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Abstract 

In this work, the theoretical field dependence of the magnetic entropy change far away from the 

transition is used to analyze the field dependence of composite materials formed by fcc 

La(Fe,Si)13 and bcc -Fe(Si) phases. A non-interacting phases approximation is followed in the 

analysis and results are in good agreement with microstructural data obtained from X-ray 

diffraction and Mössbauer spectroscopy. The range of validity of the approximation is 

estimated. It is concluded that the quadratic field dependence of magnetic entropy change is 

reached a few tens of kelvin above the transition temperature at 1.5 T. However, the linear 

dependence (characteristic of ferromagnets well below its Curie temperature) is only reached a 

few hundred kelvin below the transition. The results presented here can be used in the 

deconvolution of the contribution of impurities to the MCE signal in composites. 
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1. Introduction 

Magnetocaloric effect (MCE) is a hot topic due to the perspective of its application in 

room temperature magnetic refrigeration technology. This scientific interest rose up especially 

after the works of Gschneidner Jr. and Pecharsky, who found giant MCE in Gd5Si2Ge2 

compound at 292 K [1]. Since then other systems, such as Heusler alloys [2], La(FeSi)13H [3] 

or MnAs [4] compounds and previously FeRh [5], were found to exhibit a giant MCE too [6,7]. 

In general, giant MCE is associated to a first order phase transition implying structural or 

itinerant electron metamagnetic transitions.  

In the particular case of La(Fe,Si)13 family, Si stabilizes the NaZn13-type phase (space 

group Fm3c) but the production of pure single phase samples is tricky and requires long high 

temperature annealing that can be reduced if the precursor alloy is well homogenized by rapid 

quenching [8] or milling [9]. The typical residual impurity phases are ferromagnetic bcc Fe and 

tetragonal weak Pauli paramagnetic LaFeSi intermetallic [10]. The presence of impurities 

generally leads to a decrease of the MCE response (except for cases were the minority phase has 

a Curie temperature below but close to that of the main phase [11,12,13]).  

In general, the mathematical function describing the shape of the magnetic entropy 

change, SM(T,H), is not known but only achievable experimentally. However, some works 

have been devoted to the field dependence of SM proposing a power law [14,15]: SM=aHn, 

where the value of a is only dependent on temperature and n is field independent well below the 

Curie temperature, TC, (where n=1) and well above TC (where n=2). At TC, for a second order 

phase transition (SOPT), n is also field independent and related to the critical exponents [15]. In 

this line of study, the aim of this work is to use this information about the field dependence of 

MCE to further analyze composite materials in order to extract the contribution of some of the 

phases (when they are strongly ferromagnetic or weakly paramagnetic ones). In particular, the 

proposed ideas will be applied to LaFe11.5Si1.5 alloy with -Fe impurities, where the Curie 

temperatures of both phases (~250 K and ~1000 K, respectively) are well apart. 
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As a first approximation, the magnetic entropy change of a multiphase system can be 

estimated as the sum of the contributions of the independent phases, e.g. for a two phase system. 

 
 (1) (2)1M M MS X S X S     

 (1) 

where the superindexes correspond to the individual phases. X is the fraction of phase 1, which 

in the following will be considered the impurity phase. 

 

2. Experimental 

Alloy of nominal composition of LaFe11.5Si1.5 was prepared in the form of ingots and 

ribbons. The ingots were fabricated via induction melting under Ar atmosphere in a cold 

crucible. The melting was carried out four times to ensure the homogeneity of the alloy. The 

weight loss during melting was less than 0.1%. The ribbons with a cross section of 0.5 mm  15 

m were prepared by melt spinning (with a circumferential wheel speed of 40 m/s) in vacuum. 

The samples were annealed at 1323 K for 2h (ribbons), 3 days and 1 week (ingots) in sealed 

quartz tubes under He atmosphere. During annealing, the ingots were wrapped in a Ta foil and 

after annealing, the quartz tubes were water quenched.  

X-ray diffraction (XRD) and Mössbauer measurements were performed on pieces of 

ribbons and on powder samples obtained by crushing the ingots in a ceramic mortar. XRD 

experiments were performed using Cu-K radiation in a Bruker diffractometer (D8 Advance 

A25) and Rietveld refinement of the diffraction patterns were done using TOPAS program. The 

57Fe Mössbauer measurements were carried out by a conventional constant acceleration-type 

spectrometer at room temperature. The magnetic properties were measured on small pieces of 

ingots and ribbons, oriented to minimize the effect of the demagnetizing field, in a Lakeshore 

7407 vibrating sample magnetometer (VSM) from 77 to 663 K, using a maximum magnetic 

field of 1.5 T. MCE was studied by measuring isothermal magnetization curves and applying 

Maxwell relation to these data. The analysis of isothermal magnetization curves was performed 

using the Magnetocaloric Effect Analysis Program [16,17]. Although the application of 
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Maxwell relation can yield artifacts due to non equivalent starting points for each isothermal 

curve [18], these artifacts are restricted to the temperature range in which the magnetocaloric 

effect is hysteretic. In this study our interest is far apart from the transition and thus the possible 

artifacts are not affecting the analysis derived in this work. 

 

3. Results and discussion 

Figure 1 shows the XRD patterns of the different studied samples along with the fitting 

curves generated from Rietveld refinement. Phase fractions in weight % are shown in table 1. 

Along with the fcc La(FeSi)13 phase, bcc Fe-type phase appears with (200) texture in the melt-

spun sample. Small traces of LaFeSi cannot be discarded. The lattice parameter of the 

La(Fe,Si)13 phase is slightly higher than that reported by other authors for LaFe11.5Si1.5 [19,20] 

but decreases as the amount of -Fe phase decreases. In the case of the -Fe phase, no 

significant changes are observed among the different studied samples (see table 1). The crystal 

size of the fcc phase remains above 100 nm for the three studied samples as well as that of the 

-Fe for the melt-spun sample. For the bulk sample annealed for 3 days at 1323 K, the -Fe 

phase shows a size of 40 nm. The small amount of this phase in the sample annealed for 1 week 

prevents a good estimation of its crystal size in that case. 

Figure 2 shows the experimental room temperature Mössbauer spectra along with the 

contributions used to fit the data. A maximum of three ferromagnetic sites were used to fit the 

bcc -Fe(Si) phase and a paramagnetic doublet was used to fit the contribution from the fcc 

La(Fe,Si)13 phase. The fraction of Fe atoms in the bcc phase was estimated from the 

corresponding area ratio. The trends of the fraction of -Fe phase obtained from XRD and 

Mössbauer are in good agreement (see table 1). However, it is worth noting that Mössbauer data 

refer to the fraction of the total number of Fe atoms in the different phases, whereas XRD data 

correspond to weight % of the phase. Moreover, whereas our Mössbauer experiments study the 

whole sample, as it operates in transmission mode, XRD experiments are limited to the 
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penetration depth of the radiation in the ribbon (9 m, calculated from the mass absorption 

coefficient at the Cu K wavelength for this composition).  

Magnetic entropy change curves are shown in figure 3. The trend of the magnitude of 

the peak is in agreement with the fraction of La(Fe,Si)13 phase detected by XRD and Mössbauer, 

evidencing the deleterious effect of -Fe impurities on the MCE of this family of alloys [8]. In 

fact, the presence of impurities may seriously affect the field dependence of the MCE [21]. 

Starting from Eq. (1), which assumes non-interacting phases, the total magnetic entropy change 

in a biphasic system can be written as: 

  1 2

1 2 1
n n

MS a XH a X H     (2) 

where the entropy change of each individual phase is expressed as a power law of the field [14], 

prefactors ai correspond to the magnetic entropy change of the i phase at 1 T and the exponents 

ni should be field independent in the temperature regions previously described [15]. 

In any case, an experimental local n exponent of the biphasic system can be obtained 

assuming 
n

MS aH  . This exponent n is related to the corresponding parameters ai and ni. 

 

   1 2

1 1 2 2 1

ln( )

n n

M

M

dln S a n XH a n X H
n

d H S

  
 


 (3) 

Two different cases can be distinguished as a function of the magnetic character of the 

phases. 

a) In the case of paramagnetic impurities, n1=2. Therefore, Eq. (3) can be written as: 

 
 

 
22 2

1 2 2 1
2 2

2 1
2

n

M M

a XH a n X H a H
n X n n

S S

 
   

 
 (4) 

Assuming a Curie law for the paramagnetic phase, a1 should be proportional to T-2 and 

negligible except for very low temperatures, thus n~n2 (in any case, as n22, nn2) 
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b) For ferromagnetic impurities with a higher Curie temperature than that of the phase of 

interest (phase 2), if T<<TC
(1) and T<<TC

(2) both exponents n1 and n2 should be equal to 

1 and Eq. (3) can be written as: 

 
 1 21

1
M

Xa H X a H
n

S

 
 



  (5) 

Therefore, ferromagnetic impurities would not affect the field dependence of MCE at 

this temperature range. However, as the temperature becomes closer to the transition of 

phase 2, n2 is no longer 1 but lower and assuming that TC
(1)>>TC

(2) (e.g. as it occurs for 

-Fe impurities in LaFe13-xSix) n1=1 and: 

  1
2 2 21

M

a H
n X n n n

S
   


 (6) 

 

A particular case occurs when T<<TC
(1) and T=TC

(2). If the phase 2 experiences a 

SOPT, n2 should be field independent while n1=1. This range has been explored for 

mechanically alloyed amorphous FeNbB alloys, where the presence of remaining -Fe 

crystallites yields the behavior of the exponent n of the system to deviate from the field 

independency predicted for single phase materials [22]. 

Finally if T<<TC
(1) and T>>TC

(2), then n1=1 and n2=2 and Eq. (3) can be written as: 

 

 
  2

1 2(2) (1)
2 1

C C

M

a XH a X H
n T T T

S

 
  


 (7) 

And after regrouping the terms 

 
 1 22 1Mn S

a X a X H
H


  

 (8) 

In order to estimate the temperature range in which these approximations (where we 

assign n1=1 and/or n2=2 as the phase’s exponent) are valid, the magnetic entropy change of 
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individual phases was simulated using Brillouin functions. In order to do so, we imposed the 

Curie temperatures, the average magnetic moment per Fe atom and the numerical density of 

magnetic moments of each phase (1000 K, 2.2 B and 8.5·1028 m-3 for -Fe phase and 250 K, 

2.1 B [23] and 6.1·1028 m-3 for LaFe11.5Si1.5, respectively). The local field exponent n was then 

calculated as a function of both the field change and the temperature difference to the Curie 

temperature, T=T-TC. Figure 4 shows the simulated n(H) curves for different T values and it 

can be observed that, for paramagnetic samples (T >0) at H=1.5 T, the error of assuming n=2 

is less than 1 % for T 30 K and, for ferromagnetic samples (T<0) at H=1.5 T, the error of 

assuming n=1 is less than 1 % only after |T|>100 K. 

There are several features which simplify the analysis in the temperature range T<<TC
(1) 

and T>>TC
(2), leading to equation (8): the exponents of the two phases are no longer free 

parameters but known and the behavior is not affected by the type of transformation (first or 

second order) but only by the magnetic state of the phase (ferromagnetic or paramagnetic). In 

fact, in the case of the LaFe11.5Si1.5 phase (phase 2 in our study) a first order phase transition 

occurs due to a volume change of the unit cell at a temperature Tt [24]. However, in order to use 

n2=2, we are only concerned about the paramagnetic phase that exists above this transition 

temperature with TCTt. The main disadvantage is that the recorded signal is far from the 

transition and thus weak.  

Therefore, experimental SM(T,H) curves were measured clearly above the transition 

temperature of LaFe11.5Si1.5 and well below the expected Curie temperature of the -Fe(Si) 

phase: from 350 to 475 K, which lies well into the region of validity predicted with T100 K  

for the paramagnetic phase and |T|>500 K for the ferromagnetic phase. In fact the lattice 

parameter measured for the -Fe(Si) phase [25] and the average hyperfine magnetic field 

measured by Mössbauer [26] spectroscopy correspond to a low Si content (~5 at. %) with a high 

TC(-Fe(Si))>1000 K. Figure 5 shows n values in the analyzed temperature range. Figure 6 

shows the plots of nSM/H as a function of H for different temperatures for each studied sample. 



Journal of Alloys and Compounds 646 (2015) 101-105 
http://dx.doi.org/10.1016/j.jallcom.2015.06.085 

8 
 

As predicted by Eq.(8), the plots can be fitted to straight lines and the different values of the 

slope m(X,T) and the intercept b(X,T) are obtained as a function of transformed fraction and 

temperature. These dependencies can be explicitly stated as follows: 

 
 2( , ) 2 ( ) 1m X T a T X 

 (9) 

 1( , ) ( )b X T a T X
 (10) 

From the intercept b(X,T), assuming its average value in the temperature range explored 

for each sample (in order to reduce the errors), we get an average <a1>X value that could be 

compared to the data obtained from XRD and Mössbauer. Figure 7 shows <a1>X vs. the -Fe 

fraction for the studied samples using both microstructural techniques. Results are in agreement 

showing that MCE response in this temperature range can be described by two non-interacting 

phases which follow a linear field dependence for the -Fe phase and a quadratic field 

dependence for the La(Fe,Si)13 phase. 

In the case of the slope m(X,T), the temperature dependence of a2 (the magnetic entropy 

change of the paramagnetic phase at H=1 T) is stronger than for a1 (the magnetic entropy 

change of the ferromagnetic phase at H=1 T). In fact a Curie-Weiss law could be proposed to 

describe the decrease of a2 with the temperature. However, the large errors prevent further 

discussion on this parameter. 

 

Conclusions 

The validity of the power law dependence of the magnetic entropy change as a function 

of field far away from the transition temperature is tested in a composite material formed by fcc 

La(Fe,Si)13 and bcc -Fe(Si) phases. Results indicate that a non-interacting phases 

approximation yields satisfactory agreement with microstructural results obtained from different 

techniques. 
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The temperature ranges for which the exponent n is almost constant are estimated as a 

function of the field change. Considering 1 % as the error limit, for a field change of 1.5 T, 

whereas the paramagnetic constant value n=2 is reached a few tens of kelvin above the 

transition temperature, the ferromagnetic constant value n=1 is only reached after a few 

hundreds of kelvin below the transition.  

The results presented here can be used in the deconvolution of the contribution of 

impurities to the MCE signal of the main phase with transition around room temperature when 

the transition temperatures of the impurities are well apart (typically -Fe crystallites with a 

TC>1000 K) 
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Table 1 

Parameters obtained from XRD and Mössbauer spectroscopy for the studied samples: XXRD and 

XMS, fractions of -Fe phase from XRD and Mössbauer, respectively; afcc and abcc, lattice 

parameters of the fcc La(Fe,Si)13 phase and the bcc -Fe(Si) phase, respectively; <HF>, average 

hyperfine magnetic field of the -Fe(Si) phase 

As-cast 

sample 

Time at 

1323 K 

XXRD 

(w. %) 

afcc 

(Å) 

abcc 

(Å) 

XMS 

(at. %) 

<HF> 

(T) 

Ingot 1 week 1.3 11.4725(1) 2.8646(13) 2.8 32.5(1.0) 

Ingot 3 days 24.4 11.4738(7) 2.8659(4) 34.0 32.4(1.1) 

Ribbon 2 hours 55.8* 11.4762(4) 2.8662(1) 54.1 31.7(1.6) 

* textured sample 

  



Journal of Alloys and Compounds 646 (2015) 101-105 
http://dx.doi.org/10.1016/j.jallcom.2015.06.085 

12 
 

Figure captions 

Figure 1. XRD patterns (blue) and theoretical spectra generated by Rietveld refinement (red) of 

the three studied samples 

Figure 2. Mössbauer spectra and contributions used to fit them for the three studied samples 

Figure 3. Magnetic entropy change at 1.5 T for the three studied samples in the temperature 

range of the first order phase transition. The inset shows the isothermal magnetization curves for 

the sample annealed 3 days. 

Figure 4. Theoretical exponent n calculated using Brillouin functions to describe the 

magnetization and using a TC=1000 and 250 K, a magnetic moment of 2.2 and 2.1 B, and a 

numerical density of magnetic moments of 8.5·1028 and 6.1·1028m-3 for -Fe (ferromagnetic 

range) and LaFe11.5Si1.5 phases (paramagnetic range) respectively. 

Figure 5. Experimentally obtained local exponent n at 1.5 T as a function of temperature for the 

three studied samples. The lines are linear fit to the data. 

Figure 6. Linear dependence of SMn/H vs. magnetic field for the three studied samples at some 

selected temperatures. 

Figure 7. Fraction of -Fe phase obtained from the analysis of MCE curves vs. that obtained 

from microstructural observations. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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