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A characteristic of adaptive behavior is its goal-directed nature. An
ability to act in a goal-directed manner is progressively refined
during development, but this refinement can be impacted by the
emergence of psychiatric disorders. Disorders of compulsivity have
been framed computationally as a deficit in model-based control,
and have been linked also to abnormal frontostriatal connectivity.
However, the developmental trajectory of model-based control,
including an interplay between its maturation and an emergence
of compulsivity, has not been characterized. Availing of a large
sample of healthy adolescents (n = 569) aged 14 to 24 y, we show
behaviorally that over the course of adolescence there is a within-
person increase in model-based control, and this is more pro-
nounced in younger participants. Using a bivariate latent change
score model, we provide evidence that the presence of higher com-
pulsivity traits is associated with an atypical profile of this develop-
mental maturation in model-based control. Resting-state fMRI data
from a subset of the behaviorally assessed subjects (n = 230)
revealed that compulsivity is associated with a less pronounced
change of within-subject developmental remodeling of functional
connectivity, specifically between the striatum and a frontoparietal
network. Thus, in an otherwise clinically healthy population sample,
in early development, individual differences in compulsivity are
linked to the developmental trajectory of model-based control
and a remodeling of frontostriatal connectivity.
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Adaptive behavior often entails choices that are goal-directed,
mediated by a rich representation of prospective outcomes

and supported by a cognitive model of the environment. Alterna-
tively, choices can be habitual where, through prior repetition and
learning, they can be executed without deliberation (1, 2). The dis-
tinction between the goal-directed and the habitual control system of
decision making is well described in psychology and neuroscience (1,
3–7). More recently, computational reinforcement learning models
have formalized these two behavioral strategies in terms of model-
based and model-free control, respectively (8, 9).
A body of evidence supports the notion that decision making

in adults is guided by an interaction between these two mani-
festations of instrumental behavioral control (3, 4, 9). Impor-
tantly, a fine-tuning in this balance may be subject to refinement
during important developmental periods, such as adolescence,
and to destabilization in the context of psychiatric disorders.
Developmental studies have begun to characterize the typical
trajectory of model-based control in young children as weakly, or
less readily, deployed (10, 11). However, an ability to deploy

model-based control strengthens over the course of adolescence and
early adulthood (10). Adolescent development is also characterized
by neural reorganization, particularly involving areas implicated in
high-order cognitive functions (12–15), such as model-based control
(9). The transition into adulthood is characterized by a decrease in
subcortical–cortical connectivity and strengthening of cortico–cortical
connectivity, particularly within association cortices (12–15). More
recently, an analysis of resting-state functional connectivity in the
sample investigated here indicated that subcortical structures have the
greatest magnitude of functional connectivity reorganization, whereby
connections that were strong at 14 y of age became weaker during the
course of adolescent development (16).
Importantly, model-based control can be compromised in specific

psychiatric disorders where behaviors are repetitive, maladaptive,
and out of control (17–21). For example, obsessive-compulsive dis-
order (OCD) is characterized by repetitive unwanted actions and
thoughts (American Psychiatric Association, DSM-5) (22), possibly
reflecting an imbalance between model-based and model-free con-
trol (17). More generally, the construct of “compulsivity” has been
accounted for in terms of an aberrantly weak “goal-directed” system
or, equivalently, compromised model-based control (23, 24).
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Goal-directed behavior is impaired in disorders of compulsivity.
Here, we characterize the developmental trajectory of model-based
control and show a progressive strengthening from adolescence to
early adulthood. We found that the presence of compulsivity traits
impacts on this trajectory as well as on the degree of remodeling in
functional connectivity within frontostriatal circuits. These findings
have implications for understanding the interplay between com-
pulsivity, the developmental trajectory of model-based planning,
and functional connectivity in frontostriatal circuits.
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Animal experiments indicate that goal-directedness is sup-
ported by a frontostriatal circuitry (6). In line with these findings,
disruption of the dorsolateral prefrontal cortex (DLPFC) in
healthy humans impairs an ability to deploy model-based control
(25), while an associated frontostriatal network (including the
DLPFC) is dysfunctional in patients with compulsivity disorders
(26). Abnormalities of frontostriatal circuitry in OCD are evi-
dent under cognitive demands that tax goal-directed control
(27–30), and in resting-state functional connectivity measures
(31, 32), with evidence of a relation of the latter to goal-directed
cognitive performance (33).
However, several questions remain unanswered. A cross-

sectional approach adopted in extant studies limits the infer-
ences regarding a temporal interplay between the development of
model-based control, the maturation of frontostriatal circuits, and
the emergence of compulsivity. For example, it remains untested
whether model-based control is informative as regards to the
trajectory of individual differences in compulsivity over time and,
vice versa, whether the presence of compulsivity is linked to the
developmental trajectory of model-based control.
To investigate the temporal relationship between the clinical

domain of compulsivity and the computational domain of model-
based control, we utilized data from an accelerated longitudinal
study of healthy adolescents (n = 569; aged 14 to 24 y). On at least
two occasions, ∼18-mo apart, all participants completed a classic
two-step reinforcement decision task, widely used to quantify
differences in model-based control (9), as well as standard ques-
tionnaires measuring individual differences in compulsivity.
We extend on previous findings indicating a consolidation of

model-based control during adolescence (10), by now showing a
within-subject longitudinal increase in model-based control,
where the rate of individual improvement in model-based con-
trol is more pronounced for younger subjects. Second, using a
bivariate latent change score model (34, 35), we show that
model-based control is less pronounced in the presence of high
compulsivity traits, and that a within-subject developmental
strengthening in model-based control is conditioned by individ-
ual variability in compulsivity traits. Finally, using resting-state
functional MRI (fMRI) data we demonstrate that a develop-
mental trajectory of frontostriatal connectivity is moderated by
the presence of compulsivity during adolescence, such that
within-subject developmental changes in frontostriatal connec-
tivity are less pronounced in subjects with high compulsivity.

Results
Sample. We studied a large sample of adolescents (n = 569; 280
females, aged 14 to 24 y), within an accelerated longitudinal
design encompassing a time window sensitive to developmental
change. At two distinct time points (T1, baseline; T2, follow-up),
∼18-mo apart, participants were assessed on a reinforcement
learning task (Materials and Methods and Fig. 1A) commonly
used to quantify individual differences in model-based control
(9). At temporal proximity to our experimental sessions (Mate-
rials and Methods), they also completed self-reported question-
naires assessing individual differences in compulsivity. We also
analyzed resting-state measures of frontostriatal functional
connectivity obtained via MRI, derived from a subsample (n =
230) who partook in our experimental cognitive assessment
sessions. Most of participants (n = 178) in the fMRI cohort were
scanned twice, at temporal proximity to our experimental ses-
sions (Materials and Methods); 52 participants were scanned
once. For details on cohort selection, behavioral and imaging
preprocessing, and quality control, see Materials and Methods.

Development of Model-Based Control. For each assessment and for
each participant, we first quantified individual differences in
model-based control. Model-based control was operationalized
as a parameter estimate from a logistic regression analysis

predicting choices during iterations of the task (see Materials and
Methods). A model-based control strategy is indexed by an in-
teraction between reward and transition structure on behavior,
where an agent is more likely to repeat a rewarded action if the
transition is common. In contrast, a model-free influence is
mirrored by a main effect of reward, whereby an agent exhibits
sensitivity to whether or not the trial was rewarded alone, and
does not modify the behavior as a function of the underlying
transition structure (Fig. 1A). In this way, we identified a be-
havioral signature of both model-free and model-based control
at each time point, indexed by a significant main effect of reward
and a significant interaction between reward and transition type,
respectively, replicating previous findings (9) (Fig. 1 B, Inset, and
SI Appendix, Table S1).
To investigate the maturational trajectory of model-based

control, we used these estimates of model-based control, com-
puted separately at each assessment, as dependent variables in a
linear mixed-effects (LME) model. This model was informed by
analysis recommendations (36) successfully adopted in recent
studies (37, 38) (Materials and Methods and SI Appendix). This
tested jointly how model-based control varies with mean age of
subjects (i.e., age mean, between-subject effect of age) and how
it changes over time (i.e., visits/time, within-subject effect of
age), as well as their interaction (Materials and Methods and SI
Appendix, Table S2). The latter allowed us to ask how within-subject

Fig. 1. Experimental task and procedure. (A) Schematic of the two-step
reinforcement learning task used to assess model-based control. In the
first stage, participants have to choose between two fractals, and this
probabilistically determines the transition to red or blue state at the second
stage. For example, the fractal on the left conferred a 70% chance of
transition to the red state in the second stage (“common” transition) and a
30% chance of transition to the blue state in the second stage state (“rare”
transition). These transition probabilities were fixed and could be learned
over time. At the second stage state, participants have to choose between
the two available fractals, each of which is associated with a distinct prob-
ability of being rewarded (signified by a coin). The probability of receiving a
reward associated with each second stage fractal was not fixed (unlike the
transition structure) but drifted slowly over time (0.2 < P < 0.8). Better
model-based control is indexed by an ability to take account of the reward
history as well as the transition structure. For example, if a first-stage choice
is followed by a rare transition to the second stage, and the second-stage
choice results in reward, a “model-based” participant would be more likely
to choose the alternative first-stage choice on the next trial as doing so is
predicted to lead to the common transition and the just experienced reward
at the second stage. (B) Participants were assessed in an accelerated longi-
tudinal design. Each unique participant is represented by a different row,
ordered by age at first assessment. Connecting lines join repeated cognitive
measurements from the same participant (baseline, T1; follow-up, T2); 569
participants completed the two-step reinforcement task at both time points.
As expected, data illustrate that participants used a mixture of model-based
and model-free learning to guide choice both at baseline (T1, Upper Inset)
and follow-up (T2, Lower Inset), consistent with previous studies. Model-
based and model-free decision parameters estimated by the logistic re-
gression analysis are shown in SI Appendix, Table S1. Error bars show SEM.
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changes in model-based control depend on the mean age of a
subject, regardless of other covariates included in the model
(i.e., IQ and gender).
Consistent with previous findings (10), we identified a between-

subject effect of age such that older participants had better model-
based control (β = 0.006, SE = 0.002, df = 537, t = 2.28; P = 0.023)
(Fig. 2A and SI Appendix, Table S2). We also found a within-
subject effect of age, indicating longitudinal development of
model-based control, evident in a significant increase of model-
based control at follow-up (β = 0.024, SE = 0.009, df = 537, t =
2.63; P = 0.009) (Fig. 2B and SI Appendix, Table S2). Strikingly,
this rate of improvement was more pronounced in the youngest
participants, as shown by a significant interaction between visits/
time and subject mean age (β = −0.005, SE = 0.002, df = 537,
t = −2.26; P = 0.024) (Fig. 2B and SI Appendix, Table S2). These
findings highlight that model-based control undergoes significant
change in the transition from adolescence into early adulthood,
possibly reaching a plateau in late adolescence beyond which no
further appreciable change is observed.
Higher IQ was associated with better model-based control

(β = 0.052, SE = 0.008, df = 537, t = 6.750 P < 0.001) and males
were more model-based relative to females (β = 0.035, SE =
0.014, df = 537, t = 2.46; P = 0.014). Importantly, the within-
subject rate of development in model-based control was inde-
pendent of both these factors (SI Appendix, Table S2). To in-
vestigate the specificity of these developmental changes in
model-based control, we used the same analytical approach to
examine the maturational trajectory of an alternative, less-
sophisticated, model-free strategy (SI Appendix, Table S3).
Here, there was a between-subject effect of age (β = 0.011, SE =
0.003, df = 537, t = 4.07; P < 0.001), while a within-subject effect
of age was nominally not significant (β = 0.020, SE = 0.010, df =
537, t = 1.95; P = 0.051). Crucially, the within-subject rate of
model-free change was not influenced by a participant’s mean
age (β = −0.003, SE = 0.002, df = 537, t = −1.19, P = 0.235).

Testing for Training Versus Developmental Effects on Model-Based
Control. In follow-up analyses, we asked whether longitudinal
changes might be explained simply as retest effects (i.e., famil-
iarity with the task or practice effect at follow-up might cause
greater use of model-based strategies for task performance)
rather than developmental effects. To provide a principled basis
to assess a retest effect, we focused on data from a subsample of
participants who were tested 6 mo after (“retest” sample, T1R)
the first assessment (T1), in addition to the follow-up time-point
(T2). We then used logistic regression on data from participants
who came to the laboratory for the T1, the T1R (i.e., 6 mo), and
the T2 (i.e., 18 mo) assessments (n = 53) (Materials and Methods
and SI Appendix, Table S5). This analysis, which included IQ,
age, and gender as fixed covariates, showed a significant
reward-by-transition-by-session interaction for the T2 follow-up
visit (β = 0.127, SE = 0.062, z-value = 2.06, P = 0.039) but
critically not for the retest T1R visit (β = 0.006, SE = 0.071,
z-value = 0.09, P = 0.933). These results provide no support for a
mere training or repetition effect, as the expectation would be
for a greater change after 6 mo than after 18 mo. This was not
the case, either numerically nor inferentially.

High Compulsivity Is Associated with Decreased Model-Based Control.
We next tested the relationship between individual differences in
compulsivity and model-based control. As predicted, we found a
significant association such that greater expression of compul-
sivity traits correlated with poorer model-based control at T1
(Pearson’s correlation r = −0.11, t = −2.63, df = 535, P = 0.009)
and T2 (Pearson’s correlation r = −0.18, t = −4.15, df = 532, P <
0.001). These findings were confirmed in a logistic regression
analysis, where we included compulsivity as a between-subjects
predictor and tested for interactions with all other factors in the

model (i.e., age, gender, and IQ were included as fixed-effects
predictors) (SI Appendix, Table S6). The three-way interaction
between reward, transition type, and compulsivity showed that
model-based control was less marked in those with higher levels
of compulsivity (β = −0.034, SE = 0.009, z-value = −3.81, P <
0.001). The effect of age on model-based control was no longer
significant in this analysis, which included data from T1 and T2
(β = 0.021, SE = 0.012, z-value = 1.78, P = 0.075). This is likely
due to a diluted effect of age when collapsing data from both
time-points, as the role of age of model-based control was likely
weaker at T2 when participants had already reached a more
advanced maturational stage (Fig. 2).

High Compulsivity Is Associated with Reduced Developmental
Increase in Model-Based Control. Having identified a develop-
mental change in model-based control, and an association be-
tween model-based control and compulsivity, we next probed
their reciprocal influences over time. For this we employed a
latent change score model (34, 35), testing a hypothesis that
individual differences in compulsivity are associated with distinct
developmental trajectories in model-based control. This model
also allowed us to test a reciprocal hypothesis that individual
differences in model-based control predict rate of change in
compulsivity. In other words, we examined the extent to which
longitudinal change in one domain is influenced by the starting
level in another domain.
We found, as expected (Fig. 3 and SI Appendix, Table S7), a

significant negative correlation between the two domains at T1
(Fig. 3A and SI Appendix, Table S7) (z-value = −2.797, P = 0.005,
standardized estimate = −0.12) such that higher levels of com-
pulsivity were associated with reduced model-based control.
Additionally, there were within-subjects differences in the rate of
change in compulsivity (z-value = 9.557, P < 0.001, standardized
estimate = 0.63) and model-based control (z-value = 16.775, P <
0.001, standardized estimate = 0.69), as indicated by the signif-
icance associated with the respective variances in the rate of
change (Fig. 3A).
Interestingly, the model accounted for the association between

the two domains at T1 and showed that compulsivity at T1
influenced the rate of developmental change of model-based
control. Specifically, high compulsivity levels at baseline had an
effect on within-subject change in model-based control (z-value =
−3.131, P = 0.002, standardized estimate = −0.11) (Fig. 3A), in-
dicating that high compulsivity was linked to reduced strength-
ening of model-based control over time (Fig. 3B). Convergently,
removal of the path linking compulsivity to within-subject change
in model-based control resulted in a significant deterioration in
model fit (Δχ2 = 9.597, df = 1, P = 0.002), suggesting a model
where this pathway was included was preferred. In contrast,
model-based control at T1 was not associated with within-subject
change in compulsivity (z-value = −0.314, P = 0.754, standardized
estimate = −0.010). Finally, above and beyond the coupling pa-
rameters, the rates of change were still, weakly, negatively corre-
lated (z-value = −2.593, P = 0.010, standardized estimate =
−0.103), indicative of less change in model-based control for those
who changed the most in terms of compulsivity. This finding
highlights a possibility of other, unmeasured, mechanisms driving
both rates of change.
These results were unchanged when age, gender, and IQ were

regressed on the observed variables at T1 and on the latent
change variables of both model-based control and compulsivity
(SI Appendix, Table S8). In this model, compulsivity influenced
the developmental trajectory of model-based control, while ac-
counting for potential sources of shared variance due to a
baseline association between age and model-based control.
There were no differences in mean age at T1 for groups with
different compulsivity scores, defined based on quantiles of the
compulsivity distribution [F(3, 516) = 1.059, P = 0.366, post hoc
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comparison all Ps > 0.312]. Similar findings were obtained using a
secondary measure of compulsivity, the Padua Inventory Washington
University Revision (PI-WSUR), available at both time points for a
smaller subset of participants (Materials and Methods and SI Appendix).
Finally, our findings were specific, as shown when using model-

free rather than model-based control scores in our model. While
this model provided a good fit to data (n = 520; χ2 = 0.288, df = 1,
P = 0.591; root-mean-square error of approximation [RMSEA] =
0.000 [0.000, 0.094], standardized root mean square residual
[SRMR] = 0.004, comparative fit index [CFI] = 1.000, Yuan–
Bentler scaling correction factor = 1.001), the individual differ-
ences in compulsivity did not predict rate of change in model-free
scores over time (z-value = −0.814, P = 0.416, standardized esti-
mate = −0.026). Removal of the path linking compulsivity to rate
of change in model-free control did not compromise model fit
(Δχ2 = 0.657, df = 1, P = 0.418), indicating a more parsimonious
model, with no direct path between compulsivity at baseline and
within-subject change in model-free control, was preferred.

High Compulsivity Is Associated with Reduced Developmental
Changes in Striatal Connectivity. To establish how an influence of
compulsivity on model-based control relates to frontostriatal

functional connectivity, we used resting-state data from the
fMRI cohort (Materials and Methods). We focused on a region of
striatum, corresponding to the central lateral zone, shown pre-
viously to be preferentially coupled to a frontoparietal network
(FPN) (39, 40). A specific focus on connectivity within this circuit
was motivated by evidence that compulsivity affects myelination
within regions of the FPN in this same sample (37), and by robust
and independent evidence showing functional aberrations within
this network in OCD (26, 29, 32, 33). In addition, neuroimaging
studies in healthy subjects show that activation of brain areas
encompassing these regions is associated with a neural signature
of model-based behavior (9, 25).
For the selected striatal region, we computed an overall

striatal connectivity strength, consisting of the average pair-wise
correlations between this striatal region and all the cortical re-
gions in the FPN (Materials and Methods). We extended our
latent change score model to include the overall striatal con-
nectivity strength at T1 and T2 (Fig. 4 and SI Appendix, Table
S9), allowing us to examine reciprocal interactions between
compulsivity, model-based control, and overall striatal connec-
tivity strength. Site was regressed on connectivity measures to
account for differences in scanning sites. Using this approach, we

Fig. 2. Age-related (between-subject) and developmental (within-subject) changes in model-based control. (A) Model-based control increases over the
course of adolescence as a function of age. The gray points and connecting lines represent the paired (T1, baseline and T2, follow-up) assessments for all par-
ticipants and the fitted line is the main effect of mean age from the LME model (i.e., assuming major trend is linear). On the x axis, age refers to age of each
individual at each time point. (B) Developmental rate of change in model-based control is more pronounced in subjects with younger mean age than subjects with
older mean age. Colored lines illustrate the significant interaction between mean age and visits/time, which indicates that the developmental rate of increase in
model-based control was dependent onmean age of the subjects (yellow to red coloration for younger and older adolescents respectively).A and B display a main
effect of age and an interaction between mean age and time/visits on model-based control from a regression model with the following effects of interest:
Intercept, visits/time, gender, IQ, age mean, gender by visits/time, IQ by visits/time; age mean by visits/time (see also SI Appendix). T1, baseline; T2, follow-up.
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tested cross-domain coupling pathways to capture the extent to
which within-subject changes in one domain (e.g., overall striatal
connectivity) were a function of a baseline level in the other
domains (e.g., model-based control or compulsivity) (Fig. 4A).
The extended latent change score model provided a good fit to

the data (Fig. 4A). In line with our simpler implementation in the
larger behavioral cohort, we found that individual differences in
compulsivity related to the rate of longitudinal change in model-
based control (z-value = −2.603, P = 0.009, standardized esti-
mate = −0.159). Additionally, this model also revealed that indi-
vidual differences in compulsivity influenced the rate of developmental
change in connectivity between the striatum and FPN cortical regions
(z-value = 2.107, P = 0.035, standardized estimate = 0.124), such
that higher compulsivity at baseline was predictive of lower rates
of within-subject change in striatal connectivity (Fig. 4A). In
contrast, model-based control did not affect the rate of within-
subject change in overall striatal connectivity strength (z-value =
0.830, P = 0.406, standardized estimate = 0.052) (SI Appendix,
Table S9). Model fit was significantly decreased when the path
linking compulsivity to change in model-based control was re-
moved (Δχ2= 6.773, df = 1, P = 0.009), as in the behavioral
cohort. Model fit significantly deteriorated following deletion of
the path linking compulsivity to change in overall striatal con-
nectivity strength (Δχ2= 4.309, df = 1, P = 0.036). Therefore,
models including these pathways were preferable.
The relationship between compulsivity and longitudinal changes

in frontostriatal connectivity was confirmed by an additional, inde-
pendent model, using model-free rather than model-based control

scores. Accordingly, individual differences in compulsivity influ-
enced the rate of developmental change in connectivity between the
striatum and FPN cortical regions (z-value = 2.055, P = 0.040,
standardized estimate = 0.119), with a significant deterioration of
model fit when this path was removed (Δχ2 = 4.287, df = 1, P =
0.038). Model-free control did not impact the rate of within-subject
change in overall striatal connectivity strength (z-value = −0.170,
P = 0.865, standardized estimate = −0.011). Therefore, neither
model-based nor model-free scores affected the rate of within-
subject change in overall striatal connectivity strength.
Next, we estimated a separate model which, in addition to site,

also regressed age, gender, and IQ on the observed variables at
T1 and on the latent change variables of model-based control,
compulsivity, and overall striatal functional connectivity. The
associations between compulsivity and rate of change in model-
based control and overall striatal connectivity strength were in
the same direction and of similar magnitude to effects detected
in the simpler model, albeit not nominally significant, possibly
due to an increased complexity of the model (SI Appendix, Table
S10). In addition, there was evidence that overall striatal con-
nectivity strength influenced the rate of change in compulsivity
(SI Appendix, Table S10). However, this last finding was detected
only with this specific set of covariates and not supported by an
alternative analytical approach (see below).
We used an LME model, which systematically account for site,

age, gender and IQ (Materials and Methods and SI Appendix) and
observed a within-subject longitudinal decrease in connectivity
between the striatum and a FPN (β = −0.057, SD = 0.016, df = 173,

Fig. 3. Relationship between compulsivity and within-subject change in model-based control. (A) Bivariate latent change score model. Circles indicate latent
variables, and rectangles indicate observed variables. Single-headed arrows indicate regressions; double-headed arrows indicate variances and covariances.
Key parameters are indicated by letters (ϕ, covariance between compulsivity and model-based control at baseline; mechanisms of change: γ, effect of
coupling; γA compulsivity → rate of change of model-based control; γB, model-based control → rate of change of compulsivity; β, self-feedback effect for
compulsivity (βA) and model-based control (βB); dynamics of change: ρ, change covariance; σ variance in the rate of change for compulsivity (σ2ΔA) and model-
based control (σ2ΔB)). A “1” indicates which values were constrained to unity. Values are standardized parameter estimates. Significant parameter estimates
are shown in red (negative associations) and green (positive associations) bolded lines. (B) Raw data for change in model-based control from T1 to T2 plotted
as a function of compulsivity at T1. The raw scores are plotted on separate panels for different groups of subjects, classified based on their compulsivity at T1,
but the model was estimated for the population as a whole. For illustration purposes only, the subjects were divided into four groups based on first (low, 0 to
25%), second (medium low, 25 to 50%), third (medium high, 50 to 75%), and fourth (high, 75 to 100%) quantile of the distribution of compulsivity at T1. Lines
illustrate within-subject changes dependent on different compulsivity scores at T1 (pink to purple coloration for lower to higher compulsivity respectively).
There wasn’t a significant difference in age between the four groups (see text; low compulsivity, mean age: 18.83 ± 3.1, range: 14.28 to 24.98; medium low
compulsivity, mean age T1: 19.28 ± 3.09, range: 14.2 to 24.92; medium high compulsivity, mean age T1: 18.61 ± 2.68, range: 14.43 to 24.35; high compulsivity,
mean age T1: 18.8 ± 2.93, range: 14.1 to 24.83, see main text). Cp, compulsivity; Mb, model-based control; N.S., not significant; Sig. Neg. significant negative
pathway; Sig. Pos. significant positive pathway; T1, baseline; T2, follow-up. Indexes of model fit are reported for consistency but in the context of a fully
saturated model (as the one reported) they should not be interpreted as evidence of good fit.
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t = −3.477, P = 0.001). The between-subject, cross-sectional, effect
of age revealed that older participants had increased connectivity
between the striatum and the FPN (β = 0.007, SD = 0.003, df =
224, t = 2.169, P = 0.031). Consistent with our previous model
(illustrated in Fig. 4A), compulsivity (β = 0.005, SD = 0.002, df =
173, t = 2.108, P = 0.037) but not model-based control
(β = −0.012, SD = 0.047, df = 173, t = −0.259, P = 0.799) affected
the rate of within-subject change of overall striatal connectivity
strength (Fig. 4B). In line with previous results (Fig. 4A), overall
striatal connectivity strength at T1 did not predict the rate of
within-subject change in compulsivity (β = 0.16, SD = 1.242, df =
173, t = 0.128, P = 0.897). To assess the specificity of these find-
ings, we repeated this analysis using the overall connectivity
strength between the same striatal seed and a different set of
cortical regions belonging to a motor network (40). We did not
observe an effect of compulsivity on rate of change of striatal
connectivity with cortical regions within a motor network (all ts >
1.145, all P > 0.254). Finally, our results were robust in so far as
the effect of compulsivity on overall striatal connectivity changes
was detected even when we used an alternative compulsivity
measure, akin to that previously developed to investigate the re-
lationship between compulsivity and brain markers of myelin de-
velopment (37) (Materials and Methods and SI Appendix).

High Compulsivity Affects Connectivity between Striatum and a
Specific Set of Frontal Regions. To investigate frontostriatal con-
nectivity development as a function of compulsivity and model-

based control with greater regional specificity, we estimated pair-
wise correlations between the striatum and each individual cor-
tical region in the FPN (Materials and Methods and SI Appendix).
Using an LME model of change as above, accounting for site,
age, gender, and IQ, we found an effect of compulsivity at T1 on
within-subject changes in connectivity for a coupling between the
striatum and left/right (L/R) DLPFC (central portion, P9-46v), R
DLPFC (8Av, 8C), R auditory cortex (TE1p), L anterior ventral
insular area, and L inferior frontal cortex (compulsivity T1 by
visits/time interaction, all Ps < 0.05 uncorrected for multiple
comparisons) (Fig. 5 and SI Appendix, Fig. S3). For these re-
gions, higher compulsivity trait scores at T1 predicted a relative
lack of within-subject change in frontostriatal connectivity.
Comparable results were obtained when using the alternative
compulsivity measure akin to that previously used to assess the
relationship between compulsivity and brain markers of myelin
development (37) (Materials and Methods and SI Appendix, Fig.
S4). However, as these associations did not survive correction for
multiple comparisons, we urge caution. Model-based control at
T1 did not influence connectivity between the striatum and any
of the FPN individual cortical regions.

Discussion
Using an accelerated longitudinal design, involving a large
sample of adolescents and young adults, we identified a typical
trajectory of adolescent and early adult development character-
ized by a progressive strengthening of model-based control. We

Fig. 4. Relationship between compulsivity, model-based control, and within-subject change in frontostriatal connectivity. (A) Extended latent change score
model. Overall striatal connectivity strength was estimated by averaging the pair-wise correlations between the specific striatal seed and the cortical regions
within the FPN. Circles indicate latent variables, and rectangles indicate observed variables. Single-headed arrows indicate regressions; double-headed arrows
indicate variances and covariances. Key parameters are indicated by letters (ϕ, covariance at T1; mechanisms of change: γ effect of coupling, γA1, compulsivity →
rate of change of overall striatal connectivity; γA2, compulsivity → rate of change of model-based control; γB1, model-based control → rate of change of com-
pulsivity; γB2, model-based control → rate of change of overall striatal connectivity; γc1, overall striatal connectivity → rate of change of compulsivity; γC2, overall
striatal connectivity → rate of change of model-based control; β, self-feedback effect for compulsivity [βA], model-based control [βB], and overall striatal con-
nectivity [βc]; dynamics of change: ρ, change covariance; σ2 variance in the rate of change for compulsivity [σ2ΔA], model-based control [σ2ΔB], and overall striatal
connectivity [σ2ΔC]). SI Appendix, Table S9 for precise characterization of the model). (B) LME model where compulsivity and model-based control scores at T1
were used to predict rate of within-subject change of overall striatal connectivity, which included site, age, gender, and IQ as fixed covariates. Lines on the panels
illustrate the interaction between compulsivity (Left) and model-based control (Right) at baseline and within-subject rate of change in striatal connectivity to the
FPN. Compulsivity, but not model-based control, affects the within-subject change of striatal connectivity with the FPN (see also main text). This indicates that the
rate of within-subject change in striatal connectivity to the FPN was dependent on individual differences in compulsivity at baseline. Top schematic shows
measures of functional connectivity used. Cp, compulsivity; Mb, model-based control; FC, functional connectivity striatum – FPN; N.S., not significant; Sig. Neg.
significant negative pathway; Sig. Pos. significant positive pathway; T1, baseline; T2, follow-up.
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also found that the development of model-based control was
more pronounced in younger participants. Interestingly, model-
based control did not predict rate of change in compulsivity over
time but, instead, high compulsivity related to an altered tra-
jectory of model-based control and frontostriatal functional
connectivity. Thus, higher compulsivity traits at a young age were
linked to reduced development of model-based control and less
pronounced within-subject change in frontostriatal connectivity.
Our longitudinal design enabled us to demonstrate a within-

subject developmental increase in model-based control during
the course of adolescence and young adulthood. Thus, our re-
sults extend on previous findings showing a cross-sectional effect
of age on model-based control (10). An independent sensitivity
analysis of a retest sample provided no evidence for a training
effect as a plausible explanation. The aforementioned study (10)
reported that model-based control is absent in children (i.e., 8 to
12 y), emerges in adolescence (i.e., 13 to 17 y), and strengthens
further over later developmental stages (i.e., 18 to 25 y). In line
with those findings, and within the narrower age range of the
present sample, we found that within-subject changes were de-
pendent on age such that an improvement in within-subject
model-based control was more prominent for younger participants,

and less so in those who had already reached more advanced de-
velopmental stages by the time of recruitment to the study. There-
fore, in our sample it is likely that the most marked changes in
model-based control had already occurred at recruitment into the
study. The likelihood that older participants had already reached a
plateau in model-based control at recruitment is supported also by
our latent change score model, where the latter accounted for
differences at baseline yet failed to identify an effect of age on rate
of change in model-based control.
Consistent with the wider literature (17, 41), our study shows

that higher compulsivity is associated with reduced model-based
control, thereby extending this finding to a large sample of
healthy adolescents drawn from the general population. More
importantly, our longitudinal design and path modeling (34, 35)
allowed us to capture temporal dependencies between compul-
sivity and model-based control, as well as to investigate separate
aspects of this relationship that have heretofore been unad-
dressed. Thus, we identify an association between model-based
control and compulsivity already at baseline, suggestive of in-
fluences operating prior to study recruitment. Additionally, after
accounting for prior differences, our data show that within-
subject developmental trajectories in model-based control are

Fig. 5. Longitudinal developmental changes in frontostriatal functional connectivity are reduced in subjects with high compulsivity. (A) We investigated
regional specificity of the relationship between compulsivity and within-subject changes in frontostriatal connectivity. The compulsivity-related slowing in
within-subject rate of change in striatal connectivity was detected mostly in regions comprising portion of the DLPFC, inferior frontal gyrus, and anterior
insula. The panel shows a thresholded statistical map of regions for which an interaction between compulsivity at T1 and visits/time was observed at P < 0.05
(uncorrected for multiple comparisons) (see SI Appendix, Fig. S3 for individual panels related to each region). (B) Influence of compulsivity is shown specifically
for the L/R DLPFC (central portion, p9-46v; L DLPFC: β = 0.008, SE = 0.003, df = 173, t = 2.581, P = 0.011; R DLPFC: β = 0.007, SE = 0.003, df = 173, t = 2.30, P =
0.023, uncorrected for multiple comparisons). These findings indicate that early in adolescence, high compulsivity traits determine slower changes in func-
tional connectivity within frontostriatal circuits of known importance for the pathological manifestation of OCD (n = 230). Top schematic shows measures of
functional connectivity used. Regionally specific measures of functional connectivity were estimated by computing the pair-wise correlations between the
striatum and each individual cortical region in the FPN. T1, baseline; T2, follow-up.
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modulated by the presence of high compulsivity traits. Finally,
the rate of model-based strengthening was less marked in those
participants whose compulsivity became more severe over time.
Importantly, our participants were screened for clinically diag-
nosed psychiatric disorder, and excluded on this basis, ensuring
that compulsivity did not reflect a clinical level of impairment in
the studied cohort (42). Thus, we infer that individual differences
in compulsivity have relevance for maturation of model-based
control, an effect which we speculate might precede pathologi-
cal manifestations of OCD or other psychiatric conditions on the
compulsivity spectrum.
Across multiple analyses, individual differences in compulsiv-

ity were linked not only to changes in model-based control but
also to changes in frontostriatal functional connectivity. Impor-
tantly, our results were independent of the measure of compul-
sivity used. One limitation here is that the Leyton Obsessional
Inventory-Child Version Survey (LOI) (43) has moderate reli-
ability, and has been validated in young people alone. Reassur-
ingly, convergent findings were obtained when we used different
measures of compulsivity, suggesting our results are robust to the
specific psychometric properties of individual scales (SI Appen-
dix). Specifically, high compulsivity was associated with a relative
lack of change in functional connectivity within a specific fron-
tostriatal circuit, comprising the head of caudate, the putamen,
and associated FPN cortical regions (39, 40). This effect was
observed in the wider context of an overall within-subject lon-
gitudinal decrease in subcortical–cortical connectivity.
The developmental trajectory of resting-state functional con-

nectivity in this sample has been previously reported (16) as
showing a disruptive decrease in subcortico–cortical connectivity,
as well as a more conservative pattern of increase in cortico–
cortical connectivity, particularly with respect to association
cortical areas. Interestingly, several areas of the striatum, such as
the caudate nucleus, nucleus accumbens, pallidum, and putamen
showed the greatest degree of disruptive reorganization in
functional connectivity, whereby connections with cortical areas
that were strong at 14 y became weaker over the course of ad-
olescence (16). Convergent findings are evident also in other
developmental fMRI studies (12–15). In particular, a longitudi-
nal analysis from an independent study of individuals aged 8 to
29 y reported that functional connectivity between the nucleus
accumbens and caudate nucleus to cortical regions weakens over
the course of adolescent development (14). It has been proposed
that an initial excess in connectivity is followed by a pruning
process that reconfigures connectivity in the developing brain
(44). Here, we add to this literature by showing that a develop-
mental weakening in connectivity, between subcortical nuclei
and frontoparietal cortical areas, is less pronounced in those
individuals with higher compulsivity. It is worth noting that high
compulsivity was also associated with a delayed maturational
trajectory in model-based control, a relationship that might be
underpinned by the very same neurodevelopmental processes.
We identified differences for the longitudinal and cross-

sectional age effects on brain maturation. A detailed discussion
of observed discrepancies goes beyond the scope of this paper
(for more details, see ref. 45), but similar divergences have been
observed in previous analyses (45, 46). In fact, the effects of
within- and between-subjects component can be very different, as
shown by Neuhaus and Kalbfleisch (47) and might be explained
by factors such as local noise level, ground truth ratio of within-
and between subject variability, the presence of sampling biases,
or cohort effects for the specific measure of interest.
A secondary finding in this study was an emergence of a re-

lationship between compulsivity and striatal connectivity with
specific areas of the cortex. At an uncorrected threshold, high
compulsivity related to lack of developmental change in overall
connectivity of the striatum with multiple frontal regions, in-
cluding the DLPFC. However, the strength of association

between compulsivity and developmental change in edge-wise
connectivity did not survive correction for the multiple com-
parisons entailed by this regionally specific approach. Never-
theless, convergent findings have been reported for this sample
in relation to a different imaging biomarker, whereby high
compulsivity was linked to reduced rate of within-subject change
in a myelin-sensitive marker within areas of the frontal cortex
corresponding to those identified here (37). More generally,
frontoparietal regions are known to be implicated in OCD (26),
showing perturbed connectivity (30, 33) and altered activation in
response to tasks that tap goal-directed control (26, 29, 30).
We observed that individual differences in compulsivity were

associated with an altered developmental trajectory of model-
based control and frontostriatal connectivity. Speculatively, one
possibility is that compulsivity has cascading effects. For exam-
ple, in the more extreme instance of OCD, it is possible that
chronic compulsive behaviors are sufficient to induce alterations
in specific brain circuits (48). Similarly, anxiety or stress, core
characteristics in OCD and the associated poor well-being, can
influence neuromodulatory neurotransmisson, with downstream
consequences on both brain connectivity and cognitive abilities,
such as model-based planning (49). Alternatively, another ab-
normal biological process, as yet unknown, might impact on the
developmental trajectory of frontostriatal networks, leading to a
behavioral phenotype of high compulsivity and reduced model-
based control.
Importantly, in disorders of compulsivity, such as OCD, the

experimental context as much as the developmental stage might
play a role in neural activations and connectivity patterns (24).
Therefore, it remains to be understood how connectivity changes
in relation to nonpathological and pathological levels of com-
pulsivity. We obtained only limited evidence suggesting that
frontostriatal connectivity is predictive of changes in compul-
sivity over time. Therefore, even if interesting, further work is
needed to corroborate this finding.
Disruption within the DLPFC has been causally associated with

impairment in model-based control in humans (25). More gen-
erally, studies in animals show that model-based control relies on a
relative extensive network of regions, including the PFC (6).
Consistent with this, we found evidence for an association between
model-based control and connectivity between the striatum and
the FPN. However, functional connectivity at baseline was not
associated with within-subject rate of change in model-based
control, nor vice versa. The findings of a within-subject decrease
in compulsivity scores are consistent also with other prospectively
collected data, both in adolescents (50) and adult patients (51).
Even though improvement might be facilitated by therapeutic
intervention, data from a large community cohort, recruited at
19 y of age and studied prospectively until 41 y old, showed a
similar trajectory in healthy subjects, who reported a decrease in
obsessive-compulsive scores over time (52).
In line with recent studies we identified relatively weak rela-

tionships, highlighting a need for large samples to estimate
meaningful effect size. It is clear that there are only weak asso-
ciations between individual differences on psychopathological di-
mensions and behavioral performance on neurocognitive tasks
(53, 54), possibly reflecting the fact that distinct domains of cog-
nition each make a relatively small contribution to manifest
mental health disorders (55). Here, small effect sizes might also be
due to relatively unstable psychometric properties of the task
measures used (56). However, we point out that for this study we
used a model-agnostic measure that has been shown to be superior
to the one commonly derived from computational models (56).
While previous work has addressed the relationship between

compulsivity and model-based control, our study is distinctive in
several ways. We used an accelerated longitudinal approach in a
large and population-representative sample and studied con-
jointly model-based behavior, individual differences in compulsivity,
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and functional connectivity. Furthermore, we narrowed our in-
vestigation to a specific time window within the adolescence
period (14 to 24 y), which is sensitive to the emergence of many
psychiatric disorders (57, 58). Finally, we made use of statistical
techniques to precisely investigate the temporal dynamics of the
relationship between individual differences in compulsivity and
cognition, as well as state-of-the-art acquisition sequence and
preprocessing methods for fMRI analysis of resting-state func-
tional connectivity.
In conclusion, we report a large longitudinal study on the

development of model-based control in adolescence and young
adulthood. We show that model-based control undergoes mat-
urational changes, which are especially pronounced in early ad-
olescence. Critically, our results indicate also that compulsivity is
related to altered adolescent model-based development and
changes in frontostriatal connectivity. Thus, in an otherwise
healthy sample, compulsivity is linked to atypical developmental
trajectories of cognitive processes and cortico-striatal systems,
known to be implicated in the clinical manifestation of OCD.

Materials and Methods
Design and Recruitment. The study was approved by the Cambridge Central
Research Ethics Committee (12/EE/0250), and all participants (if <16 y old, also
their legal guardian) gave written informed consent. Data were obtained
from a community-based longitudinal sample of healthy young people (age
range 14 to 24 y old). A detailed description of the assessment procedure is
provided in Kiddle et al. (42) and SI Appendix.

Reinforcement Learning Task Measuring Model-Based Control. To investigate
the developmental trajectory of model-based control, we probed behavioral
performance on a typical two-step reinforcement task (Fig. 1A) (9; see also
ref. 59) (SI Appendix). Participants were invited to take part in a detailed in-
laboratory behavioral assessment (including the reinforcement task investi-
gated in the present study) on at least two occasions. The in-laboratory visits
also included clinical interview and assessment to estimate IQ; 569 partici-
pants completed the reinforcement task investigated in the present study, at
each of the two occasions (T1, baseline; T2, follow-up) (Fig. 1B) ∼18 mo apart
(mean: 17.31 mo; median: 18 mo; SD = 3.57 mo). Following exclusion criteria
based on task performance, as specified in SI Appendix and consistently with
previous studies on this sample (56, 59), 551 participants were included as
our final sample.

Assessment of Compulsivity. To obtain a measure of compulsivity, we ana-
lyzed psychometric questionnaires, which were administered over the course
of the study. As primarymeasure of compulsivity, we used the short version of
the LOI (43), specifically devised to measure individual differences in com-
pulsivity in young people, with adequate sensitivity and specificity (60).
More recently, the LOI has been used in a large sample of 17-y-old adoles-
cents who were followed longitudinally over 18 mo, supporting the validity
of the use of the LOI in adolescents transitioning into adulthood (61). Im-
portantly, even if other questionnaires related to compulsivity were com-
pleted by the participants, the LOI was the only questionnaire that was
available for the majority of participants at both time points. Therefore only
by using this measure we were able to disentangle the reciprocal interac-
tions between model-based control and compulsivity over time; 520 partic-
ipants for whom behavioral data passed quality check, completed the LOI
questionnaire shortly before the baseline (T1) in-laboratory behavioral as-
sessment (mean: 4.50 mo; SD = 4.05 mo) and at the the follow-up (T2) in-
laboratory behavioral assessment. The LOI proved to have moderate reli-
ability as quantified by the Pearson’s correlation between T1 and T2 scores
(n = 520, Pearson’s r = 0.57) (SI Appendix, Fig. S1A). Further analyses showed
that the LOI captures compulsivity (SI Appendix).

Previous work in this sample used principal component analysis to derive an
overall measure of compulsivity, to investigate the relationship between
compulsivity and brain markers of myelin development (37). We performed
here the same analysis by deriving a factor of compulsivity from principal
component analysis on the LOI, PI-WSUR, and the revised Obsessive-
Compulsive Inventory (62) available at different time points for the sample.
The obtained component had a high correlation (Pearson’s r = 0.86) with the
LOI and was used to investigate the relationship between compulsivity and
functional connectivity and allow the comparison with previous work.

Imaging Data Acquisition. To obtain brain structural and functional measures,
we conducted imaging on 306 adolescents recruited to the study (SI Ap-
pendix). Scanning took place at three sites, on three identical 3T whole-body
MRI systems (Magnetom TIM Trio; VB17 software version; Siemens Health-
care) with standard 32-channel radio frequency (RF) receive head coil and RF
body coil for transmission. Resting-state fMRI data were acquired using a
multiecho echoplanar imaging (ME-EPI) sequence with online reconstruction
(63): 263 volumes; repetition time = 2.42 s; Generalized Autocalibrating
Partial Parallel Acquisition (GRAPPA) with acceleration = 2; matrix size =
64 × 64 × 34; field-of-view = 240 × 240 mm; in-plane resolution = 3.75 ×
3.75 mm; slice thickness = 3.75 mm with 10% gap, 34 oblique slices; band-
width = 2,368 Hz per pixel; echo time = 13, 30.55, 48.1 ms. Preprocessing of
imaging data has been previously described for the sample included in this
study in Váša et al. (16) and SI Appendix. For the present study, we retained
209 scans for T1, corresponding to participants whom measures of model-
based control and compulsivity were also available for the corresponding
time point; similarly, 199 scans were retained for T2. Within the final sample,
178 participants were scanned twice and 52 participants were scanned once
(n = 230 subjects).

Parcellation and Functional Connectivity Estimation. Preprocessed images
were parcellated using a recent multimodal template based on data from the
Human Connectome Project (HCP) (64), yielding 360 bilaterally symmetric
cortical regions. As the aim of this study was to focus on connectivity within
frontostriatal circuits, a functionally principled parcellation of the striatum
was used leveraging the seven-network functional striatal atlas of Choi et al.
(39) http://surfer.nmr.mgh.harvard.edu/fswiki/StriatumParcellation_Choi2012.
This parcellation results from prior resting-state functional connectivity
analyses and characterizes the human striatum based on resting-state func-
tional connectivity to the cerebral cortex (39). The seven striatal regions
correspond to zones linked to separate cortical (motor, ventral attention,
frontoparietal, default, limbic, dorsal attention, and visual) networks from
Yeo et al. (40). Therefore, for each participant, we parcellated brain data into
367 regions. Regional mean time series were estimated by averaging the fMRI
time series over all voxels in each parcel. Some regions (particularly near the
frontal and temporal poles) were excluded because of low regional mean
signal, defined by a low z-score of mean signal intensity in at least one subject
(z < −1.96); this resulted in the exclusion of 30 cortical regions from the HCP
parcellation.

We a priori selected the central lateral zone of the striatum as the seed for
our connectivity analysis since this striatal subregion has been shown to be
preferentially coupled to the FPN (39). At the cortical level, we first mapped
the HCP cortical parcellation to each of the seven cortical networks previ-
ously defined by independent component analysis of resting-state fMRI (40).
Then, we selected cortical regions belonging to the FPN (see ref. 40 for
mapping procedure) (see SI Appendix, Fig. S2 and Table S11 for a complete
list of the 42 cortical regions included within the FPN). Functional connec-
tivity matrices were estimated by Pearson’s correlation between each pair of
cortical and striatal regional mean time series.

Frontostriatal connectivity was estimated at multiple spatial scales. First,
we estimated an overall striatal connectivity strength, defined as the average
functional connectivity of the striatal seed region to all cortical regions in-
cluded in the FPN. Second, we estimated specific striatal connectivity strength
as the pair-wise functional connectivity of the striatal seed region to each
individual cortical region included in the FPN.

Analysis of the Reinforcement Learning Task, Measuring Model-Based Behavior.
Logistic regression analysis of this task has been widely applied (9, 65) and we
used it here to analyze choice behavior. Logistic regression analyses were
conducted using the lme4 package in the R software environment [R De-
velopment Core Team, 2016, v3.1.1 (66)] (SI Appendix). Accordingly, we
specified a mixed-effects logistic regression to explain the first-stage choice
on each trial t (coded as stay vs. switch) using binary predictors, indicating if
a reward was received at t − 1 and the transition type (common or rare) that
had produced it. To obtain a per subject measure of model-based control,
we used the estimated coefficients of the reward by transition interaction.
Similarly, to obtain a per subject measure of model-free strategy, we used
the estimated coefficient of the main effect of reward. These measures,
estimated separately for T1 and T2, were used for the main longitudinal
analyses, which included appropriate covariates as explained below.

Developmental Changes in Model-Based Control and Compulsivity. To inves-
tigate developmental changes of model-based control, we used the esti-
mated coefficients of the reward by transition interaction at each time point
in the context of LME modeling. We followed analysis recommendations
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(36) successfully adopted in recent studies from this sample (37, 38) (see also
SI Appendix).

Briefly, taking advantage of the accelerated longitudinal design, we were
able to study separately (in one joint model): 1) How model-based control
changed within subjects (from T1 to T2), and 2) how model-based control
varied between subjects as a function of mean age of the participant and 3)
their interaction. This latter factor indicates how changes over time vary
according to the mean age of the subject, independently of other covariates
included in the model (see SI Appendix for more details). The model in-
cluded gender and IQ, which have been previously reported to covary with
goal-directed behavior (67–69). As IQ scores were highly correlated across
sessions (r = 0.77, P < 0.001), the two measurements were collapsed in an
average value per participant, then z-scored and entered in the regression
model as a covariate. The model also included all of the first-order inter-
actions among all of the variables included in the model. This analysis in-
cluded 541 participants (i.e., those participants who had model-based and IQ
measures available at both time points). An equivalent model was separately
implemented to investigate developmental changes in compulsivity and a
possible modulation of individual differences in compulsivity dependent on
mean age of the subject (SI Appendix, Table S4). This analysis demonstrated
within-subject changes in compulsivity, which generally decreased over time
(β = −1.183, SE = 0.162, df = 516, t = −7.30; P < 0.001). The within-subject
rate of improvement in compulsivity was not conditioned by mean age of
the subject (β = 0.064, SE = 0.040, df = 516, t = 1.62; P = 0.107).

To determine whether the observed longitudinal differences were pre-
dominantly due to retest effects (i.e., familiarity with the task, practice effect)
or development, we considered data from a subsample of participants who
completed the reinforcement learning at an additional time point shortly
after (∼6 mo) the baseline measurement. This T1R allowed us to isolate a
possible training effect, indexed by short-term changes, from developmental
changes, indexed by long-term changes. We performed a logistic regression
that included trial-by-trial data of all participants from the three time points
(T1, baseline; T1R, retest; T2, follow-up) (i.e., syntax of R as follows: Stay ∼
Reward * Transition * (IQzscore + Agezscore + Gender + Time point) +
(Reward * Transition * Time point + 1 | Subject). We hypothesized that
developmental changes in model-based control should be expected only
when 18 mo had elapsed between measurements and not for measurements
separated only by 6 mo. Therefore, a reward-by-transition type by session
interaction was hypothesized for the follow-up (T2) but not the retest as-
sessment (T1R). A finding consistent with our hypothesis would be sugges-
tive that model-based control improves as function of developmental
maturation and not simply as a function of repetition of the task per se.
Fifty-three participants were included in this analyses, having completed the
reinforcement learning task at T1, T2, and at the retest time point (SI Ap-
pendix, Table S5).

Model-Based Control and Compulsivity. Previous studies have shown an as-
sociation between increased compulsivity and reduced model-based control
in putatively healthy adults (70) and in adults and adolescents affected by
OCD (17, 41) or other compulsivity disorders (17). We tested whether this
association could be identified in our sample with a logistic regression
model, which examined if participants’ behavior on the reinforcement
learning task was influenced by individual differences in compulsivity. This
logistic regression, which included data from T1 and T2, had compulsivity
scores (z-scored), IQ (z-scored), age (z-scored), and gender, with all two-way
and three-way interactions as fixed effects. Within-subject factors were
allowed to vary across participants by specifying the per participant random
adjustment to the fixed intercept (random intercept) and the per participant
adjustment to previous reward, transition-type, and their interaction (ran-
dom slopes). The main measure of interest was the three-way interaction
between reward, transition type, and compulsivity. The model was specified
in R as follows: Stay ∼ Reward * Transition * (IQzscore + Agezscore + LOIzscore +
Gender) + (Reward * Transition + 1 | Subject) (SI Appendix, Table S6).

Longitudinal Relationships between Model-Based Control and Compulsivity.
Having identified developmental changes in model-based control, and an
association between model-based and compulsivity, we wanted to obtain a
more detailed understanding of their reciprocal influences over time. We
asked whether individual differences in compulsivity could predict the
maturational trajectory of model-based control and, vice versa, whether
model-based control could predict the course of compulsivity over time.
Such a notion is known as cross-domain coupling and can be captured by
bivariate latent change score models (34). These allowed us to evaluate to
what extent longitudinal changes in one domain (e.g., model-based control)

are guided by baseline scores in the other domain (e.g., compulsivity). Im-
portantly, this association is adjusted for initial, baseline dependency.

Here, model-based control was indexed by the estimated coefficients of
the reward by transition interaction obtained previously for each participant
at T1 and T2; compulsivity was indexed by the LOI scores at T1 and T2 (Fig. 3
and SI Appendix, Table S7). Given that gender and IQ, as well as age, showed
relationship with model-based control and that inclusion or exclusions of
covariates can influence the relations between individual variables (71), a
separate model included age, gender, and IQ, which were regressed both on
the observed variables at T1 and on the latent change variables of both
model-based and compulsivity. We allowed for residual covariance between
demographic variables (SI Appendix, Table S8). We verified specificity of our
findings by testing a separate model, which included the estimates of the
main effect of reward, putatively indexing the model-free component, in-
stead of the reward-by-transition interaction term. To test for convergent
validity of our results, we used the PI-WSUR instead of LOI to index com-
pulsivity at T1 and T2.

The models were estimated in the lavaan software package (72) in R (R
Development Core Team, 2016) (66) using full information maximum like-
lihood (‘mlr’ implemented in lavaan) with robust SE to account for non-
normality. There were no missing data. We assessed overall model fit via the
χ2 test, the RMSEA (acceptable fit: < 0.08, good fit: < 0.05), the CFI (ac-
ceptable fit: 0.95 to 0.97, good fit: > 0.97), and the SRMR (acceptable fit: 0.05
to 0.10, good fit: < 0.05) (73).

Longitudinal Relationships between Model-Based Control, Compulsivity, and
Frontostriatal Connectivity. To investigate reciprocal influences between
compulsivity, model-based, and functional connectivity, we extended our
bivariate latent change score model by adding the overall striatal strength at
T1 and T2. Site was regressed on connectivity measures (Fig. 4 and SI Ap-
pendix, Table S9) to account for differences in scanning sites. Similar to the
previous implementation to investigate the relationship between model-
based control and compulsivity, a separate model included not only site,
but also age, gender, and IQ, which were regressed both on the observed
variables at T1 and on the latent change variables of model-based, com-
pulsivity, and functional connectivity. We allowed for residual covariance
between demographic variables (SI Appendix, Table S10).

To validate our findings, we also used an alternative analytical approach
leveraging an LME model akin to the one used previously. Here, we tested
how changes in the overall striatal connectivity strength were determined by
different factors. We included age and visits/time (computed as explained in
SI Appendix,) to distinguish between- and within-subject components of
change in overall striatal connectivity strength dependent on age. In addi-
tion, this model, as above, included site, gender, and IQ as covariates.
Model-based control and compulsivity scores at T1 as well as their interac-
tion with visits/time were also included. These latter interactions (compul-
sivity at T1 by visits/time and model-based control at T1 by visits/time) tested
how changes of overall connectivity strength over time were modulated by
initial model-based control and compulsivity, independently of other cova-
riates included in the model. This same analytical approach was imple-
mented to investigate the role of compulsivity on regionally specific striatal
connectivity to each of the FPN cortical regions.

As a control analysis, to assess selectivity of our findings, we applied the
same analytical approach to investigate if compulsivity affected connectivity
between this same striatal region and cortical regions of another network,
namely the motor one as defined in Yeo et al. (40). Finally, to test robustness
of our findings, we fitted linear models of change of both overall and
specific striatal strength maps as a function of an alternative compulsivity
score, obtained by using principal component analysis as described above
and in Ziegler et al. (37).

Data Availability. Data have been deposited on Open Science Framework
(https://osf.io/vm62u/).
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