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Solitary wave billiards
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In the present work we explore the concept of solitary wave billiards. That is, instead of a point particle, we
examine a solitary wave in an enclosed region and examine its collision with the boundaries and the resulting
trajectories in cases which for particle billiards are known to be integrable and for cases that are known to be
chaotic. A principal conclusion is that solitary wave billiards are generically found to be chaotic even in cases
where the classical particle billiards are integrable. However, the degree of resulting chaoticity depends on the
particle speed and on the properties of the potential. Furthermore, the nature of the scattering of the deformable
solitary wave particle is elucidated on the basis of a negative Goos-Hänchen effect which, in addition to a
trajectory shift, also results in an effective shrinkage of the billiard domain.
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I. INTRODUCTION

In recent years, the study of solitary waves has been a topic
of widespread appeal in a broad range of fields. For instance,
relevant coherent structures arise in the exploration of elec-
trical field dynamics within optical fibers [1,2], as well as in
the study of nonlinear effects in plasmas [3]. They emerge
in atomic clouds of Bose-Einstein condensates (BECs) [4,5],
as well as in so-called rogue waves in the ocean [6]. Of
central role within most of the above studies and fields has
been the envelope wave model of the nonlinear Schrödinger
equation [7–10], which can be used to describe the electric
field of light, the wave function of BEC atoms, or the water
wave elevation. Indeed, the resulting nonlinearity may stem
from different sources, such as the so-called Kerr effect in
optics [1,2] or an effective mean-field nonlinearity due to
contact interactions between bosons [4,5], yet its impact is
similar across fields in producing robust solitary waves of
either bright [2,10], dark [11], or rogue [6] form.

On the other hand, the notion of billiards is one that has
attracted significant attention both at the classical, as well as
at the quantum side. Here, a point particle is reflected within
a (typically) enclosed two-dimensional (2D) domain Q (of
different possible shapes) [12,13] (see also [14] for an exten-
sive set of references). The particle moves freely aside from
its interaction with the boundary ∂Q, by elastic reflections
without loss of speed. Depending on the nature of the billiard
(e.g., square or circular or instead an elliptical stadium [15,16]
or a square with an enclosed circle [12,17]), the outcome of
the reflections could be a closed trajectory associated with
integrable motion, or an ergodic trajectory associated with a
chaotic billiard.

While the above aspects involve classical billiards, we
do note in passing the consideration of quantum billiards.
The quantum mechanical billiard is given by the linear
Schrödinger equation typically with Dirichlet boundary con-
dition. It describes a wave function associated with a
probability density |ψ |2 within the domain while the wall fea-
tures an infinite potential wall. A relevant summary of some
of the activity in the context of experiments (and theory) in the
theme of microwave billiards and the connections to quantum
chaos can be found in [18], where a number of references to
this theme are summarized. The dynamics of a quantum bil-
liard are determined by the Hamiltonian equations of motion
on the domain Q. The wave function ψ of a single quantum
particle with unit mass obeys the Schrödinger equation

i
∂ψ

∂t
= −∇2ψ + V (r)ψ, r = (x, y) ∈ int(Q) (1)

with, e.g., Dirichlet boundary conditions ψ (x, y) = 0, for
(x, y) ∈ ∂Q. Usually one can assume in such a setting that
V (x, y) = 0 for (x, y) ∈ int(Q), and V (x, y) = ∞, for (x, y) ∈
∂Q. Most research has been concentrated, for such quan-
tum billiards, on the search for quantum chaos. Even though
it was proved that if a classical billiard is ergodic, then
the corresponding quantum billiard is quantum ergodic, so-
called quantum “scars” are observed in most cases, which
demonstrate that quantum billiards are more complicated.
The Bunimovich stadium [15,16] has recently become a very
popular quantum billiard model, while the study of quantum
chaos in different billiards is generally a topic that is gaining
considerable traction [19–21].

A less studied billiard is the “soft” version, where the
boundary of the billiard table Q is defined by a finite potential
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wall V , with V (x, y) = 0 for (x, y) ∈ int(Q) and V (x, y) ∈
(0,∞) for (x, y) ∈ ∂Q. In such a setting, for a Sinai (dispers-
ing) billiard [12,17], the existence of a stable island around a
periodic orbit which is tangent to the billiard’s wall (or near
the corner) was found numerically in [22]; see also [23,24] for
other examples of such soft billiards.

In the present work our aim is to explore a notion that, in a
sense, interweaves the above concepts while paving an avenue
involving the interplay of nonlinearity, billiards and possibly
quantum mechanics (but also perhaps more concretely in our
examples below, nonlinear optics) in the form of solitary
wave billiards. In particular, the connections are quite natural:
Solitary waves are typically thought of as effective particles
(indeed, hence the name) [2,7–11]. Therefore, it is natural to
examine these effective particles in a billiard setting. At the
same time, nonlinear Schrödinger equation models appear in
a natural sense to generalize the concept of linear quantum
billiards in the presence of different types of nonlinearity,
stemming from nonlinear optics [2], plasmas [3], or atomic
BECs [11]. In that light too, it is useful to adapt some of the
ideas of linear quantum billiards to such more complex cases
where the localized wave function is held together because
of the interplay of nonlinearity and dispersion while slowly
losing some of its initial kinetic energy through the (potential)
interactions with the wall. In that vein, the notion of a soft bil-
liard is a natural one as the solitary wave interacts with a finite
potential wall. However, the interaction may be inelastic even
in the context of an infinite potential due to the nonintegrabil-
ity of the partial differential equation (PDE) model. The latter
is the typical scenario in the associated 2 + 1-dimensional
spatiotemporal models. It is worthwhile to mention here that
the idea of billiards in settings such as BECs has not only been
theoretically explored [25,26], but also experimentally real-
ized in the form of an optically induced confinement potential
(i.e., billiard) for the ultracold atoms [27].

However, exploring such solitary wave billiard ideas re-
quires some extra care. One needs to avoid the hurdle of
collapse (arising, e.g., in 2 + 1-dimensional cubic nonlinear-
ity models [10]). Instead one needs to consider a nonlinearity
that allows for a robust 2 + 1-dimensional standing wave;
here the saturable nonlinearity of relevance to photorefrac-
tive crystals is thus selected [28] as a physically relevant
example. While in such systems pattern formation has been
much studied earlier [29], here we have in mind a differ-
ent setting well summarized in the authoritative review of
[30]. In particular, as is explained therein (see, e.g., Fig. 3.4
and associated discussion), optical beams of interfering plane
waves in the ordinary polarization cause an effective crystal
lattice potential for the extraordinary polarization. Rather, our
proposal (which, while not realized to our knowledge, seems
well within the reach of such experiments) is to utilize suitable
beams in the context of the ordinary polarization in order to
form, e.g., the billiard configurations proposed below. Then,
the solitary wave can be boosted using a Galilean transforma-
tion and the billiard dynamics will be accordingly initiated.
In what follows, we discuss our numerical observations and
an emerging qualitative understanding of the relevant phe-
nomenology.

We also note in passing that, to our knowledge, no Hamil-
tonian variant of this type has been considered in the literature.

A dissipative (but occurring over a narrow region of the as-
sociated parameter space) analog of such concepts has been
presented in [31]; see also [32]. A pioneering effort in a
related direction involved the experimental demonstration of
the interaction of the so-called walkers (a droplet bouncing
on vibrating bath) and their interactions with barriers, as
shown, e.g., in the work of [33]. Indeed, the associated field
of hydrodynamic quantum analogs has seen a wide range of
developments that have now been summarized in reviews such
as [34].

As we will see below, the present setting will offer a fam-
ily of (stationary) solitary waves in terms of their amplitude
and/or width as we will showcase below, but also the freedom
to boost these solitary waves at essentially arbitrary speeds
based on the above mentioned Galilean transformation. We
consider these features to be key to the potential interest in
the setting that we propose herein. Our presentation of the
results is structured as follows. In Sec. II, we present the
mathematical setup of the problem. In Sec. III, we discuss
the numerical observations and their comparison to the point
billiard model. Finally, in Sec. IV, we summarize our findings
and present some conclusions and directions for future study.

II. MATHEMATICAL SETUP

A. Soliton wave billiard

We start from a two-dimensional nonlinear Schrödinger
(NLS) equation with (saturable) photorefractive
nonlinearity [28],

iψt = L(ψ ), L(ψ ) = −∇2ψ + V (r)ψ − 2|ψ |2
1 + |ψ |2 ψ,

r = (x, y) ∈ Q (2)

with V (r) being the potential where the relevant geometry of
the billiard will be introduced on Q, and ∇2ψ = ψxx + ψyy.
Here, ψ (r, t ) represents the envelope of the electromagnetic
field for the optical problem of interest, with the density ρ =
|ψ |2 corresponding to the light intensity. While the particular
nonlinearity is less directly relevant to atomic BECs, one can
envision other nonlinearities there (e.g., competing ones as in
the recently budding field of quantum droplets [35]) that can
lead to a similar phenomenology. In the latter case ψ (r, t )
plays the role of the condensate wave function, while |ψ |2
represents the atomic density. In the optical setting the poten-
tial V (r) stems from the refractive index profile [2], while in
BECs the ability to “paint” arbitrary (and, hence, also billiard)
potentials has been demonstrated [36].

The above dynamical equation can be derived from a
Hamiltonian formulation as

iψt = δH[ψ]

δψ∗ , (3)

where H[ψ] is the (conserved during the dynamics) Hamilto-
nian functional:

H[ψ] =
∫

r∈Q
[|∇ψ |2 + (V (r) − 2)|ψ |2

+ 2 log(1 + |ψ |2)]dr. (4)
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The initial condition for our dynamical simulations will
be a stationary solitary wave set into motion by means of a
Galilean boost. This is a desirable feature of the present model
as the traveling waves herein can be generically achieved and
with arbitrarily selected speeds due to the Galilean invariance.
The stationary state is found by introducing the ansatz

ψ (x, y; t ) = exp(iωt )φω(x, y) (5)

into Eq. (2), and a fixed point algorithm along with a finite-
difference discretization has been used to this aim. It follows
that φω, if it exists, is a nonlinear eigenfunction of F :

−ωφω = F (φω ) = −∇2φω + V (x, y)φω − 2|φω|2
1 + |φω|2 φω.

(6)
Once this stationary wave is found, we fix ω, and the initial

condition of the simulation is attained from the Galilean boost
of the stationary structure centered at (x, y) = (0, 0),

ψ0(x, y) ≡ ψ (x, y; 0) = φω(x, y) exp[i(kxx + kyy)]

= φω(x, y) exp[ik(x cos θ + y sin θ )], (7)

leading to a wave moving with an initial velocity v0 = 2|k|
that forms an angle θ with the x axis, and

k = (kx, ky) = |k|(cos θ, sin θ ) = k(cos θ, sin θ ). (8)

Consequently, the energy imparted to the moving coherent
structure (in comparison to its stationary state) is given by

	E ≡ E [ψ0(x, y)] − E [φω(x, y)]

=
∫

d2r[|∇ψ0|2 − |∇φω|2] = N |k|2 (9)

and is naturally associated with the excess kinetic energy, with
N being the squared L2 norm or the mass, as it is often referred
to, of the stationary state

N =
∫

Q
|φω(r)|2 dr. (10)

Assigning N ≡ 2m to an effective mass, we can express this
excess energy as

	E = 2m|k|2 = 1
2 mv2

0 . (11)

If we suppose that the solitary wave is moving in a vanish-
ing potential landscape, it can be considered as a quasiparticle
that freely moves with an initial kinetic energy equal to 	E ,
and this quasiparticle can be interpreted as possessing an
effective mass m.

Note that at each time t � 0, the solitonic wave function
ψ (x, y, t ), which starts from ψ0(x, y), defines a reference
probability measure ν(t ) on the σ algebra of the billiard table
Q, with density function

ρ(r, t ) = |ψ (r, t )|2∫ |ψ (r, t )|2 dr
.

Using this reference measure, we can investigate some phys-
ical quantities (given by the expected position, variance, and
more general moments) of the solitary wave billiard. To study
this billiard ψ (x, y, t ), we first consider its center of mass
trajectory γ (t ), which describes the expected position of the
coherent structure. More precisely, the expected position of

the localized pattern with respect to the reference measure ν

is defined as

γ (t ) := Eνt (r) =
∫

Q
(x, y)ρ(r, t ) dr.

Since r = (x, y), we can also write γ (t ) = (X (t ),Y (t ))
with

X (t ) = Eνt (x) =
∫

x dνt , Y (t ) = Eνt (y) =
∫

y dνt ,

as the expected x and y position of the solitary wave, respec-
tively. Note that (X (t ),Y (t )) can also be interpreted as the
center position of the relevant pattern. In the following sec-
tions, we will mainly focus on the study of r(t ) = (X (t ),Y (t ))
numerically.

To assess how well the expected position of the solitary
wave within the billiard describes its motion, we also calculate
the variance of r with respect to the reference measure ν(t ):

Varνt (r) := Eνt (‖r − γ (t )‖2)

=
∫

r∈Q
([x − X (t )]2 + [y − Y (t )]2)ρ(r, t )dr

This quantity characterizes the width of our solitary wave. For
narrower solitary waves, it is enough to study the center of
mass orbit γ (t ), corresponding to the solitonic wave function
ψ (x, y, t ).

III. NUMERICAL RESULTS

A. Numerical simulation setup of the dynamical orbit
within the solitary wave billiard

In our simulations, to simplify the calculations, we first
locate the solitary wave at the point of maximal probability
density ρ(r, t ), which is denoted as γ̃ (t ) = (x̃(t ), ỹ(t )) such
that, for any t � 0,

ρ(γ̃ (t )) = max
r∈Q

ρ(r, t ).

Our computations suggest that the curve ρ(γ̃ (t )) is well de-
fined, i.e., for each t , there is only one (principal, i.e., above
a selected cutoff) local maximum for the density function.
We subsequently consider a window of size 2δ × 2δ centered
on γ̃ (t ), and denote it as Uδ (t ) ⊂ Q; this is suitably adjusted
when the wave is in the vicinity of the boundary. In our
simulation, we select δ = 4.

The conditional probability measure ν̂t := ν|Uδ (t ) with den-
sity function ρ̂ can be calculated as

ρ̂(r, t ) = |ψ (r, t )|2 IUδ (t )∫
Uδ (t ) |ψ (r, t )|2 dr

.

Moreover, the simulated expected position of the solitary
wave within the billiard with respect to the conditional mea-
sure ν̂ can be calculated as

(X̂ (t ), Ŷ (t )) := Eν̂t (r) =
∫

Q
(x, y)ρ̂(r, t ) dr.

This also provides a smoother and more accurate evaluation
of the center of mass, in comparison to the argmax over the
numerical grid. Furthermore, the variance associated with the
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FIG. 1. Dependence of the norm and the width of the solitary wave with respect to its frequency for the relevant family of solutions.

solitary wave position is given by

W (t ) :=
∫

r∈Q

(
[x − X̂ (t )]2 + [y − Ŷ (t )]2

)
ρ̂(r, t )dr.

In Fig. 1, one can see that the narrowest solitary wave is
found for ω = 0.95, and that the associated frequency lies
in ω ∈ (0, 2) interval, with the lower limit corresponding to
the bifurcation of the solitary wave from the linear modes
(continuous spectrum) band, while the upper limit reflects a
divergence of its mass. Indeed, the continuous spectrum of
the problem lies in the interval (−∞, 0), hence the avoidance
of resonances therewith leads to solitary waves with ω > 0.
On the other hand, the large intensity limit of the nonlinear-
ity leads the nonlinear term to the asymptotic value of −2,
hence Eq. (6) accordingly becomes (in the large intensity
limit) (ω − 2)φω = ∇2φω, which requires ω < 2. As a result,
solutions are expected to be found for 0 < ω < 2 in line with
our numerical results.

In our study, we mainly consider waves with frequency
ω = 0.5. In the case examples that follow, we will either con-
sider infinite potentials (implemented via Dirichlet boundary
conditions) or finite potentials that are strictly higher than the
above-mentioned kinetic energy of the solitary wave, so as
to ensure a genuine billiard situation in which the coherent
structure will be reflected from the potential walls.

B. Goos-Hänchen shifts of reflection upon potential
walls in billiards of constant potential

Before delving into the systematics of the solitary wave
trajectories within the entire billiard, we briefly highlight a
key feature of the billiard reflection of the wave upon collision
with the potential walls, for the case when the potential V is
finite at the boundary of Q.

When describing total reflection of a solitary wave in such
a billiard potential setting, we need to identify expressions
for the phase shift that occurs for each such event between
the incident and reflected waves as a function of angle of
incidence. A way to describe the phase shift is as being due to
the orbit actually traveling a small distance into the potential
wall before being reflected. An incident orbit behaves as if it
were laterally displaced upon reflection. This feature has been
previously recognized as being analogous to the so-called

Goos-Hänchen shift in optics, occurring also to solitary waves
during their interaction with an interface; see, e.g., Ref. [37]
and the discussion therein. We will discuss this in further
quantitative detail in what follows below. It is interesting
to note here that the Goos-Hänchen effect (GHE) has been
recently encountered not only in the context of solitary waves
interacting with external potentials but also of linear waves
interacting with solitary ones [38].

We first consider a solitary wave placed in a billiard in-
volving a square potential. It is known that classical square
billiards are completely integrable [39]. Moreover, the orbits
are periodic if tan θ is rational, for the collision angle θ . When
studying the evolution of solitary waves, we first considered a
square barrier potential of amplitude α, i.e.,

V (x, y) =
{
α if |x| > 3L/4 or |y| > 3L/4,

0 otherwise. (12)

The domain is taken with L = 40. This potential is shown
on the left panel of Fig. 2. The evolution of dynamical equa-
tions has been found by means of numerical integration using
a fixed step δt = 0.0625 fourth-order Runge–Kutta algorithm
with a spatial discretization δx = 0.5. The latter value is
reasonable enough as the soliton width is several times that
value. In fact, we have used smaller values such as 0.2 and
0.1 and have corroborated that the results do not change in
any observable manner (although the latter cases utilize far
larger computational resources and hence are considerably
slower, hence the selection of δx used for our presentation
herein). We have also checked that, for this choice of δt
and δx, the relative error for the norm, i.e., |N (t )/N (0) − 1|,
extending the definition of Eq. (10) to time dependent states
as N (t ) = ∫ |�(r, t )|2dr, does not grow above 10−6 for the
time horizons considered.

In what follows, we have chosen cos θ = 3/5 for the initial
collision angle. The right panel of Fig. 2 depicts the path of a
classical point particle in this square potential. One can indeed
see, in line with the theoretical expectation, that the dynamics
is periodic for this choice of θ . On the other hand, in the left
panel of Fig. 3, the path of the solitary wave with v0 = 0.02
and α = 4 is considered. One can see that, in contrast to
the classical billiard case, the dynamics is not periodic. In
addition, the finite size of the solitary wave particle does not
allow its center to reach the edge of the potential barrier
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FIG. 2. Left: Form of the square potential barrier given by (12). Right: The trajectory of a classical point particle (right), in this potential.

(at ±3L/4 in each direction), but rather it effectively gets
reflected “sooner.” This is caused by the reflection rule of the
trajectory of the solitary wave upon a constant potential (simi-
lar to what is observed in [31]). Nevertheless, it is important to
recognize that the solitary wave is not an infinitesimal particle
mass. Instead, it features a finite width, and for that reason this
effective particle is reflected while its center of mass is still at
a considerable distance from the domain boundary. There is
some tunability of the width of the solitary wave (controlled
by ω), however, the constraint of avoiding the cubic nonlinear-
ity and associated collapse phenomenology does not allow for
the freedom of (effectively) arbitrarily selecting the solitonic
width, as, e.g., can be done in one-dimensional such systems.
Rather, here we are practically considering not only a soft
potential (unless we examine the Dirichlet boundary condition
case), but also a nonvanishing size particle that features a
finite width and can, in principle, manifest internal modes

capable of storing energy. This “deformability” of the solitary
wave can also be detected in Fig. 3 at the positions of wall
interactions where the trajectory of the solitary wave curves
around in the reflection process, a manifestation of the GHE
discussed above (see also details below).

As an interesting additional case example along this vein,
in the right panel of Fig. 3, we have considered the example
of the structure with the smallest width, namely ω = 0.95.
Interestingly, as we can see in that case the trajectory does
not close, indicating the subtle nature of the corresponding
phenomenology. It can be observed that the dynamical evo-
lution does not purely depend on the angle of incidence, but
also on other features of the soft particle, such as its width, its
potential excitation of internal modes (or dispersive radiation
modes, as will be seen below), etc. This can also be confirmed
in the consideration of settings with different α (such as α =
10) or different boundary conditions (such as Dirichlet), for

FIG. 3. Evolution of the center-of-mass of the finite-width solitary wave with α = 4 and v0 = 0.02, for ω = 0.5 (left) and ω = 0.95
(right). The final time of both simulations is t = 2 × 105. Notice that, in this figure and the other ones showing square barriers, the axis limits
correspond to the barrier boundaries. See also companion movies movie1.gif (corresponding to ω = 0.5) and movie2.gif (corresponding
to ω = 0.95) in the Supplemental Material [40] depicting the evolution of the solitary wave dynamics, in which the whole domain is shown
with the barrier limits being depicted as white lines.
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FIG. 4. Evolution of the center of mass of the solitary waves with v0 = 0.1 (left panel) and v0 = 0.8 (right panel), in the square barrier
potential (12). In both cases, α = 4 and ω = 0.5. The final times of the simulations are t = 4 × 104 and t = 5 × 103, respectively. See also
companion movies movie3.gif and movie4.gif in the Supplemental Material [40] depicting the evolution of the solitary wave dynamics.

which, as we have checked, the soliton follows a very similar
trajectory to that of the α = 4 case.

We have also explored how the above dynamics is altered
when the velocity is increased and the barrier height is kept
fixed; see, e.g., left panel of Fig. 4 for the solitary wave with
v0 = 0.1 and α = 4. The resulting motion in this case as well
is not periodic. If the wave moves more rapidly (v0 = 0.8,
as shown in the right panel of Fig. 4), it deforms nontriv-
ially in the collisions with the barrier, and some radiation is
emitted. The evolution of the coherent structure motion can
be observed in more detail in the companion movies (Sup-
plemental Material [40]), where the density (|ψ (x, y; t )|2) and
its logarithm is tracked. One can see how the solitary wave
approaches the barrier and is reflected after each collision.
This process is central to our observation of the trajectories of
the solitary waves (and their nonclosed form), hence we focus
on this further in what follows. However, before doing so, we
point out the substantial difference between this high speed
case example and the ones shown earlier, as concerns the
substantial emission of dispersive wave radiation. This results
in the solitary wave moving within a “turbulent” small ampli-
tude background, which, in turn, weakly affects (via scattering
processes) the solitary wave motion. While this aspect is not
pursued further herein, we find it an interesting direction
for further exploration in the future. Let us remark that in
this particular case, given the faster growth of the error in
the fourth-order Runge-Kutta integrator, we have numerically
integrated the evolution by means of an adaptive step-size
Dormand-Prince algorithm, keeping the relative error below
10−7 during the whole integration time.

An explanation for the fact that the wave’s center of mass
does not reach the barrier is based on the intriguing obser-
vation of a negative Goos-Hänchen effect (see, e.g., [41] for
such an effect in one-dimensional optical systems, as well as
[37] for a solitonic example). Figure 5 shows the evolution
of the integrated norm with respect to the x coordinate, i.e.
|ψx(y, t )|2 = ∫

dx|ψ (x, y, t )|2 together with a scheme defin-
ing the Goos-Hänchen shift (GHs), 	, for the collision of the
solitary wave with a wall barrier of height α. As is well known,

the GHE occurs when a beam of finite extent is incident on a
medium with smaller refraction index with an angle higher
than the critical angle for total reflection [recall that −V (x, y)
plays the role of refraction index detuning in optics]. The
shift is caused by the field penetrating the medium for a small
distance, forming a nonuniform plane wave that is evanescent
in the direction normal to the interface and propagating also
along it. The shift is positive in the usual case of plane waves
flowing parallel to the interface in the forward direction. There
are, however, cases when the wave reflects from a point in
front of the contact point in the geometric optics picture; in
these cases, observed for plane waves at interfaces with metals
and predicted for metamaterials, the plane waves flow parallel
to the interface in the backward direction and the GHE is
negative; in addition, part of the beam can cross the interface
despite the negative GHE, as is the case in metamaterials. All
the aforementioned behavior holds for linear waves. In the
case of nonlinear waves, in order to provide an analogy with
geometric optics, one can trace straight lines tangent to the
trajectory of the soliton’s center of mass at the initial point, in
a fashion similar to what is done in Fig. 5.

Notice that, because of the GHs, the motion of the wave’s
center of mass when interacting with the wall can be ap-
proximated by a classical particle in a domain shrunk by a
distance σ = (	 cot θ )/2. An important point is that in the
square barrier, the impact angle of the solitary wave with the
vertical sides of the square is complementary to the angle
of impact with the horizontal sides. Consequently, there will
be two different GH shifts to account for, namely the one
corresponding to an initial angle θ (denoted as 	) and the
one for θc = π/2 − θ [denoted as 	c, with the corresponding
shrinkage σc = (	c tan θ )/2] in the perpendicular direction.
Then, the trajectory of the center of mass of the solitary wave
can be approximated by a classical particle in a rectangle
bounded by |x| = 3L/4 − σc and |y| = 3L/4 − σ . Figure 6
shows the numerically computed dependence of the domain
shrinking caused by the GHE with respect to v0 for fixed
ω = 0.5, and also the dependence with ω for v0 = 0.1. One
can see that, in the latter case, the minimum values of σ and σc
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FIG. 5. Left panel: Evolution of the projected solitary wave density when interacting with a wall barrier of height α = 4 located at y = 0;
the initial velocity of the coherent structure is v0 = 0.1 and the initial angle θ = cos−1 3/5. Right panel: Path followed by the center of mass
of the wave together with a scheme indicating some relevant parameters like the Goos-Hänchen shift 	 or the domain shrinking σ .

are not attained for the narrowest solitary wave, i.e., that with
ω = 0.95, but rather around ω = 1.05 (the particular value
depends on the barrier height).

The above description based on the GHE enables a sys-
tematic understanding of the solitary wave interaction with
a square billiard. Figure 7 shows the evolution of a classi-
cal particle in a shrunk domain by the GHs corresponding
to a solitary wave in the presence of a barrier with α = 4.
This evolution is quantitatively compared with that of the
center of mass of the coherent structure. Notice that, until
the second collision, the two trajectories overlap; the sepa-
ration between them starts to subsequently appear because

the wave interacts without following a perfectly straight line,
but rather has a curved part in its trajectory, culminating in
the GHE and resulting in an evolution of the particle in an
effectively shrunk domain. This weak effect compounds itself
over time, eventually leading to the nonclosure of the orbit.
We have also checked that the relevant situation does not
improve for larger α, or for Dirichlet boundary conditions.
While this procedure allows for a highly accurate descrip-
tion of individual collisions, slight deviations from straight
motion of our deformable effective particles ultimate lead
to the nonclosed trajectory, generic phenomenology observed
herein.

FIG. 6. Dependence of the domain shrinking caused by the Goos-Hänchen effect for θ = cos−1(3/5) (left panels) and θ = cos−1(4/5)
(right panels) for fixed frequency ω = 0.5 (top panels) and fixed initial speed v0 = 0.1 (bottom panels). Dirichlet boundary conditions are
denoted by α → ∞.
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FIG. 7. Trajectory of a classical particle in a shrunk domain with a Goos-Hänchen shift corresponding to a solitary wave in a square
barrier potential of height α = 4 with the domain shrinking corresponding to v0 = 0.02 and ω = 0.5. The left panel shows the evolution until
t = 2 × 105, whereas right panel captures the early stage up to t = 34 880 and compares it with the evolution of the the center of mass of the
solitary wave (full blue line). One can observe that up to the second collision with the barrier, the trajectories overlap, while at later times, they
slightly deviate from each other.

The fact that the domain shrinking caused by the GHE
is different for θ and θc leads the solitary waves billiard to
behave effectively as if it is in a rectangular domain. In that
case, closed orbits in classical billiards can only occur when
(a/b) tan θ ∈ Q, with a and b being the rectangle sides. In
our case, if tan θ ∈ Q and supposing that the solitary waves
billiard behaves as a classical particle in a shrunk domain of
sides 3L/2 − 2σ and 3L/2 − 2σc, closed orbits could only
be found in some isolated points within the parameter space.
However, there is a case for the classical billiard where closed
orbits can occur in the shrunk domain, namely this in which
θ = θc. This is possible when θ = 45◦. Because of this, we
have launched a soliton with this initial angle, but displaced
from the domain center; in particular, we have initialized
the soliton from the point (−3L/8, 3L/8) which would give
rise to a square trajectory in the case of a classical particle.
Figure 8 shows the trajectory for a soliton launched with
an initial velocity v0 = 0.1. This trajectory is not a square
because the initial point is not at the center of the second quad-
rant of the shrunk domain. Notice that the closed trajectory
can be found for v0 � 0.25, as for larger values the radiation
caused by the soliton impacting on the barrier prevents from
the trajectory closure.

C. Some other prototypical solitary wave billiards

We end this section by showing the outcome of the solitary
wave dynamics in a Bunimovich stadium and a Sinai billiard
(see the left top and bottom panels, respectively, of Fig. 9).
Here, we are motivated by the chaotic nature of these billiards
even for classical point particles and we seek to observe
the dynamics of our deformable effective particle therein.
In the first case, the barrier (composed by a square whose
sides have a length 48 attached to two semicircles of radius
28) has a potential height of α = 4 and is embedded into
a domain [−64.5, 64.5] × [−32.25, 32.25], and the solitary
wave is launched from (0,0). In the second case, the domain

size is [−75, 75] × [−75, 75], encompassing a square barrier
of side length 112.5 and a circular barrier of radius 2, both
centered at (0,0), that have a potential height of α = 4. Here,
the solitary wave is launched from the point (−20,−20). The
path followed by the center of mass of the wave of initial
velocity v0 = 0.02 is depicted in the right panels of Fig. 9. In
both cases, we can observe the chaotic nature of the dynamics
which is reminiscent of the ergodic nature of the point particle
case, yet again with a significant difference borne out of the
GHE present in the solitonic case. The latter effect naturally,
in this case as well, precludes the accessibility of a substan-
tial region of the configuration space, similarly to the above
presented square billiard case.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have proposed a new paradigm for
the dynamics of solitary waves, namely the study of solitonic
billiards. We have judiciously selected a model that, on the
one hand, is physically relevant, yet on the other hand avoids
well-known pathologies of higher-dimensional NLS models,
such as the presence of self-focusing and wave collapse [10].
By choosing the saturable nonlinearity model, we present a
setting of relevance, e.g., to photorefractive optical crystals,
that possesses a Hamiltonian nature (in line with classical
point-particle billiards), but which also has other key ad-
vantages, such as the ability to Galilean boost the coherent
structures. For this model, we identify the full branch of
fundamental solitary wave solutions as the frequency of the
standing waves is varied. We identified some important dif-
ferences that this solitonic billiard features in comparison to
the point particle case. Indeed, the finite width of the solitary
particle and the nonintegrable nature of the model present new
possibilities including that of the collision storing some of the
kinetic energy into internal mode oscillations, as well as that
of the collision not being perfectly elastic. Both of these fea-
tures have been observed in direct numerical simulations with
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FIG. 8. Left: Evolution of the center-of-mass of the finite-width solitary wave with α = 4, v0 = 0.1 and ω = 0.5 launched from (−15, 15)
with an initial angle θ = 45◦. See companion movie movie5.gif in the Supplemental Material [40], in which the launching point is marked
by a white dot in order to observe that the solitary wave comes back to that point. Right: Trajectory of a classical point particle launched from
the same site and initial angle.

sufficiently high speeds and/or involving sufficiently wide
solitary waves. At the same time, we have observed the pres-
ence of a solitonic analogue of the (negative) Goos-Hänchen

effect which also leads to significant deviations from the point
particle case, including the effective shrinkage of the bil-
liard domain. These features combined render even integrable

FIG. 9. Left panels: Form of the Bunimovich stadium and Sinai billiard potentials. Right panels: Evolution of the center of mass of the
solitary wave with v0 = 0.02 in a Bunimovich stadium (left panel) and a Sinai billiard (right panel). See also companion movies movie6.gif
and movie7.gif in [40] depicting the evolution of the billiard dynamics. The final time of both simulations is t = 3.2 × 105.
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point particle billiards nonintegrable ones when considered
in this solitonic realm (such as, e.g., the square/rectangular
billiards). Nevertheless, our simulations have demonstrated
that a reduced-domain approach accounting for the GHE can
adequately follow the solitary wave scattering for a long time.
For collisions with incident angles of θ = 45◦, it was shown
that the trajectories can be closed for sufficiently low speeds.
For completeness, we also examined the case of billiards
such as the Bunimovich stadium or the Sinai billiard that
are chaotic at the point-particle level and observed similar
phenomenology (but with the above features still manifest)
in the present setting.

We believe that this vein of studies is at a nascent stage
and hence there are numerous opportunities for the future.
It is interesting, for instance, to explore how the variation
of the solitonic width (controlled by ω) would change the
case considered herein. Furthermore, it would be of rele-
vance to consider the Lyapunov exponents of the present
wave billiard dynamics and to compare them with the cor-
responding quantities for the effective particle system, as a
vein of quantitative comparison of the two systems, across
different billiard settings. Such an understanding could lead
to leverage the effective particle model towards analytical
calculations in the future [42]. Another possibility would be to
examine some case examples of models that are integrable in
the two-dimensional setting such as the Davey-Stewartson (or
the Kadomtsev-Petviashvili) equation and explore how their
integrable structures may fare in terms of similarities and dif-
ferences to the nonintegrable ones considered herein. It would
also be of relevance to examine corresponding generalizations
to higher dimensional settings and explore billiard enclosures
and solitonic motion therein.

Yet another dimension of possible experimental realiza-
tions can be considered in the setting of atomic condensates,
following the earlier experimental work of [27]. There, given
the cubic nature of the predominant nonlinearity, the attractive
or self-focusing case would not be immediately accessible
[4,5] due to the potential of this nonlinearity for self-similar
collapse [10]. However, it would be eminently relevant to ex-
amine the self-defocusing or self-repulsive setting in 2d where
the prototypical patterns would be topologically charged vor-
tices and to explore their dynamics [11] in enclosures such
as the ones considered herein. For a related recent example
of BEC in a optical box trap see, e.g., [43]. Extensions thereof
that may bear more of a “Newtonian particle” character due to
a bright solitary wave in a second component have also been
recently analyzed; see, e.g., [44] for a relevant example. These
are only some of the possible directions emerging. Some of
these are currently under consideration and will, hopefully, be
reported upon in future publications.
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