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ABSTRACT 

The determination of the magnetocaloric magnitudes (specific magnetic entropy change, 

ΔsM, and adiabatic temperature change, ΔTad) from heat capacity (cH) measurements 

requires measurements performed at very low temperatures (~0 K) or data extrapolation 

when the low temperature range is unavailable. In this work we analyze the influence on 

the calculated ΔsM and ΔTad of the usually employed linear extrapolation of cH from the 

initial measured temperature down to 0 K. Numerical simulations have been performed 

using the Brillouin equation of state, the Debye model and the Fermi electron statistics 

to reproduce the magnetic, lattice and electronic subsystems, respectively. It is 

demonstrated that is not necessary to reach experimentally temperatures very close to 0 

K due to the existence of certain starting temperatures of the experiments, the same for 

ΔsM and ΔTad, that minimize the error of the results. A procedure is proposed to obtain 

the experimental magnitudes of ΔsM and ΔTad with a minimum error from cH data 

limited in temperature. It has been successfully applied to a GdZn alloy after comparing 

with results derived from magnetization measurements. 
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1. INTRODUCTION 

The application of a magnetic field in adiabatic conditions to a magnetic material causes 

a variation of the sample temperature (ΔTad) due to the coupling between the lattice and 

magnetic subsystems. This effect is known as the magnetocaloric effect (MCE) [1,2]. 

Alternatively, the MCE can be quantified as the specific magnetic entropy change (ΔsM) 

during the variation of an applied magnetic field in an isothermal process. This effect 

was widely used to achieve ultralow temperatures (below 1 K) making use of 

paramagnetic salts [3]. Nowadays, the interest on MCE is increasing due to the 

possibility to perform magnetic refrigerators at room temperature. This technology has 

been shown as an energy efficient and environmental friendly (due to the absence of 

gasses responsible for greenhouse effect and ozone depletion) alternative to the 

conventional systems [4,5].  

In order to optimize the material performances to be applied in a refrigerator device, a 

basic step is an accurate characterization of the magnetocaloric magnitudes. In 

isothermal conditions, the ΔsM for a magnetic field change ΔH is obtained using the 

Maxwell relations [6] as: 

∆𝑠𝑀(𝑇, Δ𝐻) = µ0 ∫ (
𝜕𝜎

𝜕𝑇
)

𝐻
d𝐻 

𝐻𝐹

𝐻𝐼

 (1) 

where HI and HF are the initial and final magnetic fields, respectively, T is the 

temperature, 𝜎  is the specific magnetization and µ0 is the magnetic permeability of the 

vacuum (in this work, equations and magnitudes are expressed in the SI). 

On other hand, making use of the definition of the specific heat capacity at constant 

magnetic field (cH) and taking into the Maxwell relations and the adiabatic condition, 

ΔTad can be obtained as: 



∆𝑇𝑎𝑑(𝑇, Δ𝐻) = −µ0 ∫
𝑇

𝑐𝐻
(

𝜕𝜎

𝜕𝑇
)

𝐻
d𝐻

𝐻𝐹

𝐻𝐼

. (2) 

From equations (1) and (2) it can be deduced that the MCE is maximum when there is 

an abrupt change in magnetization with respect to the temperature, i.e. in the region 

close to a magnetic transition.  

Previous expression require the acquisition of magnetization data as a function of 

temperature and field, for ΔsM, and besides this, cH measurements as a function of  

temperature and field for determining ΔTad. On the other hand, the two fundamental 

magnetocaloric magnitudes, can be obtained using only calorimetric data [7,8]. For a 

constant magnetic field, the specific total entropy of the system (sH) can be obtained 

from heat capacity data through: 

𝑠𝐻(𝑇) = ∫
𝑐𝐻

𝑇
d𝑇 + 𝑠0 𝐾,𝐻

𝑇

0

 (3) 

where s0 K,H is the entropy at 0 K for a magnetic field H. ΔsM and ΔTad are obtained from 

equation (3) as: 

∆𝑠𝑀(𝑇, Δ𝐻) = [𝑠𝐻𝐹
(𝑇) − 𝑠𝐻𝐼

(𝑇)]𝑇 (4) 

∆𝑇𝑎𝑑(𝑇, Δ𝐻) = [𝑇𝐻𝐹
(𝑠) − 𝑇𝐻𝐼

(𝑠)]𝑠 (5) 

where in order to calculate ΔTad, the entropy curves sH(T) have to be inverted as TH(s). 

In both cases, equations (1 and 2) and equations (4 and 5), the heat capacity 

measurements are needed to obtain ΔTad, although in the first case, it is also necessary 

to have the magnetization data and, in the second case, we have to be able to calculate s0 

K,H and to reach temperatures close to 0 K (see equation (3)). 

Concerning the calculus of the MCE from calorimetric measurements, the s0 K,H term 

would not affect ΔsM if it is assumed that, in a condensed system, it is field independent. 



However, for ΔTad, its contribution is not zero but it is assumed small [7], and usually 

this term is neglected in the calculus of both magnitudes. In the case that temperatures 

close to 0 K could not be reached, the approximated calculus will be considerably 

affected (some kind of assumption must be done for the missing data range, e.g. a linear 

behavior of cH). The experimental limitations can be ascribed to limitations of the 

experimental setup (e.g. the sample is cooled down using liquid N2) or to the difficulties 

to measure cH in a large temperature range (e.g. due to stability limitations of the grease 

usually employed to attach the sample to the calorimetric chip). 

In the present work, the influence of assuming a linear behavior of the heat capacity 

from the initial temperature measured down to 0 K (assuming cH(0 K)=0) on the 

calculated magnetocaloric magnitudes will be discussed. Numerical simulations have 

been performed using the Brillouin equation of state, the Debye model and the Fermi 

electron statistics to reproduce the magnetic, lattice and electronic subsystems, 

respectively. The obtained results from the simulations allow us to propose a procedure 

to minimize the associated error in experimental ΔsM and ΔTad data. In order to check 

the validity of the proposed procedure, it has been applied to a single phase GdZn alloy. 

The results are compared to calculations derived from magnetization data. 

 

2. EXPERIMENTAL TECHNIQUES AND MODELS 

For both experimental data as well as for numerical simulations, the total entropy of the 

system has been numerically calculated from heat capacity data approximating equation 

(3) as [7]: 

𝑠𝐻
𝑎𝑝(𝑇) =

1

2
𝑐𝐻(𝑇𝑖𝑛𝑖) + ∫

𝑐𝐻

𝑇
d𝑇

𝑇

𝑇𝑖𝑛𝑖

 
(6) 



Where sH
ap is the approximated entropy at a constant magnetic field (the superscript 

‘ap’ will also denote the different magnitudes calculated from this data), cH was 

measured at constant magnetic field, with Tini as the initial temperature and the zero 

temperature entropy is not considered. In this expression, it is assumed a linear 

extrapolation from Tini down to 0 K for cH (assuming cH(0 K)=0) as proposed by 

Pecharsky et al. [7] for measurements close to 0 K. 

Theoretically, the heat capacity of the magnetic material can be expressed as the sum of 

the magnetic, lattice and electronic subsystems contributions. To simulate the magnetic 

subsystem, the Brillouin equation of state has been considered [9], where the heat 

capacity of the magnetic subsystem (CM) is calculated according to [10]: 

𝐶𝑀 = 𝑁𝑚𝐾𝐵𝑇 (𝜕 [𝑙𝑛 (
sinh (

2𝐽 + 1
2𝐽 𝑥)

sinh (
1
2𝐽 𝑥)

) − 𝑥𝐵𝐽(𝑥)] 𝜕𝑇⁄ )

𝐻

 (7) 

 

where BJ(x) is the Brillouin function, x=μ0gμBJH*/kBT, H* is the total field (considered 

as the applied magnetic field plus the molecular field), g is the spectroscopic splitting 

factor, μB is the Bohr magneton, J is the total angular momentum quantum number and 

Nm is the number of magnetic atoms. Although the Brillouin equation of state is a mean 

field approximation that does not predict the correct critical exponents for certain 

materials and it also presents some limitations at low temperatures due to not consider 

spin waves. Nevertheless, it is profusely used as a simple model for the simulation of 

magnetocaloric materials and, as it will be argued below, these mentioned limitations do 

not affect the main conclusions of this work: the existence of an optimal initial 

temperature for the lower limit of integration of cH (Tini
opt) and the procedure to identify 

it from experimental measurements. It has to be noted that the use of different 



thermomagnetic equations of state will produce different values of Tini
opt.The lattice 

contribution (Cl) has been considered assuming the Debye model for which [9]: 

𝐶𝑙 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)

3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2

𝜃𝐷
𝑇

0

d𝑥 (8) 

where N is the number of particles, kB is the Boltzmann constant and θD is the Debye 

temperature.  

For the electronic subsystem, the Fermi-Dirac statistics [9] gives for the heat capacity 

(Ce): 

𝐶𝑒 =
2

3
𝜋2𝑘𝐵

2𝑉𝐷(𝐸𝐹)𝑇 ≈ 𝛾𝑇 (9) 

where V is the molar volume and D(EF) is the electron density of states at the Fermi 

level EF. Gadolinium has been considered as the model material for the simulations as it 

is the well-known reference magnetocaloric material for room temperature applications 

with a ferro-paramagnetic transition, for which the main parameters are J=7/2, TC=293 

K, θD=163 K and γ=6.4 mJ mol-1 K-2 [11]. 

The single phase GdZn alloy was prepared by induction melting. Its structural and 

magnetic characterization can be found in [12]. GdZn presents the advantages of a 

simpler magnetic transition than pure Gd (with a spin reorientation transition close to 

the ferro-paramangetic transition [13,14]). Moreover, Gd behavior can be easily 

modified by impurities [15] and it is easily oxidated, while GdZn does not present such 

problems.The heat capacity and magnetization curves have been performed in a 

commercial Physical Property Measurement System from Quantum Design in the 

temperature range of 200–400 K for magnetic fields up to 2 T. 

3. RESULTS AND DISCUSSIONS 



3.1  SIMULATIONS 

The simulated specific heat capacity (cH) data of Gd at various magnetic fields are 

presented in figure 1. Using these data, the specific total entropy of the system (sH) was 

calculated (inset of figure 1) according to equation (6) from 0 K. Figure 2 shows the 

calculated specific magnetic entropy change curves (ΔsM
ap) for µ0ΔH=2 T (HI=0 in this 

work) using equation (6) starting from differentinitial temperatures (Tini). It is observed 

that each curve differs from the curve starting integration at 0 K (denoted as complete 

curve from now) in a constant value which depends on the magnetic field change. As 

the initial temperature of integration increases, it can be observed that a non-

monotonous tendency exists. The inset of figure 2 shows the differences of the peak 

between the approximated magnetic entropy change curvep (ΔsM
ap,pk) with respect to the 

complete curve one (ΔsM
pk). Besides a flat region close to 0 K, there are two values of 

the initial temperature (𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

), for which the ΔsM
ap values are coincident with those of 

the complete curve (marked with arrows in the inset of figure 2). For practical purposes 

the most useful optimal initial temperature would be the highest, as the necessity to 

achieve temperatures close to zero is drastically avoided. From now, we focus only on 

the highest 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

. If we consider the relation between the complete entropy, sH (equation 

(6) starting from 0 K), and the approximated entropy, sH
ap (equation (6)): 

𝑠(𝑇) = ∫
𝑐𝐻

𝑇
d𝑇

𝑇

0

= 𝑠𝐻
𝑎𝑝(𝑇) −

1

2
𝑐𝐻(𝑇ini) + ∫

𝑐𝐻

𝑇
d𝑇 = 𝑠𝐻

𝑎𝑝(𝑇) + ξ𝐻(𝑇𝑖𝑛𝑖)
𝑇ini

0

 (10) 

where the parameter ξH depends on H and Tini. For any initial temperature, the relation 

between the approximate magnetic entropy change and the complete one is: 

∆𝑠𝑀 = ∆𝑠𝑀
𝑎𝑝 + [ξ𝐻(𝑇𝑖𝑛𝑖) − ξ0(𝑇𝑖𝑛𝑖)] (11) 

where the condition for the optimal temperature is: 



ξ𝐻(𝑇𝑖𝑛𝑖
𝑜𝑝𝑡) = ξ0(𝑇𝑖𝑛𝑖

𝑜𝑝𝑡) (12) 

This implies that the shift in the total entropy is the same for both magnetic fields. This 

condition is equivalent to: 

1

2
∆𝑐(𝑇𝑖𝑛𝑖

𝑜𝑝𝑡) − ∫
∆𝑐

𝑇
d𝑇 = 0

𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

0

 (13) 

with Δc=cH-c0. This constitutes the formal definition of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

. It is worth mentioning that 

the fulfilment of condition (13) is independent of the model used (Brillouin function in 

our study). 

Figure 3 shows the approximated adiabatic temperature change curves (ΔTad
ap) from 

different values of the initial temperature of integration using equation (5). Unlike for 

the ΔsM
ap data, the differences with respect to the complete curve are not constant and 

depend on the temperature. However, as for the ΔsM
ap case, it can be observed some 

initial temperaturevalues for which the differences with respect to the completed curve 

(integration performed from 0 K)are zero (the differences of the peak of ΔTad
ap with 

respect to the complete curve are shown in the inset of figure 3). These optimal initial 

temperatures for ΔTad
ap are the same found for ΔsM

ap. To demonstrate this coincidence, 

we consider the definitions of both ΔTad and ΔTad
ap: 

∆𝑇𝑎𝑑(𝑇, 𝑠) = [𝑇𝐻(𝑠𝐻) − 𝑇0(𝑠0)]𝑠 ( 14) 

∆𝑇𝑎𝑑
𝑎𝑝(𝑇, 𝑠𝑎𝑝) = [𝑇𝐻

𝑎𝑝(𝑠𝐻
𝑎𝑝) − 𝑇0

𝑎𝑝(𝑠0
𝑎𝑝)]𝑠𝑎𝑝 ( 15) 

Where we establish the equality at a certain temperature T=T0(s)=T0
ap(sap) and from the 

inverse of equation (10): 

𝑇𝐻
𝑎𝑝(𝑠𝐻

𝑎𝑝) = 𝑇𝐻(𝑠𝐻 −ξ𝐻(𝑇𝑖𝑛𝑖)) ( 16) 

Therefore, as for 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 equation (12) holds and the displacements of both approximated 

curves are the same in the entropy axis with respect to the complete curves, the change 



between temperatures remains constant and ΔTad
ap(T)=ΔTad(T). However, when Tini is 

different to 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

, the displacements in entropy axis of the approximated curves differ 

and the temperature change is not preserved. Figure 4 illustrates the calculus of the 

different ΔTad
ap values at T=Tpeak: a) shows the procedure when Tini=0 K (corresponding 

to the complete curve) b) corresponds to Tini=𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 (211.5 K) and c) uses Tini=141 K (a 

value below 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

). As observed when ξH(𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

) ≠ ξ0(𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

), ΔTad
ap(T) ≠ ΔTad(T). Figure 

5 shows the ΔTad
ap(T)-ΔTad(T) for several initial temperatures at a magnetic field change 

of 2 T. It can be observed that for a curve with Tini different to 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

, the differences with 

respect to the complete curve increases as temperature increase, while for Tini=𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 the 

differences are zero for all the temperature range. The continuous dependence of 

ΔTad
ap(Tini)-ΔTad(Tini) is also represented in figure 5 (dotted line) to show the followed 

trend. 

With respect to the field dependence of the analysis, figure 6 shows the field and 

temperature dependence of (ΔsM
ap,pk-ΔsM

pk)/ΔsM
pk. It can be observed that the shape of 

the temperature dependence of this magnitude is not affected by field, although the 

position of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 is slightly shifted to higher temperatures with increasing field, varying 

linearly at a rate of 2.1 K/T (inset of figure 5). The shape of the (ΔTad
ap,pk-ΔTad

pk)/ΔTad
pk 

surface is the same. Selecting a single magnetic field (e.g. 1 T that is in the middle of 

the range explored here) the error using its 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 for other magnetic fields is below 1% at 

the peak, which is within the error margin of the experimental measurements. Using Tini 

values different to 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

, even if they were closer to 0 K than 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

, larger errors can be 

obtained (around 8 % at the peak) and anomalous behaviors in the temperature 

dependencies of ΔsM and ΔTad are found (e.g. at the paramagnetic range). 



In our simulations, the values of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 mainly depend on the magnetic parameters (J and 

TC), while the lattice and electronic parameters (D and γ, respectively) do not show any 

significant effect. It is worth noting that, fixing TC for small values of J (1/2 and 1), the 

curve describing the differences between the approximated calculus and the complete 

ones does not intercept the ΔsM
ap,pk-ΔsM

pk=0 axis, while for higher values of J it does 

(figure 7). However, if TC is modified (fixing J>1) the values of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 vary linearly with 

TC (inset of figure 7).  

3.2 APPLICATION TO EXPERIMENTAL DATA 

For practical purposes, the calculus of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 from its mathematical definition in equation 

(13) is of little use as the complete curves should be known. Nevertheless, as: 

1) the previous section demonstrated the existence of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

, 

2) figure 5 shows that using this starting temperature the approximated curve is 

corrected for the temperature span starting from 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

and 

3) both ΔsM and ΔTad are zero well above the transition temperature, 

we can use this property to identify the value of 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 for experimental data. 

We can focus on the temperature range well above the transition temperature, for which 

ΔsM and ΔTad must be practically zero. In this temperature range, the approximated 

values ΔsM
ap and ΔTad

ap should be different to zero (either positive or negative) except 

for 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 (see figures 2 and 3). This feature can be used to identify 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 experimentally: 

𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 corresponds to that temperature which produces ΔsM
ap(T>>TC) and 

ΔTad
ap(T>>TC)=0. The proposed procedure to correct the experimental ΔsM and ΔTad 

curves when temperatures close to 0 K were not achievable can be summarized in two 

simple steps: 



1) Calculate the evolution of ΔsM
ap and ΔTad

ap curves for different initial 

temperatures. 

2) Find the optimal initial temperature as the value of Tini that makes ΔsM
ap=0 and 

ΔTad
ap=0 well above the transition (the same optimal initial temperature for 

both). 

The ΔsM
ap and ΔTad

ap curves from this optimal initial temperature should be considered 

as the best approximation (in the range T> 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

) to the complete curves. 

The proposed procedure to minimize the error associated to ΔsM and ΔTad has been 

applied to experimental heat capacity data measured for a single phase GdZn material 

(figure 8). The initial temperature of the measurements is limited by the stability of the 

grease used in the experimental setup (other greases are suitable to measure at lower 

temperatures but their range is not extended to room temperature, where the transition 

occurs). Figure 9 and 10 show the obtained experimental results for ΔsM
ap and ΔTad

ap, 

respectively, calculated using different initial temperatures. It can be observed that 

~100 K above the peak temperature (where ΔsM
ap curves remain almost constant), the 

values of ΔsM
ap and ΔTad

ap reach zero only for a 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

≈221.5 K (as predicted, the 

temperature is coincident for ΔsM and ΔTad data). Moreover, the behavior of the curves 

is in agreement with the predictions derived from our simulations: while ΔsM varies due 

to Tini as a temperature independent shift, the ΔTad varies in a more complex form 

(changing with temperature). 

In order to confirm the validity of the procedure proposed here, we have compared the 

obtained optimal ΔsM
ap and ΔTad

ap curves to calculations from independent 

magnetization measurements (hollow symbols in figures 9 and 10) using equations (1) 

and (2), respectively. An excellent agreement between both procedures can be observed. 



It is worth mentioning that, using the procedure proposed in this work, measurements at 

low temperatures are not needed and we avoid the necessity to combine two types of 

measurements (that requires a careful sample preparation to avoid artefacts in the 

different measurements and a large number of measurements as a function of H and T 

for both magnetization and heat capacity data).  

 

4. CONCLUSIONS 

We propose a procedure to minimize the associated error in the approximated calculus 

of the magnetocaloric parameters from heat capacity measurements. It is based on the 

existence of optimal initial temperatures that correct the effect of truncation of the 

temperature integration range (as temperatures close to 0 K can be beyond the 

experimental range). The optimal initial temperatures are found to be the same for ΔsM 

and ΔTad data. These optimal temperatures can be found as the initial temperatures that 

make the calculated ΔsM and ΔTad zero well above the transition. These features have 

been checked through numerical simulations and experimental measurements in a single 

phase GdZn alloys. A good agreement has been found between the results using the 

present procedure and those data obtained using the combination of heat capacity and 

magnetization measurements. 
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FIGURES 

 

 

Figure 1. Simulated specific heat capacity data from 0 K for different magnetic fields. 

Inset: Specific total entropy obtained using simulated cH data. 



 

Figure 2. Approximated specific magnetic entropy change for a magnetic field change 

of 2 T for different initial temperatures. Inset: Differences between the peak values of 

ΔsM
ap for each Tini with respect to the peak value with Tini=0 K. 𝑇𝑖𝑛𝑖

𝑜𝑝𝑡
 values are marked 

with arrows. 

 



 

Figure 3. Approximated adiabatic temperature change for a magnetic field change of 2 

T for different initial temperatures. Inset: Differences between the peak values of ΔTad
ap 

for each Tini with respect to the peak value with Tini=0 K. 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 values are marked with 

arrows. 
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Figure 4. Illustration of the procedure to obtain the adiabatic temperature change from 



temperature versus entropy curves for: a) Tini=0 K b) Tini=𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 (211.5 K) and c) 

Tini=141 K. 

 

Figure 5. ΔTad
ap-ΔTad curves for different initial temperatures in all the temperature 

range above the corresponding Tini. Dotted line represents this differences at Tini in a 

continuous curve. Inset: 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 for different magnetic field change. 

 



 

Figure 6. Field and temperature dependence of (ΔsM
ap,pk-ΔsM

pk)/ΔsM
pk. The red line 

corresponds to the 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 values as a function of the magnetic field. 

 



Figure 7. Differences between the peak value of ΔsM
ap at a Tini with respect to the peak 

value from Tini=0 K for different J values (TC=293 K). Inset: 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 as a function of TC for 

J=3.5. 

 

 

Figure 8. Experimental specific heat capacity data for a GdZn alloy for different 

magnetic fields.  

 



 

Figure 9. Calculated ΔsM
ap values from experimental heat capacity data for a GdZn 

alloy using different initial temperatures at µ0ΔH=2 T. Circles represents the 

experimental  values derived from magnetization measurements and obtained using 

equation (3). Inset: Evolution of ΔsM
ap well above TC for different Tini. The intercept of 

this curve with zero is used to find 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 (marked with an arrow). 



 

Figure 10. Calculated ΔTad
ap values from experimental heat capacity data for a GdZn 

alloy for different initial temperatures at µ0ΔH=2 T. Circles represents the experimental 

values from combining magnetization and calorimetric data and obtained using equation 

(5). Inset: Evolution of ΔTad
ap well above TC for different Tini. The intercept of this 

curve with zero is used to find 𝑇𝑖𝑛𝑖
𝑜𝑝𝑡

 (marked with an arrow). 
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