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Abstract

In the present work, we give a comparative summary of different recent contribu-
tions to the theme of the linear stability and nonlinear dynamics of solitary waves in
the nonlinear Dirac equation in the form of the Gross-Neveu model. We indicate some
of the key controversial statements in publications within the past few years and we
attempt to address them to the best of our current understanding. The conclusion that
we reach is that the solitary wave solution of the model is spectrally stable in the cubic
nonlinearity case, however, it may become unstable through an instability amounting
to the violation of the Vakhitov-Kolokolov criterion for higher exponents. We find that
for the Dirac model, the interval of instability is narrower. A fundamental numerical
finding of our work is that, contrary to what is the case in the nonlinear Schrödinger
analogue of the model, the unstable dynamical evolution, does not lead to collapse
(blowup) and hence it appears that the relativistic nature of the model mitigates the
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collapse instability. Various issues associated with different numerical schemes are
highlighted and some possibilities for future alleviation of these is suggested.

PACS 05.45.Yv. Keywords: Solitons, nonlinear Dirac equation, stability, dynamics

1. Introduction

Variants of the nonlinear Dirac equation (NLDE) and special solitary wave solutions of this
model have now been proposed for more than 50 years [1, 2]. In suitable non-relativistic
limits [3], these models have also been connected to their far more widespread dispersive
nonlinear wave analogue, namely the nonlinear Schrödinger equation (NLSE) [4, 5]. Nev-
ertheless, it has turned out that the Dirac equation as a result of its matrix nature and the fact
that it is only first order in spatial derivatives (as opposed to second order in the NLSE) has
proven far more computationally (and theoretically) challenging, on a number of grounds,
than its NLSE counterpart. For a summary of a number of the computational issues arising
in this connection, the interested reader can refer to [6, 7, 8]. On the other hand, numerous
mathematical works have attempted to address issues of orbital and asymptotic stability of
solitary wave solutions in the model [9, 10, 11, 12], and different kinds of potential stabil-
ity/instability criteria [13, 14].

Here, we will revisit this theme of stability and dynamics of the solutions of the NLDE,
in the context of a concrete, well-established (especially in the context of high energy
physics) model, namely the Gross-Neveu model [15]. This model has been generalized
recently to arbitrary nonlinearity powers [8] (parametrized by an exponent k) and exact
solitary wave solutions have been obtained. It is the linear (spectral) stability and nonlinear
dynamics of such solutions that we will consider herein. We will discuss in the paper both
the equation with cubic non-linearity (k = 1) as well as the case for arbitrary k.

It turns out that the question of stability and dynamics has been one which is highly
controversial in recent years. Early work of Bogolubsky for the cubic nonlinearity case
predicted that for frequencies below a critical one, instability should ensue [16]. On the
contrary, the numerical (short time) simulations of Alvarez and Soler did not identify an
instability and concluded stability for all frequencies Λ [17]. In [8], it was questioned
whether the multi-hump solutions that arise for small values of Λ were associated with a
stability change and, in fact, more recently in [18] and later in [7], it was argued based
on Bogolubsky-type considerations and longer numerical simulations that an instability
threshold does exist which was argued to be 0.6976 in [18] and 0.56 in [7]. These results,
however, are in disagreement with the linear (spectral) stability calculations, of [19], based
on the well established and highly accurate technique of the Evans function (identifying
point spectrum eigenvalues and associated instabilities) [20]. They are also in disagreement
with the conclusions of [21]. The latter explored the transverse instability of quasi-one-
dimensional nonlinear waves in a 2d Dirac equation. In that setting, it was shown that for
1d perturbations (uniform in the transverse direction), the waves do not manifest a spectral
instability in the Chebyshev collocation scheme utilized in that work. An instability of a
centered-difference discretization scheme near the continuum limit was recently reported
in [22], although the authors therein cautioned against the danger of extending these results
(of the discrete context) all the way to the continuum limit.
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Admittedly, the above conclusions may leave the reader rather in confusion, given the
apparently contradictory nature of the obtained results. This, in turn, only attests to both the
analytical (as no definitive analytical spectral result exists e.g. in the most highly discussed
cubic, one-dimensional case) and numerical challenges raised by the present setting. Our
aim in the present work is to shed some further light on this controversy, by testing and
comparing different methods both for the stability properties of the continuum solutions
and also for their nonlinear dynamics.

Our presentation will be structured as follows. In section II, we will give a brief
overview of the setup that we plan to consider. In section III, we will analyze the linear
stability of the solitary waves, utilizing different (finite difference, and Fourier, as well as
Chebyshev spectral collocation) methods both for the cubic case, but also for the more
general case of arbitrary exponents. We conclude that the waves should be stable for the
one-dimensional cubic case, for arbitrary frequency Λ, while instabilities may only arise for
nonlinear exponent k > 2 (k = 1 corresponds to the cubic case) and only within a certain
range of Λ’s. We touch upon the nature of spurious instabilities obtained in different spectra
(and their identification). Finally, in section IV, we explore the nonlinear dynamics of the
system. In the cubic case, we identify the growth observed as associated with (spurious)
unstable eigenmodes of the linear spectrum. In the case of “super-critical” exponents with
k > 2, the dynamics now leads to a “true” instability, but not one associated with col-
lapse. Instead an oscillation around a linearly stable solution with a different frequency is
observed. In a sense, it is thus concluded that the relativistic Dirac limit within the NLDE
not only reduces the parametric interval (of frequency) which is subject to the collapse in-
stability of the NLSE, but it also mitigates the catastrophic nature of such collapse in the
dynamical phenomenology. Section V summarizes our findings and presents some, among
the admittedly many, open challenges for future efforts.

2. Brief Theoretical Setup

The system of choice in the present context will be the Gross-Neveu model [15] in its
generalized [8] form:

i
∂U

∂t
=

∂V

∂x
− g(|U |2 − |V |2)kU +mU,

i
∂V

∂t
= −∂U

∂x
+ g(|U |2 − |V |2)kV −mV. (1)

We will restrict our considerations to the one-dimensional setting, as is evident from
the above. The relevant standing wave structures will be of the form: U(x, t) =
exp(−iΛt)u(x), V (x, t) = exp(−iΛt)v(x). Then, exact solutions are analytically avail-
able in the generalized form [8, 18]

u(x) =

√
(m+ Λ) cosh2(kβx)

m+ Λcosh(2kβx)

[
(k + 1)β2

m+ Λcosh(2kβx)

]1/2k
,

v(x) = sgn(x)

√
(m− Λ) sinh2(kβx)

m+ Λcosh(2kβx)

[
(k + 1)β2

m+ Λcosh(2kβx)

]1/2k
. (2)
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In this expression, β =
√
m2 − Λ2. In the special case of k = 1 the above waveforms

reduce to

u(x) =

√
2(m− Λ)

[1− µ tanh2(βx)] cosh(βx)
, v(x) =

√
2µ(m− Λ) tanh(βx)

[1− µ tanh2(βx)] cosh(βx)
, (3)

with µ = (m − Λ)/(m + Λ). As discussed in [8], the relevant profiles become double-
humped for Λ smaller than a critical value for every k. In what follows we will set m = 1
(i.e., we will measure Λ in units of m).

To analyze the linear (spectral) stability of the relevant states, we consider infinitesimal
perturbations of the form:

U(t) = e−iΛt
[
u0 + δ(aeiωt + c∗e−iω∗t)

]
, V (t) = e−iΛt

[
v0 + δ(beiωt + d∗e−iω∗t)

]
,

(4)
where δ denotes a formal small parameter. The relevant linearization equations are derived
to order O(δ) [by substitution of the above ansatz into Eqs. (1)] and are subsequently solved
as a matrix eigenvalue problem, through the different relevant techniques (see below).

Finally, once the exact waveforms and their linear stability are identified for each
scheme, the corresponding full nonlinear dynamics of the scheme is monitored by means
of the solution of Eqs. (1). In that setting, key quantities for numerical monitoring are the
prototypical conservation laws of the system such as the charge (squared ℓ2 norm):

Q =

∫ [
|U(x, t)|2 + |V (x, t)|2

]
dx, (5)

and the Hamiltonian (energy) of the system in the form:

H =
1

2

∫ [(
U∗∂V

∂x
− V ∗∂U

∂x

)
− g

k + 1
(|U |2 − |V |2)k+1 +m(|U |2 − |V |2)

]
dx. (6)

3. Numerical Linear Stability Analysis: Comparison of
Different Methods

In the work [22], a subset of the present authors used a centered difference (second order)
approximation to the derivatives of Eqs. (1) (as well as of the linearization equations), as
a finite difference (FDM) strategy for (potentially) approximating the full NLDE results.
Here, we have complemented this strategy by using spectral collocation methods. We have
utilized two case examples of such methods herein: the Fourier method (Fourier Spec-
tral Collocation Method or FSCM hereafter), which implicitly enforces periodic boundary
conditions, and the (Gauss-Lobatto-) Chebyshev collocation (Chebyshev Collocation Spec-
tral Method or CSCM for short hereafter). The latter enforces (homogeneous) Dirichlet
boundary conditions. In Appendix A, we provide the basic formulation of each of our used
methods.

The advantage of the FDM from a computational perspective lies in the sparseness of
the resulting matrix (and the ease of applying different types of boundary conditions). We
have also checked that in this setting, the boundary conditions do not significantly affect the
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Figure 1. Real part of the eigenfrequencies for the FDM (top), FSCM (bottom left) and
CSCM (bottom right). In all cases, the domain is [−L,L] with L = 40 and the discretization
parameter h = 0.1 (i.e. the number of grid points is N = 800).

results, for the domain sizes utilized. In the computations shown, we present results with
N = 800 modes. We have checked that increasing the mode number to N = 1200 does not
seem to qualitatively improve our findings.

In Fig. 1 we examine the dependence of the real part of the eigenfrequencies ω with
respect to the frequency Λ of the solution and the three methods are compared in the cubic
case of k = 1. As is well established (see e.g. [19]) there is an embedded mode, corre-
sponding to ω = 2Λ, which arises from symmetry considerations and does not give rise to
an instability. All three methods capture this mode.

In addition to this mode, the different methods have additional modes which can be
compared also e.g. with Fig. 6 of [19]. We thus find that the comparison of the FSCM with
the above mentioned earlier work seems qualitatively (and even quantitatively) to yield
very good agreement with the exception of a mode that seems to initially grow steeply (for
small Λ) and subsequently to slowly asymptote to the band edge (as Λ increases). This
mode is shown in the right panel of Fig. 2, while the left panel of the figure illustrates a
prototypical example of the FSCM spectrum for Λ = 0.1. From the above panel, we can
immediately infer that this mode is, in fact, spurious and an outcome of the discretization
as it carries a staggered profile that cannot be supported in the continuum limit. In the left
panel of Fig. 2, we can see the existence of additional spurious modes forming “bubbles”
of complex eigenfrequencies. However, the fact that these bubbles are occurring at the
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Figure 2. The left panel shows the spectral plane of a solitary wave with Λ = 0.1 with the
FSCM. The typical profile of two modes corresponding to spurious eigenvalues is depicted
in the right panel. In particular, we have included the mode with Im(ω) = 0 which does
not arise in the Evans’ function analysis of [19] together with the largest imaginary part
eigenvalue, which is also spurious.

eigenfrequencies of the continuous spectrum assures us that these are spurious instabilities
due to the finite size of the domain and ones which disappear in the L → ∞, h → 0 limit.
This is confirmed by Fig. 3 which shows that as we decrease h (and increase the number
of lattice sites, approaching the continuum limit for a given domain size) the growth rate of
such spuriously unstable eigenmodes accordingly decreases.
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Figure 3. Imaginary part of the eigenfrequencies for the FSCM. The domain is [−L,L]
with L = 40 and the discretization parameter h = 0.1 or h = 0.4 (i.e. the number of grid
points is N = 800 or N = 200).

Remarkably, the FDM spectrum of the top panel of Fig. 1 is the one that seems most
“distant” from the findings of the Evans function method of [19]. While all 4 of the inter-
nal modes of the latter spectrum seem to be captured by the FDM, three additional modes
create a nontrivial disparity. Two of them are in fact “benign” and maintain a frequency
below the band edge of the continuous spectrum for all values of Λ. However, as explained
in [22], we also observe the existence of an eigenmode embedded in the essential spectrum.
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Unfortunately, this mode is accompanied by an imaginary part in the corresponding eigen-
frequency and hence gives rise to a spurious, as we will indicate below, instability. While
the origin of this mode starting from the so-called anti-continuum limit was thoroughly
explained in [22], the persistence and especially the instability inducing nature of such a
mode remains an open problem as the continuum limit is approached. Fig. 4 presents a
graph analogous to Fig. 2 but for the FDM. The undesirable unstable mode, as well addi-
tional spurious modes are explicitly indicated through the eigenvector profiles of the right
panel.
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Figure 4. The left panel shows the spectral plane of a solitary wave with Λ = 0.1 with the
FDM. The typical profile of three modes corresponding to spurious eigenvalues is depicted
in the right panel. In particular, we have included the two modes with Im(ω) = 0 which do
not arise in the Evans’ function analysis of [19] together with the embedded spurious mode.

The scenario of the CSCM bears advantages and disadvantages in its own right. Al-
though it gives an accurate result for the real part of the eigenfrequencies, their imaginary
part grows for larger eigenfrequencies, as is also shown in Fig. 5. Additionally, as indicated
in [23], approximately half of the values of the spectrum are spurious within the CSCM,
so they should be excluded from consideration. Furthermore, one can observe that in this
case as well, spurious instability “bubbles” arise (see the bottom panel of Fig. 5 and see
also [21]), yet we have checked that these disappear in the continuum limit of h → 0.

As a final aspect of the spectral considerations that we provide herein, we have exam-
ined the instability that arises e.g. from the CSCM for larger values of k. Recall that the
CSCM method predicts (at least as regards the point spectrum lying below the continuous
spectrum band edge of ω = m − Λ = 1 − Λ herein) that there is no instability for any Λ
in the case of k = 1, in agreement with [19, 21]. The method identifies an instability for
such point spectrum eigenvalues only for k > 2. The relevant instability predicted numeri-
cally in the k − Λ plane is illustrated in Fig. 6. Remarkably, we note that the instability is
precisely captured by the Vakhitov-Kolokolov criterion, i.e. it precisely corresponds to the
condition [7, 14] dQ

dΛ = 0 for the solutions of Eq. (2). Hence, by analogy with the NLSE
limit of Λ → 1, we expect this to be an instability associated with the collapse of the latter
model (however, we will observe a key dynamical difference, in comparison to the NLSE,
in the next section). Nevertheless, it is relevant to point out here that the NLDE, contrary
to the NLSE, does not exhibit an instability for all Λ when k > 2. The instability is instead
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Figure 5. Spectral plane of a soliton with Λ = 0.4 with the CSCM. The bottom panel is a
zoom of that on the top, illustrating the weak, spurious instabilities (which disappear as the
continuum limit is approached).

limited to Λ > Λc(k), as characterized by the curve of Fig. 6. Hence, it can be inferred that
the instability is mitigated by the reletivistic limit of the NLDE.
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Figure 6. Exponential bifurcation loci in the k-Λ plane. Under the curve the NLDE model
is linearly (spectrally) stable, while above the curve it is spectrally unstable.

4. Numerical Evolution Dynamics

We now turn our attention to the implications of the above spectral considerations to the
nonlinear dynamical evolution problem. Again, we focus first on the case of k = 1. Given
the large (yet spurious) growth rate of the CSCM modes and the spurious point spectrum
instability of the FDM, for our dynamical considerations, we will restrict attention to the
FSCM results. As discussed above, in that method too, there exist spurious modes which,
as expected, are found to affect the corresponding dynamics. As a dynamical outcome of
these modes, the solitary waves are found to be destroyed after a suitably long evolution
time, although the time for this feature is controllably longer in comparison to the one
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observed in [7]. This, in turn, suggests the expected stability of the solitary wave solutions,
in accordance with what was proposed also in [19, 21].

As a prototypical diagnostic of the dynamical stability of the solitons, we have moni-
tored the ℓ2-error in a similar fashion as in [7]:

err2(t) =

√∫
|ρ(x, t)− ρ(x, 0)|2 dx, (7)

with ρ(x, t) = |U(x, t)|2+ |V (x, t)|2 being the charge density. We observe that the lifetime
is longer when the frequency Λ is fixed and the domain length L is increased. This is
associated with the decrease of the size of spurious instability bubbles, as we approach the
infinite domain limit. Similar decrease of the growth rate is observed for a given L, when
the discretization spacing h is decreased (i.e., as the continuum limit is approached), in
accordance with the spectral picture of Fig. 3. In addition, if L is fixed, the lifetime is longer
when Λ is increased. This is summarized in Fig. 7. This is, of course, in consonance with
recent (and earlier) observations such as those of [7] (see also references therein), however,
our ability to expand upon the lifetimes as the domain and discretization parameters are
suitably tuned suggests that in the infinite domain, continuum limit such instabilities are
absent in accordance with the spectral picture put forth by [19] (cf. also [21]). As a final
comment regarding Fig. 7, we note that the growth rates observed in the figure are consonant
with the maximal (yet spurious) instability growth identified in the corresponding spectral
figures of the earlier section. This is yet another indication that this growth featured in
the time dynamics is a spurious by-product of the discretization scheme, rather than a true
feature of the corresponding continuum problem. Notice that decreasing the time step of the
integrator ∆t (we are using a Runge-Kutta with fixed step-size) also leads to a controllably
smaller error as well; a demonstration of this feature is shown in Fig. 8. Let us mention
in passing that while we observe this feature for large Λ, for sufficiently small Λ this trend
may be reversed and higher ∆t may offer more robust dynamical evolution than lower ∆t.
Understanding this more complex role of the time step in the evolution is worthwhile of
further investigation.

In Table 1 we compare the critical time for which err2 > 10−3 within the FSCM and the
corresponding time for the algorithm used in [7] for which we have the wave frequencies
Λ = 0.1 and Λ = 0.5 and different domain lengths L. As can be seen from the comparison,
although in some cases (e.g. for Λ = 0.5 and L = 50) the observed destabilization may
happen later for the scheme of [7], generally the FSCM code explored herein allows to
enhance the wave lifetime, in some cases by an order of magnitude. This can be further
improved by tweaking parameters such as h and the time spacing ∆t, as discussed above.
Hence, our conclusion is that despite the artificial instabilities existing in the spectral picture
and their dynamical manifestation, it is anticipated that the continuum, real line variant of
the problem is spectrally stable for all Λ in the case of k = 1.

Given that the solitary wave solutions of the problem with k = 1 (and, in fact, with
any k < 2) are argued to be dynamically stable, we now turn our attention to the dynamics
associated with the instability for Λ > Λc(k), as per Fig. 6. Figure 9 shows the evolution
of an exponentially-unstable solitary wave with k = 3 and Λ = 0.9. We can observe
the existence of oscillations around a stable fixed point. This fixed point approximately
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Figure 7. Norm error comparison for different domain sizes and frequencies. In every case,
the time step of the integrator is ∆t = 0.05.

corresponds to the soliton with frequency Λ ≈ 0.82, for which the solution is spectrally
stable. This is in stark contrast with the supercritical dynamics of the NLSE. There, the
instability directly leads to collapse and indefinite growth of the amplitude of the solution.
On the contrary, in the case of the NLDE, for any value of k for which the solution may
become unstable, there exists (for the same k) an interval of spectrally stable states of the
same type. Hence, the NLDE solution does not escape towards collapse but rather departs
from the vicinity of the unstable fixed point solution and finds itself orbiting around a center,
i.e., a stable solitary wave structure.

5. Conclusion

In the present work, we revisited the controversial issue of the spectral stability and nonlin-
ear dynamics of stationary nonlinear wave states in the continuum nonlinear Dirac equation
with arbitrary exponent k, and as a function of the standing wave frequency Λ. We offered
the perspective of different spectral approaches for identifying the stability characteristics of
the wave, including a finite difference method, a Fourier spectral method and a Chebyshev
spectral method. We compared the findings of these different methods with earlier works
(such as the Evans function based results of [19] and the Chebyshev based ones of [21]).
We concluded on the basis of this comparison that the case of k = 1 should be spectrally
stable in the infinite domain, continuum limit for this cubic case and for all settings with
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Table 1. Comparison between the critical times for which err2 > 10−3 using the FSCM
(t2) and the SO(4) method of [7].

Λ = 0.1 Λ = 0.5

L t1 t2 t1 t2

50 1220 121 5620 6614
75 1320 122 8480 8724

100 1990 122 14660 9937
125 2540 120 14660 11670
150 3120 122 14660 13560

k < 2, for all frequencies Λ < m (the mass of the massive Gross-Neveu model). On the
other hand, for k > 2, we found that an interval of instability opens, in excellent agreement
with the prediction of the Vakhitov-Kolokolov criterion. However, this instability contrary
to the NLSE case does not arise for all frequencies Λ, but only for an interval of Λ > Λc(k),
in accordance with the criterion. This lends support to the fact that the relativistic character
of the NLDE mitigates the collapse instability of its non-relativistic NLSE analogue.

Finally, we also explored the dynamical manifestations of the instabilities. We used as
our scheme of choice for exploring them the Fourier method (for reasons explained above)
and found that the instabilities identified spectrally manifest themselves in the nonlinear
integration dynamics of the system. However, as noted above, these instabilities could be
suppressed by suitably approaching the real line, continuum limit of the problem, by suit-
ably tuning the domain size L, the discretization spacing h and the time discretization ∆t.
A comparison, to that effect, with the recent results of [7] indicates that wave “destruction”
times could be pushed (for similar parameter values) an order of magnitude higher attesting
to the stability of the relevant coherent structures. In the case of the instability arising for
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Figure 9. (Left) Time evolution of a soliton with nonlinearity exponent k = 3 and frequency
Λ = 3. The right panel shows the spectral plane of the soliton.

k > 2, we observed that the dynamics of the NLDE, contrary to that of the NLSE, led to
a persistent oscillation around a stable nonlinear wave (of different frequency, for the same
k) rather than to collapse.

Naturally, there are still numerous intriguing open questions in this budding research
theme. One important aspect to eventually understand is about the source of disparity be-
tween the different methods and why (contrary e.g. to what is known in the NLSE case) this
does not go away as we approach the continuum limit in some of the relevant cases, e.g., in
the finite difference method. A complementary and, arguably, more important aspect would
involve seeking discretizations of the Gross-Neveu model devoid of the pathologies that we
identified herein. Especially, seeking integrable-like discretizations (e.g. of the integrable
massive Thirring model) that may avoid the spurious instabilities and may properly capture
the continuum limit would appear an especially worthwhile cause, as it would tremendously
facilitate computations and comparisons to rigorously obtained results, of which a signifi-
cant and continuously growing volume of efforts is emerging. As an additional direction of
interest, we note that higher-dimensional settings in the context of these models are nearly
untouched from the point of view of detailed computations and comparison to theoretical
predictions. Examining certain aspects even at the level of radially symmetric solutions
(and general perturbations thereof) would already be a significant step in that direction.
Efforts in all of these directions are presently underway and corresponding results will be
reported in future publications.
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A Summary of Spectral Methods

We briefly discuss in this appendix the basic ingredients of the spectral methods used in
the paper. For a detailed discussion on these methods, the reader is directed to [23] and
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references therein.
Spectral methods arise due to the necessity of calculating spatial derivatives with higher

accuracy than that given by finite difference methods. To this aim, a differentiation matrix
D must be given together with collocation (i.e. grid) points xi, which are not necessarily
equi-spaced. Thus, if the spectral derivative of a function u(x) needs to be calculated, it
can be cast as:

u′(x) = ∂xu(x) ↔ ũ′ = Dũ, (8)

where ũ = {ui} and ũ′ = {u′i}, i.e., ui ≡ u(xi) and u′i ≡ ∂xu(xi). If x ∈ [−L,L] and the
boundary conditions are periodic, the Fourier collocation can be used. In this case,

xi =
2L

N

(
i− N

2

)
, i = 1, 2, . . . N (9)

with N even. The differentiation matrix is

Dij =


0 if i = j,

π
2L(−1)i+j cot

xi − xj
2 if i ̸= j.

(10)

Notice that doing the multiplication Du is equivalent to performing the following pair
of Discrete Fourier Transform applications:

Dũ = F−1
(
ik̃F(ũ)

)
, (11)

with F and F−1 denoting, respectively, the direct and inverse discrete Fourier transform
[24]. The vector wavenumber k̃ = {ki} is defined as:

ki =


iπ
L if i < N/2,

0 if i = N/2.

(12)

The computation of the direct and inverse discrete Fourier transforms, which is useful
in simulations, can be accomplished by the Fast Fourier Transform. However, the differen-
tiation matrix must be used for finding the stability matrix. Fourier spectral collocation can
also be valid for N odd. For a detailed explanation, the reader is referred to [25].

Notice that the grid for finite differences discretization is the same as in the Fourier col-
location; and, in addition, there is a differentiation matrix for the finite differences method,
i.e.

Dij =
N

4L
(δj,i+1 − δj,i−1 + δi,1δj,N − δi,Nδj,1) , (13)

with δ being Kronecker’s delta. It is easy to observe that the Fourier spectral method ba-
sically consists of transforming the banded differentiation matrix of the finite differences
method into a dense matrix, or, in other words, turning a nearest-neighbor interaction into
a long-range one. The lack of sparsity of differentiation matrices is one of the drawbacks
of spectral methods, especially when having to diagonalize large systems. However, they
have the advantage of needing (a considerably) smaller number of grid points N for getting
the same accuracy as with finite difference methods.
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For fixed boundary conditions, the Chebyshev spectral methods are the most suitable
ones. There are several collocation schemes, the Gauss-Lobatto being the most extensively
used:

xi = L cos

(
iπ

N

)
, i = 1, 2, . . . N , (14)

with N being even or odd. The differentiation matrix is

Dij =


xi

2L(1− x2i )
if i = j,

(−1)i+j

L cos(xi − xj)
if i ̸= j.

(15)

In this case, Fourier transforms can also be used for calculating the spectral derivative,
although it is more efficient to use the cosine transform as long as the function u(x) is real.

The significant drawback of Chebyshev collocation is that the discretization matrix pos-
sesses a great number of spurious eigenvalues or outliers. They are approximately equal to
N/2. These outliers also have a significant non-zero real part, which increases when N
grows. This fact makes this method quite inefficient when performing numerical time-
integration. However, it presents a higher spectral accuracy than the Fourier collocation
method. Unfortunately the latter is not exempt from the existence of outliers, as shown in
the text of the present paper.
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