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A B S T R A C T

This paper presents an analytical solution for the rope-sheave contact problem in static
conditions, also applicable to belt-pulley problems and similar mechanisms. The rope is assumed
under constant and unequal loads at the two ends, as in an elevator when the brake is acting
on the drive sheave and the weights of the cabin and counterweights are different. The rope is
assumed to behave as a rod without bending stiffness. Assuming a bristle model for the rope-
sheave contact and Coulomb friction, the balance of forces in a differential slice of the rope is
used to obtain a closed-form solution for the axial force field and the normal and tangential
contact force fields. This analytical solution is found first in the case of a bristle model with
tangential flexibility but axially rigid. Then, the model is extended to axially flexible bristles,
that allows the rope to sheave relative penetration. The solution is valid until one cross-section
of the rope achieves the saturated tangential friction force. The value of the axial load when
this condition is met is identified. If the high-load further increases, the rope in contact with
the sheave is separated in two areas, the area next to the low-load remains fully stuck to the
sheave while the area next to the high-load shows exactly the saturated friction force. This paper
calculates the angle of separation between the two areas and the axial force field and normal
and tangential contact force fields, being all these functions piece-wisely defined. Finally, the
paper presents numerical results for a particular example of all the analytical solutions.

. Introduction

When entering the cabin of an elevator, before it starts moving, a brake is acting on the drive sheave. After pressing the button of
he floor where we want to go, the brake opens while the electric drive applies a torque that initially balances the weight difference
etween the cabin and the counterweight, thus avoiding the free fall or free rise of the cabin that would happen depending on the
elative weight of the cabin and the counterweight. Afterwards, the electric drive modifies the torque to get the required acceleration
o start the motion. Motion, force and power are transmitted in this process through the normal and tangential contact stresses at
he rope-sheave interface. It is apparent the need to understand the rope-sheave contact problem. Surprisingly, a simple analytical
olution of the rope-sheave contact problem is well known under dynamic conditions, when the drive sheave is rotating, but there
re no analytical solutions, to the best knowledge of the author, under static conditions. The dynamic analytical solution of the
ope-sheave contact problem is the same as the Euler-Eytelwin formula also known as capstan formula or belt friction problem [1,2].
his solution is used in the European standard EN 81-1 [3] that deals with safety in electric elevators. However, this solution may
ot be very accurate for the rope-sheave contact. That is probably why the standard proposes to consider a very low coefficient of
riction, smaller than 0.1, as a safety factor to compensate for the uncertainty in the applied theory.
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In the instant when the user enters the cabin, although the brake is acting, this device just guarantees that the drive sheave does
ot rotate. However, by no means the brake grasps the wire ropes to avoid the rope to sheave relative slipping. This is, we trust
hat dry friction is able to keep the cabin still but, if we ask the elevator designer how much mass could enter the cabin before rope
o sheave slip starts, probably the designer would say that that depends on the coefficient of friction. But the coefficient of friction
s not known accurately. Therefore, the amount of load that rope-sheave friction can withstand is not clear. Even if the coefficient
f friction is accurately known, there is no theory that tells you under which load rope slipping will start before the gross slipping
appens. The Euler-Eytelwin formula is not applicable under static conditions. This situation may look scary, but it is totally real.
or the peace of the reader we will say that modern elevators have safety brakes that, if the cabin starts falling too fast, a mechanism
alled governor detects it and activates a device that clamps the cabin to the rail guides.

Euler-Eitelwing formula was applied to the analysis of belt-pulley transmission mechanisms by Reynolds and Grashof. In 1875
eynolds [4] added the effect of speed loss in the belt due to the micro-slip and in 1883 Grashof [5] included the effect of the
entrifugal force. The theory of force transmission in belt drives was called afterwards Reynolds-Grashof theory or belt creep theory.

New developments of the belt-pulley contact theory were published by Firbank in 1970 [6] motivated by the use in the industry of
belts with a soft pliable envelope to grip the pulley and strong tension members to transmit the power. In this type of pulley, the
belt deformation was mainly due to shear deformation of the envelope instead of axial deformation of the tension members. Firbank
theory assumes the belt to be inextensible. His theory showed the existence of slip and adherence arcs, as in Reynolds-Grashof theory,
but the slip arc was shown to be also capable of transmitting power. Recently, Frendo and Bucchi have developed an analytical and
numerical study of the contact forces in belt transmissions, based on the brush model, that is able to catch the stick–slip contact
behaviour that has been experimentally observed. Their model was first developed for axially rigid belts [7] and later they included
the axial flexibility [8]. This model has been validated with a finite element model [9]. Chowdhury and Yedavalli [10] developed an
analytical model of a belt transmission system for vibration analysis. The shafts of the pulleys are considered as continuous beams
with torsional flexibility and the belt is treated as a combination of linear and torsional springs. This model is used to develop a
detail vibration analysis of the transmission system using Campbell diagrams and modal energy plots.

In the rope-sheave contact analysis, few advances were done in the scientific literature since Euler-Eitelwing seminal work. In
1970 Heller published [11] a rope-sheave contact theory considering the effect of the shear forces in the rope and accounting
for the rope diameter to sheave diameter ratio. Results were only applicable to the slip arc. Heller studied the effect of the rope
weight and the angular velocity of the sheave in the contact force distributions. Feyrer [12] studied the tape-sheave contact and the
rope-sheave contact in static conditions. In the case of the tape-sheave contact, the normal contact force distribution is approximated
as a constant value, equal to the applied axial force on the tape divided by the radius of the sheave, plus two concentrated normal
forces applied at the ends of the contact region. These concentrated forces are calculated analytically as function of the applied axial
force and the bending stiffness of the tape. In the case of the rope-sheave contact, Feyrer shows that the concentrated forces at the
ends of the contact region turn into finite regions in the contact bow where the normal pressure increases its value with a pressure
peak that is about 50% higher than in the remaining of the bow. Feyrer does not study the tangential contact stress distribution and
its influence in the normal contact pressures distribution of the rope-sheave contact. Konyukhov [13] published a paper about the
contact of ropes on orthotropic rough surfaces. For a rope in contact with a general surfaces, he derives the variational equation of
equilibrium including the frictional contact constraints via Karush–Kuhn–Tucker conditions. Using these general equations, various
cases possessing analytical solutions are presented, like the Euler-Eytelwin solution.

Regarding experimental studies, using a belt-testing machine, Firbank [6] showed that the contact theory based on shear
deformation of the rubber reinforced belts was much more accurate than the Reynolds-Grashof theory. Experiments showed that the
creep to tension difference plot based on the shear deformation theory agrees reasonably well with experimental results. Häberle [14]
measured the effect in the contact pressure of the bending stiffness of the ropes, that is known to create relatively high peaks at
the entrance and running of points of the rope in the sheave. Häberle made measurements of the ratio of the maximum and the
global line pressures as a function of the diameter ratio of the sheave and the rope. Nabijou and Hobbs [15] studied the rope-sheave
effective coefficient of friction in static and dynamic case. To do that, in their test rig, they were able to measure the load transmitted
to the two rope spans. They did experiments to analyse many different effects including the profile of the sheave groove, the pulley
diameter, the rope diameter to sheave diameter ratio, the rope and pulley use and the effect of rope internal construction. Usabiaga
et al. [16] built an experimental setup in which the were able to insert a 3D piezoelectric load cell in a thin sector of a drive
sheave. With this cell, they experimentally measured the rope-sheave normal and tangential contact pressure fields. They did it
with conventional ropes and jacketed ropes. They measured the pressures peaks at the entrance and running of points at the sheave.
They concluded that the pressure fields match relatively well Heller theory [11] for conventional ropes, but the jacketed rope showed
an different normal and tangential contact force field that they attributed to the effect of the shear stress in the jacket. Della Pietra
and Timpone [17] measured the tension of belts using strain gauges installed in the outer surface of a flat belt in a transmission.
They compared the results with Reynolds-Grashof theory and Firbank theory. They confirm the presence of the adhesion and slipping
arcs. Adhesion arc appeared at the entrance of the driving and driving pulleys, and the tension of the belt in these arcs appeared to
be constant, what is consistent with Reynolds-Grashof theory. Experiments also showed the presence of shear strain and different
sliding angles in the driving and driven pulleys, as Firbank theory predicts. Recently, Lee et al. [18] have developed a model to
predict the position of a load suspended on a viscoelastic winch-driven rope. The rope-sheave contact was modelled using Firbank
theory. The model was experimentally validated with a laboratory test bench.

In computational mechanics, belt-pulley problems [19–24] or rope-sheave problems [25–28] are solved to analyse the dynamics
of power transmission systems or reeving systems. Belts and ropes use to be modelled using finite elements, being the Absolute Nodal
2
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Fig. 1. Rope-sheave contact.

for these applications [20,25,26]. These problems can also been solved using an Arbitrary Lagrangian–Eulerian Formulation [30–32]
that offers important advantages for the simulation of general reeving systems with improved computational efficiency and accuracy.
Regarding the friction models, belt-pulley problems in power transmission mechanism and rope-sheave problems in reeving systems
have to be treated differently. In belt-pulley problems, steady states or transients about a steady velocity use to be of interest. To
that end, velocity-based friction models (or creep models or micro-slip models) work very well. The problem is that when using velocity-
based models friction is zero when the relative slip velocity of the solids in contact is zero. Thus, these models cannot describe static
equilibrium positions in hoisting machines, like the case of the elevator that was mentioned before. In reeving systems, particularly
in problems like elevators and cranes, the assumed friction model in the rope-sheave interface has to be able to generate friction
forces when the slip velocity is zero. To this end, bristle models [33], also called brush models, can be used. Bristle models can be
used to calculate friction forces under stick and slip conditions. However, when used for dynamic simulations, these models create
problems because the number of generalized coordinates vary depending on whether the bristles are stuck or slip. This problem can
be solved using the LuGre friction model [34] that regularizes the stick–slip friction problems such that there is no sudden transition,
but in an imaginary state in with the contact points stick and slip at the same time.

This paper presents a very simple analytical solution of the rope-sheave contact problem for static analysis. It is based on the
solution of the differential balance equations of a continuous planar elastic rod on a circular surface. The bristle model is used to
account for dry friction. The solution depends on a few parameters: the loads at the two ends of the rope, the coefficient of friction,
the radius of the sheave, the axial stiffness of the rod and the normal and tangential stiffness of the bristles. Compared with the
belt-pulley and rope-sheave contact theories that have been described, the approach presented in this paper provides an analytical
solution under static conditions, when all these theories are not applicable, because dynamic friction is not possible and creep or
slipping does not occur. The static condition is very important in hoisting machines, as described in the first two paragraph of this
introduction. The model used in this work considers the rope as an elastic rope without bending stiffness. The shear deformation of
the rope is accounted for using a bristle model, that is suitable to describe static and dynamic friction. This approach for modelling
shear deformation is not new, as it is equivalent to the classical model developed by Firbank [6] and the brush model recently used
by Frendo and Bucchi [8]. However, these investigations were applied to belt transmissions and did not consider the static case.

This paper is organized as follows. Section 2 presents the differential balance equations of a rod in contact with a circular surface
and the Euler-Eytelwin solution applied to a simple elevator problem. Section 3 presents the analytical solution based on the bristle
model. Two cases are considered: the case of bristles that are only transversely flexible and the case of bristles that are axially
flexible too. This section also demonstrate the validity of the presented solutions through the application the Principle of Work and
Energy. Section 4 establishes the limits of the proposed solution at the on-set of rope to sheave slipping and the contact conditions
when the rope partially slips on the sheave. Section 5 presents a numerical example of all the solutions obtained in the paper.
Finally, summary and conclusions are given in Section 6.

2. Euler-eytelwin solution in steady dynamic problems

The system under consideration is shown in Fig. 1. In this paper it will be assumed that the contact angle between the rope
and the sheave is 180◦, however, the results can be easily extended to any angle. The rope is modelled as a linear elastic rod with
axial stiffness 𝐸𝐴 and mass-less. The axial force along the rope 𝑇 is known at the two ends of the rope, being their values 𝑇1 and
𝑇2, with 𝑇1 ≤ 𝑇2. The variation of the axial force varies along the contact angle is considered a function of the contact angle 𝛼,
this is, 𝑇 = 𝑇 (𝛼). In the rope-sheave interface there exit a normal contact pressure distribution 𝑝(𝛼) and a tangential contact force
distribution 𝑡(𝛼) (units of both distributions are N/m). In the following, the axial force 𝑇 (𝛼) and contact forces 𝑝(𝛼) and 𝑡(𝛼) will be
calculated as a function of the system parameters.

Fig. 1 on the right shows an infinitesimal slice of the rope in contact with the sheave and the forces acting on it. For convenience,
the tangential contact forces 𝑡(𝛼) acting on the rope are defined positive when acting on the contrary direction of 𝛼. Force balance
3
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Fig. 2. Solution under dynamic conditions. Axial force and tangential contact force distributions at rope-sheave interface.

in the radial and tangential directions yields:

𝑝 (𝛼)𝑅𝑑𝛼 = 𝑇 (𝛼) 𝑑𝛼

𝑡 (𝛼)𝑅𝑑𝛼 = 𝑑𝑇

⎫

⎪

⎬

⎪

⎭

⇒

⎧
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𝑝 (𝛼) = 1
𝑅𝑇 (𝛼)

𝑡 (𝛼) = 1
𝑅

𝑑𝑇 (𝛼)
𝑑𝛼

(1)

Therefore, the normal pressure is proportional to the axial force and the tangential contact force is proportional to the space
derivative of the axial force.

In the case of dynamic contact, this is, when the sheave rotates with a finite angular velocity, these equilibrium equations
together with Coulomb friction law can be used to obtain the normal and tangential contact force distributions and the axial force
distribution as a function of the axial forces at the ends 𝑇1 and 𝑇2 , being ends 1 and 2 the cross-sections of the rope at the ends of
the segment winded in the sheave. Without loss of generality, assume that tensile force 𝑇2 is larger than 𝑇1, and the sheave angle
𝛼 is measures starting at end 1. In such a case, there is a finite arc at the sheave 𝛼 ∈

[

0 𝛽
]

next to end 1 where the rope slips
over the sheave. The axial force distribution in this sliding arc is obtained as follows:

|𝑡 (𝛼)| = 𝜇𝑝 (𝛼) ⇒ 1
𝑅

𝑑𝑇 (𝛼)
𝑑𝛼 = 𝜇

𝑅𝑇 (𝛼) ⇒ 𝑑𝑇 (𝛼)
𝑇 (𝛼) = 𝜇𝑑𝛼 ⇒

𝑇 (𝛼) = 𝑇1𝑒𝜇𝛼
(2)

where the force balance given in Eq. (1) has been used and the derivative of 𝑇 with respect to 𝛼 has been assumed to be positive.
This is the Euler-Eytelwin formula that is applicable in the so-called slip arc. This arc ends at 𝛼 = 𝛽. The value of 𝛽 that can be
obtained using the boundary condition at the other end of the rope, as follows:

𝑇1𝑒
𝜇𝛽 = 𝑇2 ⇒ 𝛽 = 1

𝜇
log

𝑇2
𝑇1

(3)

If this formula gives an angle 𝛽 is larger than 180◦, the result is clearly physically impossible. This result indicate a gross slipping
(opposite to the micro-slip or creep that happens in the slip arc) of the rope over the sheave. This result is used in the elevator
industry [3] to limit the axial force difference at the two ends of the traction ropes. Using this result, the maximum axial force at
𝛼 = 𝜋 when gross slipping starts is be obtained as:

1
𝜇
log

𝑇 𝑔𝑟𝑜𝑠𝑠
2
𝑇1

= 𝜋 ⇒ 𝑇 𝑔𝑟𝑜𝑠𝑠
2 = 𝑇1𝑒

𝜇𝜋 (4)

This equation is not applicable in static conditions because the dynamic friction force considered in Eq. (2) is not possible.
In the rest of the rope-sheave contact arc 𝛼 ∈

[

𝛽 𝜋
]

the rope is stuck at the sheave. In this contact arc the axial force along
the rope remains constant and equal to 𝑇2 and the tangential contact force distribution 𝑡(𝛼) vanishes. The distribution of axial force
and tangential contact force yield (Fig. 2):

𝑇 (𝛼) =
{

𝑇1𝑒𝜇𝛼 , 𝛼 ∈
[

0 𝛽
]

𝑇2, 𝛼 ∈
[

𝛽 𝜋
] , 𝑡 (𝛼) =

{

𝜇𝑇1
𝑅 𝑒𝜇𝛼 , 𝛼 ∈

[

0 𝛽
]

0, 𝛼 ∈
[

𝛽 𝜋
] (5)

From these results very interesting conclusions can be taken when sheave is rotating and the system is moving in steady
conditions:

1. Unless the axial forces at both ends of the rope are the same, there is always a slip arc in the rope-sheave interface.
2. All the forces that drive the system (raise the cabin and lower the counterweight or vice-versa) are transmitted in that slip

arc. In the stick arc drive forces are not transmitted.

To account for the acceleration and deceleration periods, in the elevator industry these equations are used considering as end
forces 𝑇1 and 𝑇2 the sum of the weights of the cabin and counterweight plus the inertia forces that result when considering the
no-slip condition. This way, the maximum allowed acceleration and deceleration of the elevator system can be estimated.
4
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Fig. 3. Rope-sheave contact modelled with bristles.

Fig. 4. Rope slice sinking in the sheave.

3. Analytical solution of the rope-sheave contact in static conditions

The results presented in the previous section have been known for many years and nowadays they are widely used machine
design. However, the results are not applicable under static conditions.

Under static conditions, it can be considered that the rope is stuck to the sheave. However, the tangential contact force cannot be
zero as it is in Euler-Eytelwin solution in the stuck area because the tangential contact forces have to balance the load difference at
the two ends of the rope. Coulomb friction theory does not provide any formula to calculate the tangential contact force in the case
of stick contact. In rigid body mechanics, the static tangential contact force must be treated as a reaction force with a maximum
possible value, the saturated tangential force that equals the coefficient of friction times the normal contact force. In order to solve
the tangential contact force field in static conditions, a formula that relates the tangential contact force to the rope elasticity is
needed. In this work, this formula is provided by the bristle model [33].

Fig. 3 is a graphical representation of the bristle model applied to the rope-sheave contact problem. The rope is assumed to have
a set of bristles that are cantilevered to the centreline and their free ends touch the surface of the sheave. The bristles deform in the
normal and tangential directions, as shown in the right of Fig. 3. The bristles are assumed linear elastic, such that the normal and
tangential forces generated by the bristle are proportional to the normal deformation 𝑑𝑛 and tangential deformation 𝑑𝑡, respectively.
Assume now that the bristles are not discrete but there is a continuous distribution of bristles along the rope. In this case, the normal
and tangential contact force distributions can be obtained as:

𝑡 (𝛼) = 𝑘𝑡𝑑𝑡 (𝛼) ,
𝑝 (𝛼) = 𝑘𝑛𝑑𝑛 (𝛼)

(6)

where 𝑘𝑡 and 𝑘𝑛 are the tangential and normal stiffness of the bristles.
Fig. 4 shows the model of an infinitesimal slice of the rope in contact with the sheave. The normal stiffness of the bristles prevents

the slice to sink into the surface of the sheave. If the bristles are assumed to be rigid in the axial direction (𝑘𝑛 → ∞), as done in the
following subsection, the rope does not sink into the sheave (𝑑𝑛 = 0).

3.1. Analytical solution with laterally elastic bristles

Assume that the bristles are elastic in the lateral direction but rigid in the axial direction. Because the free ends of the bristles
are stuck to the sheave, the lateral deformation equals the longitudinal displacement of the attachment point at the rope centreline,
this is, 𝑑𝑡 (𝛼) = 𝑢 (𝛼), where 𝑢 is the displacement of the centreline due to the rope elasticity. This formula can be used to relate the
tangential contact force to the axial force, as follows:

𝑡 (𝛼) = 𝑘 𝑢 (𝛼) ⇒
𝑑𝑡 = 𝑘 𝑑𝑢 = 𝑘 𝜀 ⇒

1 𝑑𝑡 = 𝑘 𝑇 (7)
5
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Fig. 5. Axial force and tangential contact force distributions.

where 𝑠 is the arc-length coordinate along the rope centreline and 𝐸𝐴 is the axial stiffness of the rope. Substituting the lower
equation of the right-hand side of Eq. (1) yields:

𝑇 ′′ −
𝑘𝑡𝑅2

𝐸𝐴
𝑇 = 0 (8)

This is a second order differential equation with constant coefficients in terms of the axial force distribution 𝑇 . The solution is
given by:

𝑇 (𝛼) = 𝑇𝑎𝑒𝑟𝛼 + 𝑇𝑏𝑒−𝑟𝛼

𝑟 =
√

𝑘𝑡𝑅2

𝐸𝐴

(9)

where 𝑇𝑎 and 𝑇𝑏 are constants that can be calculated using the boundary conditions 𝑇 (0) = 𝑇1, 𝑇 (𝜋) = 𝑇2, yielding:

𝑇 (𝛼) = 𝑇𝑎𝑒
𝑟𝛼 +

(

𝑇1 − 𝑇𝑎
)

𝑒−𝑟𝛼 , (10)

where

𝑇𝑎 =
𝑇2 − 𝑇1𝑒−𝑟𝜋

𝑒𝑟𝜋 − 𝑒−𝑟𝜋
(11)

The tangential contact force field is proportional to the space derivative of 𝑇 (𝛼), yielding:

𝑡 (𝛼) = 1
𝑅

(

𝑟𝑇𝑎𝑒
𝑟𝛼 − 𝑟

(

𝑇1 − 𝑇𝑎
)

𝑒−𝑟𝛼
)

(12)

At the cross-section where the tangential contact force is zero the axial force shows a minimum, as shown in Fig. 5. The angle
where this cross-section is located is obtained as:

𝑡 (𝛼) = 0 ⇒ 𝑇𝑎𝑒
𝑟𝛼0 =

(

𝑇1 − 𝑇𝑎
)

𝑒−𝑟𝛼0 ⇒ 𝛼0 =
1
2𝑟

log
𝑇1 − 𝑇𝑎

𝑇𝑎
(13)

Note that this angle 𝛼0 can be out of the contact area. In that case the axial force does not show a minimum along the contact
area.

3.2. Analytical solution with laterally elastic and axially elastic bristles

In computational mechanics, it may be convenient to consider that the bristles are also elastic in the axial direction. This method
allows the calculation of the normal contact force distribution using an elastic approach as well. Just as normal contact force and
axial force are coupled through the upper equation in the right-hand side of Eq. (1), the normal penetration 𝑑𝑛 and the axial
deformation 𝜀 are coupled similarly. Consider an infinitesimal slice of the rope that sinks a distance 𝑑𝑛 in the surface of the sheave,
as shown in Fig. 4. The undeformed length of the centreline of the slice is (𝑅+0.5𝑙𝑠)𝑑𝛼, where 𝑙𝑠 is the width of the rope. As shown
in the figure, if the slice were free to slip along the sheave surface, it would exceed the contour of the slice, but it cannot do it
due to the presence of the neighbouring slices. Therefore, the axial deformation due to the sinking can be calculated as the original
length of the centreline of the segment minus the ‘‘constrained’’ length of the sinked slice. Thus, the axial strain yields:

𝜀𝑠 =
𝑅𝑑𝛼 −

(

𝑅 − 𝑑𝑛
)

𝑑𝛼
𝑅𝑑𝛼

=
𝑑𝑛
𝑅

(14)

where 𝜀𝑠 is the axial strain of the rope due to the sinking. The total strain of the rope, due to the axial force and due to the sinking
yields:

𝜀 = 𝑇 +
𝑑𝑛 =

(

1 + 1
)

𝑇 (15)
6
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j

d

where the equations 𝑑𝑛 = 𝑝∕𝑘𝑛 = 𝑇 ∕(𝑅𝑘𝑛) have been used. A fictitious axial stiffness of the rope that accounts for the rope-sheave
ormal indentation can be defined as follows:

1
𝐸𝐴∗ = 1

𝐸𝐴
+ 1

𝑘𝑛𝑅2
⇒ 𝐸𝐴∗ =

𝐸𝐴 + 𝑘𝑛𝑅2

𝐸𝐴𝑘𝑛𝑅2
(16)

It is apparent that in this problem the axial stiffness of the centreline and the normal stiffness of the rope surface act as spring
n series. The solution of the rope-sheave contact in the case of laterally elastic bristles, given in Eqs. (10) and (12), remains valid
ust substituting the exponent 𝑟 given in Eq. (9) with this one:

𝑟 =

√

𝑘𝑡𝑅2

𝐸𝐴∗ (17)

3.3. Energy balance

To check the validity of the solution, the Principle of Work and Energy is evaluated symbolically. The work of the applied forces
equals the deformation energy of the rope:

𝑊𝑎𝑝𝑝 = 𝑈𝑑𝑒𝑓 (18)

The work of the apply forces is simply given by:

𝑊𝑎𝑝𝑝 = −1
2
𝑇1𝑢 (0) +

1
2
𝑇2𝑢 (𝜋) =

1
2𝑘𝑡

(

−𝑇1𝑡 (0) + 𝑇2𝑡 (𝜋)
)

, (19)

where the first equation of Eq. (7) has been used. This work is given by the following closed form:

𝑊𝑎𝑝𝑝 =
𝑟
[(

1 + 𝑒2𝑟𝜋
) (

𝑇 2
1 + 𝑇 2

2
)

− 4𝑇1𝑇2𝑒𝑟𝜋
]

2𝑅𝑘𝑡
(

𝑒2𝑟𝜋 − 1
) (20)

The deformation energy of an infinitesimal slice of the rope includes the axial deformation energy of the rope, the axial
eformation energy of the bristles and the transverse deformation energy of the bristles, as follows:

𝑑𝑈𝑑𝑒𝑓 = 𝑑𝑈𝑎𝑥 + 𝑑𝑈𝑛𝑜𝑟 + 𝑑𝑈𝑡𝑎𝑛 =
( 1
2
𝐸𝐴𝜀2 + 1

2
𝑘𝑛𝛿

2
𝑛 +

1
2
𝑘𝑡𝛿

2
𝑡

)

𝑅𝑑𝛼 (21)

This expression can be easily written in terms of the axial force field 𝑇 (𝛼) and the tangential contact force field 𝑡(𝛼), yielding:

𝑑𝑈𝑑𝑒𝑓 =
[

1
2

(

1
𝐸𝐴

+ 1
𝑅2𝑘𝑛

)

𝑇 2 (𝛼) + 1
2
1
𝑘𝑡
𝑡2 (𝛼)

]

𝑅𝑑𝛼 (22)

The total deformation energy of the rope is obtained as the integral of the differential deformation energy, as follows:

𝑈𝑑𝑒𝑓 = 1
2

(

1
𝐸𝐴

+ 1
𝑅2𝑘𝑛

)

∫

𝜋

0
𝑇 2 (𝛼) 𝑑𝛼 + 1

2
𝑅
𝑘𝑡 ∫

𝜋

0
𝑡2 (𝛼) 𝑑𝛼 (23)

The close form solution of this equations can be easily obtained using symbolic computation. The result is identical to the
expression of the work of the applied forces given in Eq. (20). Thus, the fulfilment of the Principle of Work and Energy of the
presented solution is proven.

4. Onset of the rope-sheave slipping and contact with partial slip

The analytical solution has physical meaning if the tangential contact force is at all sections smaller than the coefficient of
friction 𝜇 times the normal contact force 𝑝(𝛼). The numerical evaluation of the presented result shows that as 𝑇2 increases, keeping
all other terms constant, the tangential contact force field increases and the angle 𝛼0 moves to the left and becomes negative. This
tendency will be shown in the next section. That means that 𝑡(𝛼) becomes positive all along the rope and the axial force 𝑇 (𝛼) does
not show any minimum in the contact area (see Fig. 5). That means that both functions 𝑡(𝛼) and 𝜇𝑝(𝛼) grow monotonically with
increasing slope when 𝛼 increases. Necessarily, the point where the slip begins is located at the end 𝛼 = 𝜋. The contact conditions
when slip starts at that end are called here onset of slipping. The value of 𝑇2 when these conditions are met can be calculated solving
the equation:

𝑡 (𝜋) = 𝜇𝑝 (𝜋) (24)

Using the expressions given in Eqs. (10) and (12), and considering the definition of 𝑇𝑎 given in Eq. (11), the following result is
easily obtained:

𝑇 𝑜𝑛𝑠𝑒𝑡
2 = 2𝑟

𝑟 (𝑒−𝑟𝜋 + 𝑒𝑟𝜋 ) + 𝜇 (𝑒−𝑟𝜋 − 𝑒𝑟𝜋 )
𝑇1 (25)

The contact conditions in the onset of slipping is represented in the central plot of Fig. 6. Only the section at 𝛼 = 𝜋 has reached
the saturated tangential friction force.

The axial force at this end can still be increased before gross slipping of the rope starts. For values of the load such that
𝑇 𝑜𝑛𝑠𝑒𝑡 < 𝑇 < 𝑇 𝑔𝑟𝑜𝑠𝑠 part of the rope at the high-load side achieves the saturated tangential force while the other part of the
7
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Fig. 6. Phases of rope-sheave contact in static conditions.

rope at the low-load side remains stuck to the sheave. Contact conditions are represented in the right plot of Fig. 6. The normal and
tangential contact force distributions are calculated next.

To calculate the contact force fields, an angle 𝛼𝑏 is assumed to limit the regions of saturated and non-saturated tangential contact
forces. The axial force and tangential contact force distributions are assumed in the form:

𝑇 (𝛼) =
{

𝑇𝐼𝑒𝑟𝛼 + 𝑇𝐼𝐼𝑒−𝑟𝛼 if 0 ≤ 𝛼<𝛼𝑏
𝑇𝑏𝑒𝜇(𝛼−𝛼𝑏) if 𝛼𝑏 ≤ 𝛼 ≤ 𝜋

𝑡 (𝛼) =

{ 𝑟
𝑅

(

𝑇𝐼𝑒𝑟𝛼 − 𝑇𝐼𝐼𝑒−𝑟𝛼
)

if 0 ≤ 𝛼<𝛼𝑏
𝜇
𝑅𝑇𝑏𝑒

𝜇(𝛼−𝛼𝑏) if 𝛼𝑏 ≤ 𝛼 ≤ 𝜋

(26)

where 𝑇𝐼 , 𝑇𝐼𝐼 , 𝑇𝑏, and 𝛼𝑏 are constants to be determined. Clearly, the expressions used in this equations are of the same form than
the distributions obtained for the gross slipping and fully stuck distributions calculated in Sections 2 and 3, respectively.

Imposing boundary conditions on 𝑇 (𝛼) and continuity of the axial force and tangential contact force distributions, the following
set of equations are obtained:

𝑇𝐼 + 𝑇𝐼𝐼 = 𝑇1
𝑇𝐼𝑒𝑟𝛼𝑏 + 𝑇𝐼𝐼𝑒−𝑟𝛼𝑏 = 𝑇𝑏
𝑟𝑇𝐼𝑒𝑟𝛼𝑏 − 𝑟𝑇𝐼𝐼𝑒−𝑟𝛼𝑏 = 𝜇𝑇𝑏
𝑇𝑏𝑒𝜇(𝜋−𝛼𝑏) = 𝑇2

(27)

The first three equations are linear in terms of 𝑇𝐼 , 𝑇𝐼𝐼 , 𝑇𝑏, and they can be used to obtain these constants as a function of the
fourth one, 𝛼𝑏, as follows:

⎡

⎢

⎢

⎣

1 1 0
𝑒𝑟𝛼𝑏 𝑒−𝑟𝛼𝑏 −1
𝑟𝑒𝑟𝛼𝑏 −𝑟𝑒−𝑟𝛼𝑏 −𝜇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑇𝐼
𝑇𝐼𝐼
𝑇𝑏

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑇1
0
0

⎤

⎥

⎥

⎦

⇒

⎧

⎪

⎨

⎪

⎩

𝑇𝐼 = 𝑇𝐼
(

𝛼𝑏
)

𝑇𝐼𝐼 = 𝑇𝐼𝐼
(

𝛼𝑏
)

𝑇𝑏 = 𝑇𝑏
(

𝛼𝑏
)

(28)

Substituting 𝑇𝑏
(

𝛼𝑏
)

in the fourth equation of Eq. (27) yields:

𝑇𝑏
(

𝛼𝑏
)

𝑒𝜇(𝜋−𝛼𝑏) = 𝑇2 ⇒ 𝛼𝑏 = 𝜋 − 1
𝜇
log

𝑇2
𝑇𝑏

(

𝛼𝑏
) (29)

The equation in the right-hand side is a non-linear equation that is very simple to solve numerically to find 𝛼𝑏. Once 𝛼𝑏 is obtained,
its value is substituted in Eq. (28) to find 𝑇𝐼 , 𝑇𝐼𝐼 and 𝑇𝑏. Thus, the axial force and tangential contact force distributions given in
Eq. (26) become fully defined. Note that the all the results presented in this paper are purely analytical, closed-form solutions, with
the only exception of this step, that requires a numerical iterative procedure, but it is elementary.

The numerical solution of Eq. (29) when 𝑇2 varies continuously from 𝑇 𝑜𝑛𝑠𝑒𝑡
2 to 𝑇 𝑔𝑟𝑜𝑠𝑠

2 provides an angle 𝛼𝑏 that varies continuously
and smoothly from 𝜋 to 0, as expected.

5. Example

In this section, the results presented in this paper are applied to a particular example whose parameters are defined in Table 1.
To get the plots shown in this section, the high load 𝑇2 is varied from 𝑇1 up to 𝑇 𝑔𝑟𝑜𝑠𝑠

2 using a small set of discrete values. Then,
the normal and tangential contact force distributions are evaluated using the corresponding formulas developed in this paper as a
function of 𝛼 and then plotted. In this problem 𝑇 𝑜𝑛𝑠𝑒𝑡

2 = 2.77 KN and 𝑇 𝑔𝑟𝑜𝑠𝑠
2 = 3.51 KN. The selected discrete values for 𝑇2 are:

𝑇2 ∈
[

1 1.5 2 𝑇 𝑜𝑛𝑠𝑒𝑡
2 3 3.3 𝑇 𝑔𝑟𝑜𝑠𝑠

2
]

KN (30)

Fig. 7 shows the tangential contact forces and the normal contact forces multiplied by the coefficient of friction for values of 𝑇2
smaller or equal 𝑇 𝑜𝑛𝑠𝑒𝑡. Some comments:
8
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Table 1
Parameters of rope-sheave contact problem.

Parameter Value

Low axial load, 𝑇1 1 KN
Radius of sheave, 𝑅 0.3 m
Axial stiffness of rope, 𝐸𝐴 40 MN/m
Transverse stiffness of bristles, 𝑘𝑡 20 MN/m2

Axial stiffness of bristles, 𝑘𝑛 150 MN/m2

Friction coefficient, 𝜇 0.4

Fig. 7. Contact force distributions with rope fully stuck at the sheave.

• For 𝑇2 = 𝑇1 the normal contact force is symmetric and the tangential contact force anti-symmetric.
• For low values of 𝑇2 the tangential contact force seems to be linear, but it is not.
• For relatively high values of 𝑇2, in this case 𝑇2 > 2 KN approximately, the tangential contact force does not change sign and

the normal contact force does not show a relative minimum in the contact area
• It can be observed that for 𝑇2 = 𝑇 𝑜𝑛𝑠𝑒𝑡

2 then 𝑡(𝜋) = 𝜇𝑝(𝜋).

Fig. 8 shows the tangential contact forces and the normal contact forces multiplied by the coefficient of friction for values of 𝑇2
such that 𝑇 𝑜𝑛𝑠𝑒𝑡

2 ≤ 𝑇2 ≤ 𝑇 𝑔𝑟𝑜𝑠𝑠
2 . Some comments:

• Normal and tangential contact force functions for 𝑇2 ≥ 𝑇 𝑜𝑛𝑠𝑒𝑡
2 do not have high order continuity at 𝛼 = 𝛼𝑏, since they are

piecewise functions, as shown in Eq. (26).
• For 𝑇2 = 𝑇 𝑔𝑟𝑜𝑠𝑠

2 both curves fully overlap. This is why the tangential contact force curve cannot be observed in the plot.

6. Summary and conclusions

This paper presents an analytical solution to the rope-sheave contact problem in static conditions. The sheave is assumed to be
locked and the rope is subjected to unequal axial loads at its two ends, 𝑇1 ≤ 𝑇2. To find the analytical solution, the rope is assumed
as linearly elastic in the axial direction without bending stiffness. Contact is analysed using a bristle model and Coulomb friction.
The analytical solutions are valid in two different ranges of axial loads. For values of the high load 𝑇2 smaller than the onset of
slipping, 𝑇2 ≤ 𝑇 𝑜𝑛𝑠𝑒𝑡

2 , the rope is fully stuck at the sheave. The axial force field and the normal and tangential contact force fields
are exponential functions that depend on a characteristic exponent 𝑟 that is a simple function of the axial stiffness of the rope and
the normal and tangential stiffness of the bristles. For values of the high load 𝑇2 larger than the onset of slipping but smaller than
the load for gross slipping, 𝑇 𝑜𝑛𝑠𝑒𝑡

2 < 𝑇2 < 𝑇 𝑔𝑟𝑜𝑠𝑠
2 , the analytic solutions for the axial force field and the normal and tangential contact

force fields are piecewise exponential functions. Next to the low-load end, the solutions found for fully stuck rope remain valid, but
next to the high-load end, the well known Euler-Eytelwin solution applies.

The mathematics used in the developments of this paper are elementary. Solutions are very simple, depend on very few
parameters and can be reproduced by anyone. All solutions are fully analytical with the exception of the calculation of the angle
9



Mechanism and Machine Theory 185 (2023) 105334J.L. Escalona
Fig. 8. Contact force distributions with rope partially stuck at the sheave.

that separates the stuck area of the slip area when 𝑇 𝑜𝑛𝑠𝑒𝑡
2 < 𝑇2 < 𝑇 𝑔𝑟𝑜𝑠𝑠

2 . This angle has to be obtained numerically, but the equation
is very simple.

The results presented in this paper can be applied in industrial applications if the normal and tangential contact stiffness of the
assumed bristles, 𝑘𝑛 and 𝑘𝑡, are identified. These values can be obtained with experimental tests. The analytical results presented
in this paper have not been validated experimentally. The experiments that are needed to measure rope-sheave contact forces are
technically difficult. The experimental results that are published in the scientific literature do not include the static rope-sheave
contact forces. However, the experimental setup used by Usabiaga et al. [16] would be perfect for this application. Unfortunately,
there is no access to that equipment.

The results presented in this paper have at least two applications. On the one hand, in the elevator industry, the implementation
of new technologies that modify the ride of the system require the design engineers to demonstrate safety according to the
standards [3]. These modifications usually involve the start and the stop of the cabin/counterweight. Understanding the rope-sheave
static contact conditions is the first step to analyse the transition to dynamic contact conditions during the ride. In fact, this paper
has been developed because of the calculations made by the author when working in safety analysis with the elevator industry. On
the other hand, the bristle model, or its variants, is very commonly used nowadays in computational mechanics to simulate contact
problems. The results presented in this paper can be used as a reference solution for the static simulation of the rope-sheave contact
problem in computational mechanics.
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