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Abstract

Problems of stress singularities in single or multi-material corners have been addressed by many authors over the years. Most of
the authors presented closed-form corner-eigenequations for special cases, and often there is no easy way to check if the solution is
correct. In this work, we present a general computational tool that can solve many different cases of stress singularity problems for
multi-material corners under generalized plane strain. The semi-analytic code is based on the matrix formalism presented in Mantič
et al. (1997, 2014); Barroso et al. (2003); Herrera-Garrido et al. (2022) and is developed in MATLAB. The following boundary
conditions are implemented: stress-free, fixed, some restricted or allowed direction of displacements (defined either in the reference
frame aligned with the cylindrical coordinate system or in an inclined reference frame), or frictional sliding. The following interface
condition between two consecutive materials are implemented: perfectly bonded, and frictionless or frictional sliding. The code
can analyze both open and closed (periodic) corners, composed of one or multiple materials with isotropic, transversely isotropic
or orthotropic (with any orientation) constitutive laws. The code has proven to be a reliable, very accurate, robust and easy-to-use
tool, which has been verified by comparing the results computed with those obtained by other authors. A summary of the corner
singularity problems solved is presented. The results of the corner singularity analysis obtained by the code can be further used
for prediction of crack onset at the corner tip by the Coupled Criterion of Finite Fracture Mechanics and FEM, see Garcı́a and
Leguillon (2012) and references therein.
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1. Introduction

When analyzing a structure using the finite element method (FEM), at some points called singular points, the
solution obtained may be inaccurate. This is due to the fact that these points act as stress singularities. A stress
singularity is a place where stresses are theoretically infinite in the framework of linear elasticity. In these cases, it
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Fig. 1. Multi-material corner notation, 2D view.

is necessary to consider the deformation and stress field in the vicinity of these singular points to improve the FEM
model.

A stress singularity can be caused by jumps in boundary conditions, geometries, or material properties, see Leguil-
lon and Sanchez-Palencia (1987); Yosibash (2012). In this work, we present a semi-analytic code, a fast and reliable
tool that can be used to study displacements and stress fields near the singular point under generalized plane strain.
We refer to the singular point as a corner tip and to his neighborhood as a corner. When a corner is made of more than
one material, it is called a multi-material corner. In Fig. 1, a multi-material corner is shown to illustrate the notation
used. This tool includes the possibilities of studying both open and closed (periodic) corners, with one or multiple
materials, with perfectly bonded interfaces or allowing the frictional or frictionless sliding and with several kinds of
boundary conditions such as stress-free, clamped or allowing or restricting the displacement in one direction, covering
symmetry and skew-symmetry conditions among others.

The computational semi-analytic code presented is based on the matrix formalism for a compact representation
of different boundary and interface conditions in the multi-material corner introduced in Mantič et al. (1997, 2014);
Barroso et al. (2003), see also Mantič et al. (2003). This formalism follows the proposal by Ting (1997), showing
that for the study of the asymptotic displacement and stress fields near a singular point in anisotropic materials in a
generalized plane strain state, it is convenient to employ the Stroh sextic formalism in complex variables together with
a transfer matrix concept for all the single-material wedges in the corner.

2. Code structure

The code is written in Matlab using the Symbolic Math Toolbox. It is divided into six different modules:

• Data input
• Definition of single-material wedges
• Boundary and interface condition matrices
• Characteristic system assembly
• Solution of the characteristic system to compute the singularity exponents.
• Displacement and stress singular fields
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2.1. Data input

The user creates, interactively or off-line, a text file defining the properties of the corner to be solved. These
properties are:

• Number of materials making up the corner
• Type of corner, open or closed (periodic) corner
• For each material in the corner, indicate whether it is isotropic, orthotropic or transversely isotropic
• For each material in the corner, indicate the angular sector occupied by the material in the corner, θm−1 and θm in

Fig.1
• Depending on the selected kind of material, the following engineering constant are indicated

– Isotropic material: the Young modulus, E, and the Poisson ratio, ν
– Orthotropic material: nine stiffness constants, E11, E22, E33, G12, G13, G23, ν12, ν13 y ν23, and the angles

defining the material orientation with respect to the corner coordinate system
– Transversely isotropic material: the Young modulus E and the Poisson ratio ν in the plane of isotropy (1,2),

the stiffness constants associated with the the axis of symmetry (3), the Young modulus E33, the Poisson ration
ν31 and the shear modulus G13, and the angles defining the material orientation with respect to the corner
coordinate system

• For an open corner: the angles and the prescribed boundary conditions for the two external faces
• For a closed corner or a multi-material open corner: the angle and the prescribed interface condition for each inter-

face in the corner
• In case a parameterization is requested

– Parameterization of the corner angle, indicating the number of steps and the range of angles
– Parameterization of the orientation of any of the orthotropic or transversely isotropic materials. The number of

the material in the corner, and the number of steps and the range of angles of the rotation with respect to the
axis x3.

Just by changing one of the above defined parameters, such as the parameter indicating the type of boundary condition,
we can change the study of a corner with stress-free outer surfaces to the study of a clamped corner.

2.2. Definition of single-material wedges

To characterize each material, the concept of transfer matrix, Em, proposed by Ting (1996), is employed. This
matrix relates the displacements and stress function on one face of the material with the displacements and stress
function on its other face. It depends on the elastic constants and the initial and final angles of each material, θm−1
and θm, respectively. It is based on the matrices A and B of the sextic formalism established by Stroh (1958, 1962).
See Ting (1996); Barroso et al. (2003); Mantič et al. (2014); Hwu (2021); Herrera-Garrido et al. (2022) for a detailed
explanation of the Stroh formalism.

2.3. Boundary and interface condition matrices

In an open corner, the boundary conditions are imposed on both outer faces in addition to the interface conditions
in the case of a multi-material corner. In the case of a closed corner, interface conditions are imposed on all interfaces
between materials. To apply the boundary and interface condition the code make use of the matrix formalism presented
in Mantič et al. (1997, 2014); Barroso et al. (2003) and later successfully verified by many comparisons with the results
of other authors in Herrera-Garrido et al. (2022). The boundary conditions available in the code are:

• Stress-free face
• Clamped face
• Displacement ur, uθ , u3, or in any other given direction, restricted
• Only displacement ur, uθ , u3, or in any other given direction, allowed
• Sliding with friction
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and the interface conditions are:

• Perfectly bonded
• Frictionless sliding contact
• Friction sliding contact

2.4. Characteristic system assembly

Once the code has calculated all the transfer matrices Em for each material, the transfer matrices Kw for each
wedge of perfectly bonded material can be calculated, and with them the matrix Kcorner ext(λ ) that depends on the
elastic properties and the geometry of all the materials that conform the corner. Additionally, with all the boundary
and interface matrices the main boundary and interface condition matrix of the corner, Dcorner ext(ϑ,ω) is formed.
Then, the characteristic system of corner is expressed as:

Kcorner ext(λ )DT
corner ext(ϑ,ω)wcorner PU = 06W×1 (1)

where the vector wcorner PU is the vector containing the prescribed (null) and unknown elastic variables.

2.5. Solution of the characteristic system

To solve the characteristic system of corner, the system (1) is reduced to

Kcorner(λ ,ω)wcorner U = 06W×1 (2)

by suppressing the columns multiplied by the prescribed (null) values of the elastic variables.
In cases where friction is not considered on the boundaries and interfaces within the corner, the characteristic

matrix of the system Kcorner(λ ) depends only on λ , and it is a square matrix. In this case, the eigenvalues λ of the
nonlinear characteristic system of the corner are given by the roots of the determinant of Kcorner(λ ). The code applies
the Muller method, Muller (1956), to find these roots, and shows the real part of the determinant of Kcorner(λ ) to check
if there are more possible solutions, see Fig. 3.

In cases where there are one or more boundaries or interfaces with frictional contact sliding within the corner,
the matrix Kcorner(λ ,ω) depends also on the sliding angles ω on each of these boundaries or interfaces, and it is a
rectangular matrix, leading to an apparently over-determined system. In these cases there are different ways to solve
the system. The method implemented in the code is solving the following system:

f (X) = Kcorner(λ ,ω)wcorner U = 0 (3)

where

X =




wcorner U
λ
ω


 . (4)

Generally, the values of λ are searched in 0 ≤ Re(λ ) ≤ 1 range, as those characteristic exponents correspond
to singular elastic solutions in the corner with unbounded stresses and strains at the corner tip but a finite elastic
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Table 1. Engineering constants for the materials used in the examples studied. Shear and elastic moduli in GPa.
Material E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 φ2

A 68.67 0.33
B 141.3 9.58 9.58 5 5 3.5 0.3 0.3 0.32 φ
C 137.9 14.48 14.48 4.98 4.98 4.98 0.21 0.21 0.21 φ
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Fig. 2. Scheme of the geometry and boundary conditions used in the examples in Sections 3.1 and 3.3.

strain energy. Values of the sliding angles ω are searched in the range −180o ≥ ω ≥ 180o. Remark that one ω value
should be found per each interface or boundary face where the frictional sliding is imposed. To help finding a good
initial point to solve the nonlinear system, a map of the minimum singular value σmin given by the singular value
decomposition (SVD) of the matrix Kcorner(λ ,ω), as the one shown in Fig. 5, is displayed. In this kind of graph the
darker values correspond with the lowest values, thus the possible solutions of the system.

2.6. Singular stress and displacement fields

Once the singular exponent λ , and in the presence of friction contact also the vector of sliding anglesω, are known,
the values of stresses and displacements as functions of the polar angle θ for a fixed radius r = 1 can be computed
and are shown in a plot, see an example in Fig. 6.

3. Code features and numerical results

This section will show the main functions of the semi-analytic code based on the resolution of some relevant cases.
The materials defined in Table 1 are used in the examples studied. Material A is an isotropic material, while B and C
are orthotropic materials. The last column in the table, φ2 represents the angle with respect the x1-axis of the fibres
that lay in the plane x1 − x3 of the orthotropic material. In the examples shown, for simplicity, only the angle φ2 has
been employed, but also the angle that the fibres have with respect the other two axes can be modified.

3.1. Detection of the number of singular exponents in a range

When no frictional contact is prescribed neither as boundary condition or as interface condition, the characteristic
matrix of the corner is a square matrix and its determinant can be computed. Thus, the real part of this determinant
can be plotted versus λ . At a glance, the number of roots the determinant has in an interval of λ can be known,
and therefore the number of possible singularity exponents of the problem. Furthermore, in these cases the argument
principle can be applied, and it will inform us if there is any complex root that has not been detected by a simple
observation of the real part of the determinant. In Fig. 3 the real part of the determinant of the characteristic corner of
the problem shown in Fig. 2 is represented for θ2 = 163◦. Material B is used in this example both as M1 and M2. M1
has the fibres parallel to the x1 axis and the fibres of M2 are positioned at 45◦ from x1 axis. It can be seen that there
are 2 real roots and possibly 1 complex root and its conjugate. This has been checked with the argument principle. In
section 3.3 and in Fig. 4, these values are shown together with the solution of the same problem with different corner
angles.
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matrix of the corner is a square matrix and its determinant can be computed. Thus, the real part of this determinant
can be plotted versus λ . At a glance, the number of roots the determinant has in an interval of λ can be known,
and therefore the number of possible singularity exponents of the problem. Furthermore, in these cases the argument
principle can be applied, and it will inform us if there is any complex root that has not been detected by a simple
observation of the real part of the determinant. In Fig. 3 the real part of the determinant of the characteristic corner of
the problem shown in Fig. 2 is represented for θ2 = 163◦. Material B is used in this example both as M1 and M2. M1
has the fibres parallel to the x1 axis and the fibres of M2 are positioned at 45◦ from x1 axis. It can be seen that there
are 2 real roots and possibly 1 complex root and its conjugate. This has been checked with the argument principle. In
section 3.3 and in Fig. 4, these values are shown together with the solution of the same problem with different corner
angles.
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Fig. 3. Real part of the determinant of the characteristic matrix of the corner in Fig. 2 with θ2 = 163◦.

Table 2. Singularity exponents and the computing time for closed multi-materials corners with all the interfaces perfectly bonded.
Example Schema Mat.1 Mat.2 Mat.3 Results Computing time (sec.)

1.1

M1

x

x

x

1

3

2

M2

A C φ2 = 0◦ 0.780303329
0.800494545

8.9

1.2 A C φ2 = 30◦ 0.791201852
0.826334613

15.1

1.3

M3

M1

x

x

x

1

3

2

M2

A C φ2 = 0◦ C φ2 = 90◦ 0.780303329
0.819782705

10.9

1.4 A C φ2 = 30◦ C φ2 = 60◦ 0.790798278
0.827339124

30.1

3.2. Computation of singularity exponents

In this section the numerical values of the singularity exponents for the studied examples of closed corners are
presented. A closed corner is a union of single-material wedges with no outer boundary faces, thus including only
interfaces between materials. The calculation of the singularity exponents for some specific cases may be used to verify
closed-form formulas for λ or corner eigenequations previously developed for specific corner singularity problems by
other authors, and also to improve the numerical results by FEM. In Tables 2 and 3, the singularity exponents together
with the computing times are presented for some examples. For reference, the calculations were performed with a
laptop DELL Precision 5550, Intel Core i9 with 16GB RAM.

In Table 2, the singularity exponents for some studied cases of closed corner with all the material perfectly bonded
are presented. The difference between Examples 1.1 and 1.2 and between Examples 1.3 and 1.4, is that in Examples
1.1 and 1.3 the materials are orthotropic with the fibres in the axis x1 or x3, while the materials in Examples 1.2 and
1.4 are orthotropic materials with their fibres lying in the plane x1 − x3.

By modifying only one parameter in the input data, the type of interface condition, the examples in Table 2 change
to the ones shown in Table 3 that represent a closed frictionless interfacial crack between the materials that were
perfectly bonded in the previous examples. In this case, the interface that has been debonded is the one with θ = 0◦.
Noteworthy, the code allows to debond any of the interfaces, even all of them.

For more numerical examples solved with this semi-analytic code, see Herrera-Garrido et al. (2022).
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Table 3. Singularity exponents and the computing time for closed corners with one interface with frictionless sliding and the remaining interfaces
perfectly bonded.
Example Scheme Mat.1 Mat.2 Mat.3 Results Computing time (sec.)

2.0

M1

x

x

x

1

3

2

A 0.5 2.2

2.1

M1

x

x

x

1

3

2

M2

A C φ2 = 0◦
0.390151665
0.488207107
0.882007602

19.4

2.2 A C φ2 = 30◦
0.397478163
0.480719195
0.876622817

34.5

2.3

M3

M1

x

x

x

1

3

2

M2

A C φ2 = 0◦ C φ2 = 90◦
0.390151665
0.496862211
0.887884755

26.2

2.4 A C φ2 = 30◦ C φ2 = 60◦
0.379533452
0.488120275
0.881144785

37.8

3.3. Parameterization

The semi-analytic code allows the user to carry out a parameterization study of the dependence of the singularity
exponent on some of the variables of the corner problem. In Fig. 4, the singularity exponents are plotted versus the
solid angle θ2 of a wedge that is bonded to a semi-plane, see Fig. 2.The real part of λ is given by solid lines, while
the imaginary one is drawn with a dashed line. The imaginary values of λ correspond to the real part of λ represented
with the same color. From all the possible boundary conditions presented in Section 2.3, in this example the outer
boundary of semi-plane is clamped while on the wedge boundary only the displacement in the radial direction is
allowed. Material C with φ2 = 0◦ is used for the semi-plane and with φ = 45◦ for the wedge. Starting with θ2 = 10◦

it can be seen that there are 3 real roots between 0 and 1. For the studied values of θ2 between 100◦ and 140◦, 4 real
roots in the same range have been found. While for the studied values of θ2 > 140◦ 2 real roots and 1 pair of complex
conjugate roots have been found.

3.4. Determination of the number of singularity exponents and computation of sliding directions

In the case that a frictional contact is prescribed, either as a boundary or interface condition, a map of the minimum
singular value σmin of the corner characteristic matrix is plotted versus λ and ω , the singularity exponent and the
sliding angle, respectively, see an example in Fig. 5. When σmin is 0 for a given pair (λ ,ω), it means that this
combination of values of λ and ω is a solution of the problem. In Fig. 5, the lowest values of σmin are represented with
dark blue color, thus the possible solutions of the characteristic system must be searched for (λ ,ω) pairs corresponding
to the darkest points. The case studied here is a single-material wedge of solid angle 300◦, at θ0 = 0◦ the boundary
condition is sliding with a frictional coefficient µ = 1 and the boundary at θ1 = 300◦ is clamped. The material used is
material A in Table 1. It can be seen that this problem has 11 solutions, once they all are found it can be checked for
which of them the energy dissipation condition due to friction is fulfilled.

3.5. Displacements and stresses

The last functionality presented is the possibility to represent the singular stress and displacement fields of the
corner. In Fig. 6 the stress and the displacement fields for the singularity exponent λ = 0.61028006 with ω = 199.96◦,
the solution for a wedge of solid angle 90◦ that slides with a frictional coefficient µ = 0.5 over a semi-plane are
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exponent on some of the variables of the corner problem. In Fig. 4, the singularity exponents are plotted versus the
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the imaginary one is drawn with a dashed line. The imaginary values of λ correspond to the real part of λ represented
with the same color. From all the possible boundary conditions presented in Section 2.3, in this example the outer
boundary of semi-plane is clamped while on the wedge boundary only the displacement in the radial direction is
allowed. Material C with φ2 = 0◦ is used for the semi-plane and with φ = 45◦ for the wedge. Starting with θ2 = 10◦

it can be seen that there are 3 real roots between 0 and 1. For the studied values of θ2 between 100◦ and 140◦, 4 real
roots in the same range have been found. While for the studied values of θ2 > 140◦ 2 real roots and 1 pair of complex
conjugate roots have been found.

3.4. Determination of the number of singularity exponents and computation of sliding directions

In the case that a frictional contact is prescribed, either as a boundary or interface condition, a map of the minimum
singular value σmin of the corner characteristic matrix is plotted versus λ and ω , the singularity exponent and the
sliding angle, respectively, see an example in Fig. 5. When σmin is 0 for a given pair (λ ,ω), it means that this
combination of values of λ and ω is a solution of the problem. In Fig. 5, the lowest values of σmin are represented with
dark blue color, thus the possible solutions of the characteristic system must be searched for (λ ,ω) pairs corresponding
to the darkest points. The case studied here is a single-material wedge of solid angle 300◦, at θ0 = 0◦ the boundary
condition is sliding with a frictional coefficient µ = 1 and the boundary at θ1 = 300◦ is clamped. The material used is
material A in Table 1. It can be seen that this problem has 11 solutions, once they all are found it can be checked for
which of them the energy dissipation condition due to friction is fulfilled.

3.5. Displacements and stresses

The last functionality presented is the possibility to represent the singular stress and displacement fields of the
corner. In Fig. 6 the stress and the displacement fields for the singularity exponent λ = 0.61028006 with ω = 199.96◦,
the solution for a wedge of solid angle 90◦ that slides with a frictional coefficient µ = 0.5 over a semi-plane are
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Fig. 4. Singularity exponents versus the wedge angle θ2, see Fig. 2 for reference.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(rad)

Fig. 5. Minimum singular value,σmin, of the corner characteristic matrix for (λ ,ω) pairs for the case of a single-material wedge of solid angle 300◦

represented. The material used for the example is the material B with φ2 = 90◦ for the semi-plane and φ2 = 0◦ for the
wedge. The boundary conditions at both outer faces are stress free.

4. Conclusion

The developed general purpose semi-analytical code has proven to be an efficient and accurate computational tool
that can be very useful for both researchers and engineering companies that have to simulate by FEM their structures
including discontinuities in boundary conditions, geometry or material properties. In Herrera-Garrido et al. (2022),
the code has already demonstrated that its results are extremely accurate thanks to the comparison with the analytical
results obtained by other authors using more specific methods. In this work the capabilities and variety of functions
of this code and all the information the code can provide have been shown.
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(Ed.), Mathematical Methods and Models in Composites. Imperial College Press, pp. 425–495.
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