
Chapter 15
Discrete Nonlinear Schrödinger Equations
with Time-Dependent Coefficients (Management
of Lattice Solitons)

Jesús Cuevas and Boris A. Malomed

15.1 Introduction

The general topic of the book into which this chapter is incorporated is the discrete
nonlinear Schrödinger (DNLS) equation as a fundamental model of nonlinear lattice
dynamics. The DNLS equation helps to study many generic features of noninte-
grable dynamics in discrete media [1]. Besides being a profoundly important model
in its own right, this equation has very important direct physical realizations, in
terms of arrays of nonlinear optical waveguides (as was predicted long ago [2] and
demonstrated in detail more recently, see [3, 4] and references therein), and arrays of
droplets in Bose–Einstein condensates (BECs) trapped in a very deep optical lattice
(OL), see details in the original works [5–10] and the review [11].

In all these contexts, discrete solitons are fundamental localized excitations sup-
ported by the DNLS equation. As explained in great detail in the rest of the book,
the dynamics of standing solitons, which are pinned by the underlying lattice, is
understood quite well, by means of numerical methods and analytical approxima-
tions (the most general approximation is based on the variational method [12, 13]).
A more complex issue is posed by moving discrete solitons [14–17]. While, strictly
speaking, exact solutions for moving solitons cannot exist in nonintegrable lattice
models because of the radiation loss, which accompanies their motion across the lat-
tice, direct simulations indicate that a soliton may move freely if its norm (“mass”)
does not exceed a certain critical value [17]. In the quasi-continuum approximation,
the moving soliton may be considered, in the lowest (adiabatic) approximation, as
a classical mechanical particle which moves across the effective Peierls–Nabarro
(PN) potential induced by the lattice [18–21]. In this limit, the radiation loss is
a very weak nonadiabatic effect, which attests to the deviation of the true soliton
dynamics from that of the point-like particle.

In the case of the DNLS equation describing arrays of nearly isolated droplets
of a BEC trapped in a deep OL, an interesting possibility is to apply the Feshbach
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resonance management (FRM) to this system, as was first proposed and studied for
immobile discrete solitons in [22], and later elaborated in detail, for moving soli-
tons, in [23]. The FRM may be induced by an external low-frequency ac magnetic
field, which periodically (in time) changes the sign of the nonlinearity by dint of the
FRM, i.e., formation of quasi-bound states in collisions between atoms [24]. For the
effectively one-dimensional BEC in the absence of the OL, the concept of the FRM
was elaborated in (1D) [25], see also the book [26].

The objective of the chapter is to summarize basic results for the quiescent and
moving 1D DNLS solitons subjected to the time-periodic management, following,
chiefly, the lines of works [22] and [23]. For the quiescent solitons, most significant
findings are FRM-induced resonances in them, and stability limits for the solitons
which are affected by the resonant mechanisms. In particular, resonances with an
external time-periodic modulation may stimulate self-splitting of the solitons. For
the moving solitons, an essential conclusion is that the FRM may strongly facilitate
their mobility, which is an essentially novel dynamical effect in discrete media.

The DNLS equation which includes the FRM mechanism can be cast in the fol-
lowing form:

i u̇n + C (un+1 + un−1 − 2un)+ g(t)|un|2un = 0, (15.1)

where un(t) denotes the BEC wave function at the lattice sites, C is the strength of
the linear coupling between adjacent sites of the lattice, and the real time-dependent
nonlinear coefficient is

g(t) = gdc + gac sin(ωt) (15.2)

with the time-dependent term accounting for the FRM (−g is proportional to the
scattering length of atomic collisions, whose magnitude and sign may be directly
altered by the FRM). In what follows below, we fix, by means of obvious rescaling,
C ≡ 1. We also note that gdc may always be chosen positive, as it can be transformed
by means of the so-called staggering transformation, un(t) ≡ (−1)ne−4it ũn(t).
Equation (15.1) with the time-dependent nonlinear coefficient has a single dynami-
cal invariant, the norm (which is proportional to the number of atoms in the BEC),

N =
+∞∑

n=−∞
|un|2. (15.3)

The chapter is divided into two major parts that deal with quiescent and mobile
discrete solitons (the latter one also briefly considers collisions between the moving
solitons). Each part contains sections which present analytical and numerical re-
sults. In either case, the analytical approach is based on using a particular ansatz for
the shape of the soliton, while numerical results are produced by systematic direct
simulations of Eq. (15.1) with appropriate initial conditions.
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15.2 Quiescent Solitons Under the Action of the “Management”

15.2.1 Semi-Analytical Approximation

In this section, we put Eqs. (15.1) and (15.2) in a slightly different form, namely,

i u̇n + 1

2
(un+1 + un−1 − 2un)+ a(t) |un|2 un = 0, a(t) = 1+ a1 sin (ωt) , (15.4)

where, as said above, we fix C = 1, and the dc part of a(t) is also set equal to 1
by means of an additional rescaling. A (semi-)analytical approximation for soliton
solutions to Eq. (15.4) is based on the fact that it can be derived from the Lagrangian,

L = 1

2

∞∑

n=−∞

[
i
(
u∗nu̇n − unu̇∗n

)− |un+1 − un|2 + a(t)|un|4
]

(15.5)

(∗ stands for the complex conjugate). Then, the variational approximation (VA) [13]
represents the solitons by the following ansatz, following [12]:

un(t) = A exp(iφ + ib|n| − α|n|), (15.6)

where A, φ, b, and α are real functions of time. Substituting this ansatz in the La-
grangian (15.5), it is easy to perform the summations explicitly and thus arrive at
the corresponding effective Lagrangian (an inessential term, proportional to φ̇, is
dropped here):

L

N = −
1

sinh (2α)

db

dt
+ cos b

coshα
+ 1

4
Na(t)

sinhα

cosh3 α
cosh (2α) , (15.7)

where N = A2 cothα is the norm of the ansatz (recall the norm is the dynamical
invariant, calculated as per Eq. (15.3)). The variational equations for the soliton’s
chirp b and inverse width α, derived from Lagrangian (15.7) are

db

dt
= 2 (cos b)

sinh3 α

cosh (2α)
− 1

2
Na(t)

(
tanh2 α

) 2 cosh (2α)− 1

cosh (2α)
, (15.8)

dα

dt
= − (sin b) (sinhα) tanh (2α) (15.9)

(the amplitude A was eliminated here in favor of α, due to the conservation of
N ). First, in the absence of the FRM, i.e., for a(t) = const ≡ 1 (see Eq. (15.4))
Eqs. (15.8) and (15.9) give rise to a stationary solution (fixed point, FP), with
bFP = 0 and αFP defined by equation sinh (αFP) = N

[
1+ 3 tanh2 (αFP)

]
/4 [12].

The VA-predicted stationary soliton is quite close to its counterpart found from a
numerical solution of Eq. (15.4) with a(t) ≡ 1 [22]. Furthermore, linearization of
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Eqs. (15.8) and (15.9) around the FP yields a squared frequency of intrinsic oscilla-
tions for a slightly perturbed soliton,

ω2
0 =

sinh3(αFP) cosh2(αFP)

cosh3(2αFP)

{
4 sinh(αFP)[cosh(2αFP)+ 2]

− N
cosh4(αFP)

[
5 cosh2(2αFP)− 2 cosh(2αFP)− 1

]}
(15.10)

(this expression can be shown to be always positive). Comparison of this prediction
of the VA with numerically found frequencies of small oscillations of the perturbed
soliton demonstrates good agreement too [22].

In the presence of the FRM, a1 
= 0, strong (resonant) response of the system
is expected when the modulation frequency ω is close to eigenfrequency given
by Eq. (15.10). Moreover, the dynamics may become chaotic, via the resonance-
overlapping mechanism [27], if the modulation amplitude a1 exceeds some thresh-
old value. This was observed indeed in numerical simulations of Eqs. (15.8) and
(15.9), as illustrated in Fig. 15.1 by a typical example of the Poincaré map [27] in
the chaotic regime. The figure shows discrete trajectories initiated by two sets of the

initial conditions, namely,
(

b(1)
0 , α

(1)
0

)
= (0, 0.789), that correspond to the stationary

discrete soliton with amplitude A = 1 (cf. ansatz (15.6)) in the unperturbed system

(a1 = 0), and a different set,
(

b(2)
0 , α

(2)
0

)
= (0.13, 0.74). The respective modulation

frequency,ω, is close to the eigenfrequency of small oscillations ω0, as predicted by
Eq. (15.10). For the former initial condition, the point in space (b, α) is chaotically
moving away from the unperturbed FP. However, the chaotic evolution is a transient
feature, as the discrete trajectory takes an asymptotic form with α(t) → 0, which
implies decay (indefinite broadening) of the soliton. The second set of the initial
conditions eventually leads to a stable periodic solution (in terms of the Poincaré
map, it is represented by a new FP, which is found in a vicinity of the unperturbed
one). The latter results predicts the existence of quasi-stationary discrete solitons
under the action of the FRM.

Fig. 15.1 Example of the
chaotic Poincaré map
generated by Eqs. (15.8) and
(15.9) with a1 = 0.02766,
ω = 0.481, and W = 1.5202.
Reprinted from [22] with
permission
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Another analytically tractable case is one for the high-frequency modulation. It
is then possible to perform averaging of Eq. (15.4) (without resorting to the VA).
The eventual result is an effective DNLS equation for the slowly varying part of the
lattice field, qn(t) [22]:

i q̇n + 1

2
(qn+1 + qn−1 − 2qn)+ |qn|2qn

= (a2
1/8ω

2) [3|qn|4 (qn+1 + qn−1)+ 2|qn|2q2
n

(
q∗n+1 + q∗n−1

)

+ |qn+1|4qn+1 + |qn−1|4qn−1 − 2|qn+1|2
(
2|qn|2qn+1 + q2

n q∗n+1

)

− 2|qn−1|2
(
2|qn|2qn−1 + q2

n q∗n−1

) ]
. (15.11)

Equation (15.11) is the DNLS equation with a small inter-site quintic perturba-
tion (a2

1/8ω
2 is a small perturbation parameter).

15.2.2 Direct Simulations

Systematic direct simulations of Eq. (15.4) demonstrate that the VA correctly pre-
dicts only an initial stage of the dynamics [22]. Emission of linear waves (lattice
phonons) by the soliton, which is ignored by the VA, gives rise to an effective
dissipation, that makes the resonance frequency different from the value predicted
by Eq. (15.10). Actually, the soliton decouples from the resonance, as ω0 depends
on the norm N , and the radiation loss results in a gradual decrease of the norm.
Nevertheless, the general predictions of the VA turn out to be correct for a1 � 0.05:
under the action of the management, oscillations of the soliton’s parameters are
regular for very small a1, and become chaotic at larger a1.

Typical examples of the soliton dynamics under the action of stronger manage-
ment, with a1 ≥ 0.1 (and ω = 0.5) are displayed in Fig. 15.2. A noteworthy obser-
vation, which could not be predicted by the single-soliton ansatz, is splitting of the
pulse, which is observed, at a1 = 0.2, in Fig. 15.2, while at other values of a1, both
smaller and larger than 0.2, the soliton remains centered around n = 0. Note that
the splitting is similar to that revealed by direct simulations of the continuum NLS
equation with a term accounting for periodic modulation of the linear dispersion
(dispersion management), which was reported in [28]. A similar phenomenon was
also observed in a discrete model with the finite-difference dispersion term subject
to periodic modulation [29].

Results of the systematic numerical study of the evolution of solitons in Eq. (15.4)
are summarized in Fig. 15.3 (for a1 � 0.2, the pulse may split into several moving
splinters). The diagram shows that the actual critical value of management ampli-
tude a1, past which the soliton develops the instability (via the splitting) is much
higher than the prediction of the chaotic dynamics threshold by the VA (which also
eventually leads to the decay of the soliton, as the chaotic transient is followed by
the asymptotic stage of the evolution with α(t) → 0, see above). Thus, the VA
based on Eqs. (15.8) and (15.9) underestimates the effective stability of the discrete
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Fig. 15.2 Evolution of a discrete soliton with initial amplitude A = 1 in Eq. (15.4) with ω = 0.5
and different values of the management amplitude, a1. Reprinted from [22] with permission

solitons. This conclusion is explained by the fact that the radiation loss, that was
ignored by the variational ansatz, plays a stabilizing role for the discrete solitons.

It is worth mentioning that the existence of a finite critical value of the modula-
tion amplitude, past which the splitting occurs, and the fact that the actual stability
area for solitons is larger than predicted by the VA are qualitatively similar to fea-
tures found in the above-mentioned dispersion-management model based on the
continuum NLS equation [28].
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Fig. 15.3 The diagram of dynamical regimes in the plane of the FRM parameters, (ω, a1), as
produced by systematic simulations of Eq. (15.4) with a0 = 1 and initial soliton’s amplitude
A = 1. Open and solid squares correspond to stable and splitting solitons, respectively. The solid
line is the chaos-onset threshold predicted by the numerical solution of the variational equations
(15.8) and (15.9). Reprinted from [22] with permission
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15.3 Supporting Moving Solitons by Means
of the “Management”

15.3.1 Analytical Approximation

In this part, we switch to the notation adopted in Eqs. (15.1) and (15.2), but again
with C ≡ 1. The continuum limit (i.e., the ordinary NLS equation) suggests the
following ansatz for a moving soliton [30]:

u(n, t) = A exp

[
−b (n − ξ (t))2 + iφ(t)+

(
i

2

)
ξ̇n − i

4

∫ (
ξ̇ (t)
)2

dt

]
, (15.12)

where A, b, ξ (t), and φ are, respectively, the amplitude, squared inverse width, cen-
tral coordinate, and phase of the soliton. Accordingly, ξ̇ is the soliton’s velocity, ξ̇ /2
simultaneously being the wave number of the wave field which carries the moving
soliton. Note the difference of this ansatz, which emulates the VA for the solitons
in the continuum NLS equation [30], from the above-mentioned ansatz (15.6), that
was adopted for the essentially discrete model. In the framework of the continuum
NLS equation, the VA for the ordinary solitons yields

φ̇ = 3b, A2 = 4
√

2b

g
(15.13)

(assuming that g = const > 0), where b is treated as an arbitrary positive constant,
i.e., intrinsic parameter of the soliton family.

Then, the ansatz (15.12) with zero velocity, ξ̇ = 0, may be substituted in the
Hamiltonian corresponding to the DNLS equation (15.1),

H =
+∞∑

n=−∞

[
2|un|2 −

(
u∗nun+1 + unu∗n+1

)− g

2
|un|4

]
. (15.14)

In this way, an effective potential of the soliton-lattice interaction is obtained
in the form of a Fourier series, H (ξ ) = ∑∞

m=0 Hm cos (2πmξ ). In the case of
a broad soliton, for which ansatz (15.12) is relevant, it is sufficient to keep only
the lowest harmonic (m = 1) in this expression, which yields the respective PN
(Peierls–Nabarro) potential, UPN. A straightforward calculation, using the Poisson
summation formula, yields [23]

UPN(ξ ) = 1

2

√
π

b
A2 exp

(
−π

2

4b

){
4
√

2 exp

(
−π

2

4b

)

(
1+ e−b/2)− g A2

√
π

b

}
cos (2πξ ) . (15.15)
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If the relation between b and A2, taken as for solitons in the continuum NLS
equation, i.e., as per Eq. (15.13), is substituted into Eq. (15.15), the coefficient in
front of cos (2πξ ), i.e., the amplitude of the PN potential, never vanishes. However,
it may vanish if (15.12) is considered not as a soliton, but just as a pulse with in-
dependent amplitude and width, A and 1/

√
b; then, the PN potential in Eq. (15.15)

may vanish, under the following condition:

1+ exp

(−b

2

)
=
(

g A2

4

)√
π

2b
exp

(
π2

4b

)
. (15.16)

The vanishing of the PN potential implies a possibility of unhindered motion of
the soliton across the lattice.

For a broad soliton (small b), the PN potential barrier is exponentially small,
hence, the soliton’s kinetic energy may be much larger than the height of the po-
tential barrier. Therefore, the velocity of the soliton moving through the potential
(15.15) with period L = 1 contains a constant (dc) part and a small ac correction
to it, with frequency 2πξ̇0/L ≡ 2πξ̇0 [31]: ξ̇ (t) ≈ ξ̇0 + ξ̇1 cos

(
2πξ̇0t

)
, ξ̇2

1 � ξ̇2
0 .

Substituting this into condition (15.16), one can expand its left-hand side by using

exp

(−b

2

)
cos

(
ξ̇

2

)
≈ exp

(−b

2

)[
cos

(
ξ̇0

2

)
− ξ̇1

2
sin

(
ξ̇0

2

)
cos
(
2πξ̇0t

)]
.

(15.17)

Next, inserting the variable nonlinearity coefficient (15.2) into the right-hand side
of Eq. (15.16), and equating the resulting expression to that (15.17), one concludes
that gdc and gac may be chosen so as to secure condition (15.16) to hold, provided
that the average soliton’s velocity takes the resonant value, ξ̇0 = ω/2π . More gen-
erally, due to anharmonic effects, one may expect the existence of a spectrum of the
resonant velocities,

ξ̇0 = (cres)
(M)
N ≡ Mω

2πN
(15.18)

with integers M and N .
Actually, an ac drive can support stable progressive motion of solitons at res-

onant velocities (15.18) (assuming that the spatial period is L = 1), even in the
presence of dissipation, in a broad class of systems. This effect was first predicted
for discrete systems (of the Toda lattice and Frenkel–Kontorova types) in [32–35],
and demonstrated experimentally in an LC electric transmission line [36]. Later,
the same effect was predicted [37] and demonstrated experimentally [38] in long
Josephson junctions with a spatially periodic inhomogeneity. However, a qualitative
difference of the situation considered here is that we are now dealing with nontopo-
logical solitons, while the above-mentioned examples involved kinks, i.e., discrete
or continuum solitons whose topological charge directly couples to the driving field.
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15.3.2 Numerical Results

Numerical simulations of Eq. (15.1) (with C = 1) were performed in [23], setting
gdc = 1 by means of the same rescaling which was used in the studies of the qui-
escent solitons. First, stationary solitons were found as solutions to the DNLS with
gac = 0, in the form of u(0)

n (t) = vn exp(−iω0t). Then, the FRM with gac > 0
was switched on, and, simultaneously, the soliton was set in motion by giving it a
kick, i.e., multiplying un by exp (iqn). Generic results in the plane of the ac-drive’s
parameters, (ω, gac), can be adequately represented by fixing ω0 = −1 and consid-
ering three values of the kick, q = 0.25, 0.5, and 1.

If gac = 0, the kicked soliton does not start progressive motion if the thrust is
relatively weak, q � 0.7. It remains pinned to the lattice, oscillating around an
equilibrium position, which may be explained by the fact that the kinetic energy
imparted to the soliton is smaller than the height of the PN potential barrier. Several
types of dynamics can be observed with gac > 0, depending on the modulation
frequency ω and kick strength q . First, the soliton may remain pinned (generally,
not at the initial position, but within a few sites from it, i.e., the soliton passes a
short distance and comes to a halt, as shown in Fig. 15.4a). The next generic regime
is that of irregular motion, as illustrated in Fig. 15.4b. A characteristic feature of that
regime is that the soliton randomly changes the direction of motion several times,
and the velocity remains very small in comparison with regimes of persistent mo-
tion, see below. The soliton’s central coordinate, the evolution of which is presented
in Fig. 15.4, is defined as X = ∑n n|un|2/N , with the norm N calculated as per
Eq. (15.3).

Under the action of strong modulation, the soliton can sometimes split into two
pulses moving in opposite directions, see Fig. 15.5. This outcome is similar to that
found for quiescent solitons, cf. Fig. 15.2b, although the splitting of the kicked soli-
ton is strongly asymmetric (unlike the nearly symmetric splitting of the quiescent
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Fig. 15.4 The soliton’s central position as a function of time, for typical cases in which the soliton
remains pinned (a), at gac = 0.03, or develops an irregular motion (b), at gac = 0.065. In both
cases, ω = 1 and q = 0.5. Reprinted from [23] with permission
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Fig. 15.5 An example of asymmetric splitting of the kicked soliton, for q = 0.5. The FRM param-
eters are gac = 0.196, ω = 0.5. Reprinted from [23] with permission

solitons). The heavier splinter may move both forward and backward, relative to the
initial kick.

In the case of moderately strong modulation, the moving soliton does not split.
Numerical results demonstrate that, in some cases, it gradually decays into radiation,
while in other cases it is completely stable, keeping all its norm, after an initial
transient stage of the evolution, see examples in Figs. 15.6 and 15.7. To distinguish
between the unstable and stable regimes, a particular criterion was adopted [23]. It
categorizes as stable solitons those moving ones which keep ≥ 70% of the initial
norm in the course of indefinitely long evolution. For this purpose, very long evolu-
tion was implemented by allowing the soliton to circulate in the DNLS lattice with
periodic boundary conditions.

Note that the soliton adjusting itself to the stable motion mode typically sheds off
�20% of its initial norm. Although this conspicuous amount of the lattice radiation
stays in the system with the periodic boundary conditions, it does not give rise to
any appreciable perturbation of the established motion of the soliton. In fact, the
latter observation provides for an additional essential evidence to the robustness of
the moving soliton.
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Fig. 15.6 Generic examples of the progressive motion of a decaying soliton in the straight
(forward) direction (a), for gac = 0.206, ω = 0.5, and in the reverse (backward) direction (b),
for gac = 0.170, ω = 1. In both cases, the solitons were set in motion by the application of the
kick with q = 0.5. Reprinted from [23] with permission
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Fig. 15.7 Generic examples of the motion of propagating solitons in the straight direction (a),
for gac = 0.132, and in the reverse direction (b), for gac = 0.122. In both cases, the modulation
frequency is ω = 1, and the kick is q = 0.5. Reprinted from [23] with permission

It is noteworthy too that, as seen in Figs. 15.6b and 15.7b, in both unstable and
stable regimes the persistent motion of the soliton is possible in both the straight and
reverse directions, relative to the initial thrust. In the latter case, the soliton starts
the motion straight ahead, but very quickly bounces back. The difference from the
regime of the irregular motion (cf. Fig. 15.4b) is that the direction of motion reverses
only once, and the eventual velocity does not fall to very small values.

It is pertinent to compare the average velocity c̄ of the persistent motion with the
prediction given by Eq. (15.18). For example, in the cases displayed in Fig. 15.7a,
b, the velocities found from the numerical data are c̄a ≈ 0.246 and c̄b ≈ −0.155,
respectively. For ω = 1, which is the corresponding modulation frequency, these
values fit well to those predicted by Eq. (15.18) in the cases of, respectively,
the second-order and fundamental resonance: c̄b/ (cres)

(1)
1 ≈ 0.974, c̄a/ (cres)

(2)
3 ≈

1.029.
Lastly, results of systematic simulations of Eq. (15.1), which were performed,

as said above, for the initial discrete soliton taken as a solution of the stationary
version of the equation (for gac = 0 and gdc = 1 in Eq. (15.2)) with ω = −1,
and for three values of the kick, q = 0.25, 0.5, and 1, are collected in Fig. 15.8 in
the form of maps in the plane of the modulation parameters, gac and ω. The maps
outline regions of the different dynamical regimes described above, as well as the
distinction between regions of the straight and reverse progressive motion.

The examination of the maps shows that the increase of thrust q significantly
affects the map, although quantitatively, rather than qualitatively. At all values of
q , the irregular dynamics is, generally, changed by the stable progressive motion
(straight or reverse) with the increase of the modulation amplitude and/or decrease
of the frequency, which is quite natural. Further increase of the FRM strength, which
implies the action of a strong perturbation, may lead to an instability, which indeed
happens, in the form of onset of the gradual decay of the moving solitons. Finally,
strong instability sets in, manifesting itself in the splitting of the soliton.

The reversal of the direction of the soliton’s motion tends to happen parallel to
the transition from stable moving solitons to decaying ones. For this reason, in most
cases (but not always, see Fig. 15.7b) backward-moving solitons are decaying ones.
Finally, a somewhat counterintuitive conclusion is that the increase of the initial
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Fig. 15.8 Maps in the left column show areas in the plane of the FRM frequency and amplitude
(ω, gac) which give rise to the following dynamical regimes. White areas: the soliton remains
pinned; bright gray: irregular motion; gray: splitting; dark gray: regular motion with decay; black:
stable motion. The maps in the right column additionally show the difference between the straight
and reverse directions of the regular motion (marked by dark gray and black), relative to the direc-
tion of the initial thrust. Regular-motion regimes for both decaying and stable solitons are included
in the right-hand panels. Top row: q = 0.25; middle row: q = 0.5; bottom row: q = 1. Reprinted
from [23] with permission

thrust leads to overall stabilization of the soliton, making the decay and splitting
zones smaller.

Collisions between solitons moving with opposite velocities (generated by thrusts
±q applied to two far separated quiescent solitons) were studied too, using the
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Fig. 15.9 Two generic outcomes of collisions between identical solitons moving in opposite di-
rections, in the lattice with periodic boundary conditions. The parameters are gac = 0.132, ω = 1,
q = 0.5 (a) and gac = 0.122, ω = 1, q = 0.5 (b). Note the presence of multiple collisions in panel
(b). Reprinted from [23] with permission

lattice with periodic boundary conditions (which allow repeated collisions). Two
different types of the interaction can be identified, see typical examples in Fig. 15.9.
In the case shown in Fig. 15.9a, the solitons bounce back from each other almost
elastically. Afterward, one of them spontaneously reverses the direction of motion,
due to its interaction with the lattice. Eventually, a pair of virtually noninteracting
solitons traveling indefinitely long in the same direction is observed.

In the other case, shown in Fig. 15.9b, the solitons also bounce after the first
collision; however, in this case the collision is inelastic, resulting in transfer of mass
from one soliton to the other. Repeated collisions (due to the periodicity of the lat-
tice) lead to additional such transfer, and the weaker soliton disappears eventually. In
contrast to what is known about collisions between moving solitons in the ordinary
DNLS equation (with constant coefficients) [17], merger of colliding solitons into a
single standing one was not observed under the action of the management (FRM).

15.4 Conclusion and Future Challenges

The use of the nonlinearity management may provide for a powerful tool for the
control of the dynamics of standing and moving discrete solitons. In the present
chapter, these possibilities were outlined for the 1D settings. The action of a similar
“management” on two-dimensional (2D) discrete fundamental and vortex solitons,
which, in terms of the BEC, may also be readily implemented by means of the FRM,
has not been investigated as yet.

The stability limits of 2D solitons, against periodic modulation of the strength
of the potential, in the continuum Gross–Pitaevskii equation have been recently
studied. The considered model includes the self-attractive cubic nonlinearity and
a quasi-1D [39] or full 2D [40] OL potential. In fact, the respective solitons may be
considered as quasi-discrete ones; accordingly, in terms of discrete equation (15.1),
this “lattice management” corresponds to making the lattice coupling constant a
periodic function of time, C = C(t).
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As concerns the application of the nonlinearity management to 2D lattice soli-
tons, challenging issues are a possibility of the generation of moving 2D lattice
solitons, as well as the control of vortex solitons and bound states of fundamental
solitons by means of this technique. These applications may pertain to both isotropic
and anisotropic lattices.

A similar management technique may be applied to waveguide arrays or pho-
tonic crystals made of photorefractive materials. These systems can be described by
DNLS equations with a saturable nonlinearity.
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