

∂ x̄

)2
]

dV̄

=
1
2

∫
L

EA
(

∂ ū0

∂ x̄

)(
∂ v̄0

∂ x̄

)2

dx̄, (19)

in which again those terms proportional to ȳ become zero after
area integration.

3.4 Shape function matrix
The axial and lateral displacements of a point in the midline

of a FE can be calculated as

ūe
0 = S̄e (

ξ̄
)

n̄e =
[

ū0 v̄0
]T

, (20)

where ξ̄ = x̄/L and n̄e, is the vector of nodal coordinates shown
in Fig. 3. The FE shape function matrix reads

S̄e (
ξ̄
)
=

[
S̄1 0 0 S̄4 0 0
0 S̄2 S̄3 0 S̄5 S̄6

]
=

[
S̄x
S̄y

]
, (21)

where S̄x and S̄y contain the axial and transverse shape functions,
respectively. The latter corresponds to the Euler-Bernoulli beam
FE [6, 21]. Their definition read

S̄1 = 1− ξ̄ , S̄4 = ξ̄ ,

S̄2 = 1−3(ξ̄ )2 +2(ξ̄ )3, S̄5 = 3(ξ̄ )2 −2(ξ̄ )3,

S̄3 = l
[
ξ̄ −2(ξ̄ )2 +(ξ̄ )3

]
, S̄6 = l

[
(ξ̄ )3 − (ξ̄ )2

]
.

(22)
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3.5 Stiffness matrices
The stiffness matrices of the FE are obtained by rewriting

the definition of the potential elastic energy in terms of ue
0. In the

case of Eqn. (18), it yields

UL =
1
2

∫
L

EA
(

∂ S̄x

∂ x̄
n̄
)2

dx̄+
1
2

∫
L

EIz

(
∂ 2S̄y

∂ x̄2 n̄
)2

dx̄, (23)

which after rearranging becomes

UL =
1
2

n̄T

[∫
L

EA
(

∂ S̄x

∂ x̄

)T (
∂ S̄x

∂ x̄

)
dx̄

]
n̄+

1
2

n̄T

[∫
L

EIz

(
∂ 2S̄y

∂ x̄2

)T (
∂ 2S̄y

∂ x̄2

)
dx̄

]
n̄.

(24)

It is then possible to insert the relevant partial derivatives
of the shape function matrix and integrate the expressions sep-
arately. After rewriting Eqn. (24), the constant linear stiffness
matrix, KL, arises as

UL =
1
2

n̄T KLn̄. (25)

The matrix KL can efficiently be obtained by utilizing the
Symbolic Math Toolbox in MATLAB. The constant linear stiff-
ness matrix (KL) for a beam element yields

KL =
EIz

L



A
Iz

0 12
L2 sym.

0 6
L 4

− A
Iz

0 0 A
Iz

0 − 12
L2 − 6

L 0 12
L2

0 6
L 2 0 − 6

L 4


. (26)

Castigliano’s first theorem [21] states that if the strain energy
is a function of the generalized displacements, then a generalized
elastic force may be expressed as

Qelas =−∂U
∂ n̄

. (27)

For the case of the linear elastic energy, applying Castigliano’s
first theorem to Eqn. (25) simply yields

∂UL

∂ n̄
=−KLn̄. (28)

Following a similar procedure for the second strain energy
term (UG), and noting that this term depends on the axial elastic
coordinates it is possible to write

∂UG

∂ n̄
=−KGn̄+QG, (29)

where QG is a nonconstant elemental vector of nonlinear elastic
forces and KG is the geometric stiffness matrix. Their definition
read

QG =−1
2



n̄T
(

∂KG

∂ n̄1

)
n̄

...

n̄T
(

∂KG

∂ n̄6

)
n̄


, (30)

and

KG =
EA∆ū

L2



0

0 − 6
5 sym.

0 − L
10 − 2L2

15

0 0 0 0

0 6
5

L
10 0 − 6

5

0 − L
10

L2

30 0 L
10 − 2L2

15


, (31)

where ∆ū = n1−n4 is the change in the axial elastic coordinates.
This stiffness matrix adds the bending-stretch coupling since new
bending stiffness terms are added, which are dependent on the
axial deformations in the body.

After the development of the linear and non-linear FE stiff-
ness matrices, it is possible to present the two elastic models used
in the present analysis to model the generalized elastic forces.
These elastic models will be named according to the paper by
Mayo et al. [17] based on the order of terms introduced. The
element force vector QG can be shown to contain second-order
non-linear terms depending on the transverse and rotational co-
ordinates. To keep this analysis on the influence of first-order
non-linear terms, QG has not been included in this analysis. The
linear formulation (L) is constant, whereas the nonlinear formu-
lation (NL1) depends on the axial elastic coordinates and must be
updated in a dynamic analysis. On an element basis these elastic
models can be expressed as:

1. The linear formulation (L): KLn̄.
2. The nonlinear formulation 1 (NL1): (KL +KG) n̄.
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4 Blade modelling
The wind turbine blade that has been modelled in the present

study is based on the data presented in the PhD thesis of Holm-
Jørgensen [22]. The blade is from a 2.75 MW wind turbine, and
it has a length of 44.8 m and a weight of 9960 kg. Cross-sectional
data is provided for 22 sections. In the multibody dynamics
model developed, it is possible to divide the blade into substruc-
tures where each substructure has a unique set of beam FE with
different cross-sectional properties. The blade is therefore mod-
elled as non-prismatic as shown in Fig. 4. Gravitational effects
are considered, but the effects arising from the offset between
the local airfoil coordinate systems with respect to the center of
gravity, for example, the elastic and shear centers, has not been
included in the present study to keep as a two-dimensional prob-
lem. The blade is neither pre-bent nor pre-twisted in its initial
configuration.

FIGURE 4. Nonprismatic blade model with variational cross-
sectional area using three substructures

The blade can be considered slender, which means that shear
deformation can be neglected. Based on the data from the blade
provided by Holm-Jørgensen [22] the criterion for an Euler-
Bernoulli assumption is assessed. The Euler-Bernoulli assump-
tion is valid when κ is much smaller than 1

κ =
12EIzky

AGL2 ≪ 1, (32)

where ky is the shear coefficient. According to Cook [23], ky
must be about 2 for a thin-walled circular cross-section, which
is the case when the blade is examined at the blade root cross-
section. For the case here studied κ = 0.016 at the blade base,
and therefore the Euler-Bernoulli assumption is suitable for this
problem. Dissipation is introduced as modal damping, where the
damping ratio for all modes is kept constant at 0.01.

The dynamic response of the wind turbine blade is simulated
using a rotational driving constraint with a time-dependent ramp-
up function. A final angular velocity, ω , of 1.6 rad/s, which is

the nominal angular velocity of the 2.75 MW wind turbine, is
reached after 15 seconds. However, the response of the blade will
be simulated for additional 35 seconds to ensure that a steady-
state response is obtained. The angular position of the rotating
blade is prescribed by

θ(t) =


(

ω

Ts

)[(
t2

2

)
+

(
Ts

2π

)2(
cos
(

2πt
Ts

)
−1
)]

, 0 ≤ t < Ts

ω

(
t − Ts

2

)
, Ts ≤ t

(33)
where Ts is a spin-up time and t is the total simulation time, set
at 15 and 50s, respectively. This ramp function is taken from the
rotating beam problem used by Wu and Haug [10]. The wind
load is not considered since the main goal is to assess differences
between linear and non-linear modelling.

5 Numerical results
The flexible deformation of the blade due to rotation is in-

terpreted in terms of the transverse and axial tip displacements.
They are calculated with respect to the undeformed blade as
shown in Fig. 5.

FIGURE 5. Vector diagram of axial and transverse displacement

Firstly, a study of the number of modes necessary to obtain
a converged solution is conducted by using only 1 substructure
divided into 22 Finite Elements. For the linear model L, a con-
verged solution is obtained with 1 axial and 6 transverse modes
as shown in Fig. 6 while the NL1 formulation needs 2 axial and 6
transverse modes to converge as shown in Fig. 7. The geometric
stiffening due to axial loading increases the need for axial modes
comparing the converged results of L and NL1. Nevertheless,
there is no a clear convergence behaviour.

A case study of the blade model is conducted by varying
the number of substructures from 1 to 12 and comparing the re-
sponse of the linear formulation with the response obtained by
accounting for the non-linear elastic forces. In Figures 8 and 9
the transverse and axial tip displacements are presented, respec-
tively, using 1, 2, and 12 substructures with the linear elastic
model L. By increasing the number of substructures, the trans-
verse displacement is reduced due to a better representation of
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FIGURE 6. Steady state response of transverse tip displacement for
Linear Model (ω = 1.6 rad/s)
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FIGURE 7. Steady state response of transverse tip displacment for
Nonlinear Model 1 (ω = 1.6 rad/s)

geometric stiffening. In the case of the axial displacement, 1 sub-
structure predicts only negative displacement, which represents
an elongation of the blade due to centrifugal forces. However, as
the number of substructures increases, large displacements are
correctly represented and foreshortening effect seems to occur as
represented schematically in Figure 5.

Both figures show similar behaviour when varying the num-
ber of substructures, but with different predictions in peak dis-
placement in steady-state. For the axial displacement, a signifi-
cant difference is obtained when using more than one substruc-
ture, which is caused by the foreshortening effect. The effect of
gravity is also observable in the axial displacement as the grav-
itational forces alternate between working against and with the
centrifugal forces.

In Fig. 10, it is observed that the axial displacement oscil-
lates with twice the frequency of the transverse displacements.
This indicates that the foreshortening effect dominates the axial
displacement, so that every time the blade is bent to the utmost
position, in either direction, a maximum is reached in the ax-
ial displacement as well. Every time the transverse deflection
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FIGURE 8. Transverse tip displacement for 1, 2, and 12 substructures
using the linear elastic model (L)
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FIGURE 9. Axial tip displacement for 1, 2, and 12 substructures us-
ing the linear elastic model (L)

changes sign, the axial deflection is at a minimum and in a state
of stretch, indicating that the centrifugal forces are pulling the
blade in its longitudinal direction.

A comparison of the maximum axial and transverse tip dis-
placements in steady-state between the two elastic models L and
NL1 can be seen in Fig. 11 and 12. The number of substructures
used has also been varied from 1 to 12.

Increasing the number of substructures stiffens the trans-
verse displacement response for the elastic model L. In the non-
linear model (NL1), where the geometric stiffening effect is in-
cluded, the response is close to the converged result using only 1
substructure. However, this is not the case for the axial displace-
ment, where similar behaviour is observed between the two elas-
tic models when increasing the number of substructures. Nonlin-
ear model (NL1) is not able to improve the convergence, since it
assumes that bending does not change the longitudinal position
of the blade and therefore it does not account for foreshortening
effect at any extent. Even more, the stiffening effect introduced
by NL1 makes the axial displacement converge slower compared
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FIGURE 10. Tip displacements using the linear elastic model (L)
with 12 substructures

to the linear elastic model (L) since the bending stiffness is rela-
tively larger.

Regarding the computational cost, the linear approach is
overall less expensive than NL1. For 9 substructures, the compu-
tational cost of NL1 equals that of the linear theory using 12 sub-
structures. Therefore, despite an increased computational cost
NL1 might still offer a better performance.
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FIGURE 11. Max. transverse tip displacement in steady state for the
two elastic models and varying substructures (ω=1.6 rad/s)

6 Summary and Conclusions
A 2D case study of a blade from a 2.75 MW wind turbine

is conducted by modelling the blade as a non-prismatic beam
based on data from a wind turbine blade. The floating frame of
reference formulation is applied to model the flexibility of a wind
turbine blade. The stiffness of the blade is described by a Finite
Element formulation by discretizing the blade into several Euler-
Bernoulli beam elements. To capture geometric nonlinearity de-
formations both the substructuring technique and the nonlinear
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FIGURE 12. Max. axial tip displacement in steady state for the two
elastic models and varying substructures (ω=1.6 rad/s)

elastic forces are applied. These methods couple the axial and
transverse displacement.

The numerical results displayed in this paper demonstrate
that a single substructure with a linear elastic model may not be
able to represent a wind turbine blade when non-linear phenom-
ena occur. The foreshortening effect is not captured when the
blade is bent, and the transverse tip displacement is estimated
too large. Increasing the number of substructures improves the
blade modelling.

The nonlinear model describes the transverse tip deflection
better than the linear model using fewer substructures, but a sim-
ilar ability in describing the foreshortening effect is seen for the
elastic models L and NL1. This is due to the bending-stretching
coupling being included in the nonlinear elastic model (NL1) so
that a stiffening effect is introduced. However, since transverse
deflections affect more the blade and wind turbine performances
in terms of loading and fatigue than axial ones, it is concluded
that accounting for the contribution of nonlinear elastic forces
minimizes the number of substructures necessary to achieve the
convergence of the blade model.
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