Multiple decision trees to diagnose a transient state of dynamic systems.
Application to a DC motor.
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Abstract

In this paper, a novel methodology is proposed to
diagnose a transient state of a dynamic system us-
ing supervised learning. It is composed by two
steps: one off-line process and another on-line pro-
cess. The off-line phase begins gathering data from
the system, both when it is running free of fault
and when the system is running in each fault mode.
Also, it is possible to generate these data from
Monte Carlo simulations of a systemmodel. A seg-
mentation and normalization algorithm is used to
reduce the large amount of gathered data. The fi-
nal step of the off-line process is the generation of
a decision tree by a classification tool. The on-line
process of the methodology consists in evaluating
a new reading of the system sensors with the gen-
erated decision trees. The system diagnosis is the
result of this evaluation which has a linear compu-
tational cost due to the simplicity of the decision
trees. In order to improve diagnosability problems
of this methodology, it is proposed a new solution
in this work. Instead of generating only one de-
cision tree, a different decision tree is generated for
each fault mode and free of fault mode. Therefore
multiple possibilities of diagnosis can be offered
for a given behaviour of dynamic system. Meth-
odology has been applied to diagnose a DC motor.
Eight different faults have been considered and the
results have been discussed including diagnosabil-
ity conflicts.

1 Introduction

Inside the Artificial Intelligence techniques, data mining is
about solving problems by analyzing data already present in
databases. Data mining is defined as the automatic process of
discovering patterns in data. One of the fields of Data Mining
is the Machine Learning, which is defined as the ability for
a computer system to generate new knowledge based on its
past experiences.

A long variety of techniques, coming from Artificial In-
telligence, has been applied to diagnosis field from their be-
ginning. Along this time, a great number of approximations
have been proposed from different points of view. In [Cordier
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et al.. 2000] a comparative between the communities FDI and
DX for model based diagnosis can be found. One of the fields
that have been widely investigated is the diagnosis of dynamic
systems. These types of systems are very difficult to diagnose
due to the great amount of components, the small set of ob-
servable variables, the interactions among their components,
and the habitual presence of a control system which could
hide the presence and identification of the faults. Machine
Learning techniques have been applied to this field, from a
decade ago [Feng, 1992] to current years [Roverso, 2003].

Induction motors are very common in industry due to their
simplicity, rugged structure, cheapness and easy maintainab-
ility. It is very usual that these motors were involved into
larger industrial systems. Fault detection and diagnosis of
these motors are very important when they are working in
on-line monitor conditions. Due to dynamical conditions of
these systems, it is crucial to diagnose the faults quickly and
precisely. Several techniques has been applied in order to
diagnose these motors: techniques based on the signal ana-
lysis [Schoen et al., 1995], based on the dynamic modelling
of the motor [Chan et al., 1999] and knowledge based tech-
niques. Inside the knowledge based techniques, many tools
have been used: expert systems [Filippetti et al., 1992], neur-
onal networks [Liu et al., 2000] or automatic classification
[Hajiaghajani et al., 2004].

The aim of this paper is to use the power of the automatic
learning to diagnose dynamic systems with a minimal amount
of sensors. A complete methodology is proposed for this pur-
pose and it is applied to a dynamic system involving a DC
motor. This is an important improvement to the methodology
presented in a previous work [Abad et al., 2002].

A improvement in the methodology is proposed with the
aim of treating no-diagnosable behaviours. System behaviour
is no-diagnosable when it could have more than one possible
diagnostic. The improvement proposes to offer all possible
diagnostics by generating multiple decision trees.

The complete methodology is illustrated with simulations
of a DC motor. Eight different faults have been considered
and the results have been discussed including diagnosability
conflicts.




2 General methodology for diagnosing
dynamic system by classification
2.1 Assumptions

The following assumptions are needed to consider in the
present methodology:

e The system will be alternating between steady states and
transient states.

e The number of transient states is finite and they are al-
ways produced between two known set points.

e When the system begins a transient state, if a fault exists

it will be present fully since beginning of the transient to
the steady state.

e Faults only will be detected at transient states, independ-
ently of the time instant in which the fault occurs.

2.2 Definitions an notation

In order to clarify the phases of the proposed methodology
we will need the following definitions:

Definition 1. Trajectory. A trajectory can be defined as
a function s from a set of time instants T to a set of a system
sensor values V C IR.

s: T —-V

yvhere the values of T are to regular intervals, from the initial
instant ¢ to the final instant ¢,,

Pr= [tl,tl + AT, t; + 2AT, wosy 01, F (n = 1)AT, tn]

t1 denotes the beginning of a transient state, and ¢,, denotes
the establishment point. The i element of a trajectory will be
denoted as s;. Thus a trajectory j will be represented as:

3= [d1sJ25 ey Jn]
Definition 2. Labelled Trajectory. A labelled trajectory is
defined as a rrajectory in which a label has been added. This
label will be situated as the last element in the trajectory and

it represents the conditions in which the trajectory has been
obtained. Thus a labelled trajectory jl will be represented as:
Jl=1jl,jlo,....; jl, LABEL]

where label is a string(discrete value).

Definition 3. Trajectories Database. A rrajectories data-
base is a collection of rrajectories, belonging to the same sys-
tem and corresponding to the same time instant. All trajector-
ies must have the same numbers of elements. This collection
of trajectories must be stored in a file, where each trajectory
is represented by one line.

Definition 4. Labelled Trajectories Database. A labelled

trajectories database is a trajectories database where all tra-
Jectories are labelled trajectories.

2.3 General methodology

The proposed general methodology has two phases clearly
different:

1. The first phase (Figure 1) is developed off-line. In this
phase the main objective is to obtain a set of decision
trees that characterize the system behaviour in the dif-
ferent fault modes which want be diagnosed.
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Figure 1: Off-line phase of the proposed methodology

2. The second phase (Figure 2) is the diagnosis phase itsclf.
It is developed on-line, while the system is being mon-
itored. In this phase the generated trees are evaluated
with the system sensor measurements in order to obtain
a system diagnostic.
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Figure 2: On-line phase of the proposed methodology

Off-line phase

The first task of this phase is to select the set of faults that
would like to detect, and the transient states at which these
faults will be detected. Since the diagnosis process will be
performed at known transient states, the process below de-
scribed must be performed for all transient states in which
the diagnosis process must be performed. In this phase there

are three consecutive steps: data gathering, data treatment and
decision trees generation.

Data gathering In this step the goal is to obtain a collection
of system trajectories, for each fault mode and for the
free fault running. Obtaining the free fault trajectories is
not a problem usually, but gathering the fault trajectories

is another matter. For this purpose, two different options
are considered:

e When it is possible to generate the modes, without
damaging the system, they are provoked and the
trajectories are gathered. This is, for example,
the running mode in which a system component is
accidentally disconnected. Also, it is possible to
use this method when the system will be built in a
series production. In this scenario, a set of proto-
types could be damaged to provoke the faults and
the trajectories could be obtained. This way, the
diagnostician will be useful for all products in the
series.

e When the fault cannot be provoked in the real sys-
tem (because the system could be damaged or be-
cause it is impossible to stop the running system),
a system model must be generated. Then, fault

Algorithm Seg_TS = Sliding_Window(T ,max error)
anchor = 1;
while not fi nished segmenting time series
i=2;
while (calculate_error(7T [anchor: anchor + i ]) < max_error
and (T[anchor + i |) < length(T))
i=i+1;
end;
Seg TS =concat(Seg-TS.create_segment(7 [anchor:anchor+(i-1)]);
anchor = anchor + i;
end:

Table 1: Segmentation on-line algorithm

modes, which cannot be provoked in the real sys-
tem, are simulated in the model, in order to obtain
the corresponding trajectories.

These two options are not excluding, and both can be
used at the same time. For each collected trajectory, a
representative label will be added. This label represents
the running mode of the system in which the trajectory
has been obtained: a concrete fault or free fault. This
way, each trajectory is transformed in a labelled tra-
jectory. All labelled trajectories are stored in a labelled
database. The result is a labelled trajectories database.

Data treatment Labelled trajectories database contains all
information gathered from the system sensors or gener-
ated by the simulations. Usually, most of these data are
not relevant to distinguish among different behaviours.
For example, data of trajectories which are closer to the
steady state will be very similar, even if trajectories be-
long to different behaviours.

In this step, the aim is to reduce the amount of data that
represents each trajectory. It is performed by means of
a segmentation algorithm. The goal of this algorithm is
to characterize a trajectory by a succession of linear seg-
ments. This succession of linear segments approximates
the trajectory with many less points than the original tra-
jectory. In [Keogh et al., 2001] a comparative among
segmentation algorithms can be found. In our case, the
selected algorithm is the sliding window algorithm. The
reason for this selection is that it will be needed perform
this segmentation on-line in the next phase of the meth-
odology. The sliding window algorithm can be found in
Table 1.

In this algorithm a segment is growing until it exceeds a
determine error bound.

n
Z |x; — s;| < error (D
i=1

In equation 1 z; is each trajectory point and s; is each
segment point.

When the error bound is exceeded, a new segment be-
gins to grow. The error is calculated using the expression
in equation 2.
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Algorithm Normalized_ DB = Normalize(Segmented_DB)
timestamps = {}
trajectory = read from Segmented_DB
while 3 trajectories in Segmented DB
for each element in trajectory
if timestamp(element) & timestamps
timestamps = timestamps | J timestamp(element)
end
trajectory = read from Segmented DB
end
end
go top of Segmented DB
trajectory = read from segmented_DB
while 3 trajectories in Segmented_DB
for each element in timestamps
if element 3 in trajectory timestamps
generate a new segment with element
end
add new element to normalized trajectory
end
save normalized trajectory to Normalized DB
trajectory = read from Segmented_DB
end

Table 2: Normalization algorithm

Error =

The first term of the sum in the expression represents
the deviation between the trajectory and the segment.
The second term ensures that the deviation in any point
is further that error. Lambda factor lets pondering each
term.

In the the segmentation algorithm, each trajectory has
been approximated with few segments, but the resulting
database is not a labelled trajectories database, because
all trajectories in database have not the same number of
elements. After segmentation process, each trajectory
is represented with a different amount of segments, and
these segments start and finish in different time instants.
In order to solve this situation, and recover the labelled
trajectories database, new segments must be generated
to homogenize the numbers of elements in each traject-
ory. This will be performed with a normalization al-
gorithm. The normalization algorithm is shown in the
table 2.

This algorithm performs two iterations on the segmented
trajectories database. In the first iteration, all different
timestamps of all trajectories are saved. In the second
iteration, new segments are generated for all timestamps
calculated in the first iteration. Each normalized traject-
ory is saved in a new normalized trajectories database
and the label of trajectory is added. Generating new seg-
ments from a existing segments is very easy. Only it is




necessary to applied the linear equation y = ax + b. a
aqd b are calculated for the current segment, and a new
y 1s generated for the new timestamp .

No.rma]ization algorithm returns a new database in
which all rrajectories have the same number of ele-
ments and they correspond to the same timestamp. This

new database fulfils the definition of labelled trajector-
ies database.

The cost that must be paid in normalization process
is that the new normalized trajectories have more seg-
ments than the original ones. In any case, the global
process of segmentation and normalization has reached
to reduce the amount of information to treat.

Decision trees generation Final step in off-line phase is to
generate a set of decision trees that can be used in the
d!agnostic process. The resulting database of the pre-
vious step fulfils all conditions to apply to them a clas-
sification tool. This way the normalized and segmented
labelled trajectories database is used as training set with
the selected classification tool. Output of this step is the
set of generated decision trees.

On-line phase

The on-line phase of the methodology consists in evaluating
an observation, of the sensor values of the monitored system,
with the set of decision trees obtained in the off-line phase. In
order to compare observed data with decision trees, the same
treatment must be applied to observed data. This way, it is ne-
cessary to perform the on-line segmentation of the trajectory
which is being observed. This is the reason because on-line
segmentation algorithm was selected. Also, it is necessary to
generate new segments for the normalized timestamps. After
t}_11§ treatment, observed values will be comparable with de-
cision trees directly.

All process has low computational cost, and due to this the
on-line process can be quickly performed.

Qutput of the evaluation is the label corresponding to be-
hav10ur of the system. This label indicates what is happening
in the system.

Because a different set of decision trees have been gener-
ated for each transient state, it is necessary to know the cur-
rent setting point and the new reference, in order to select the
appropriate set of decision trees.

2.4 Diagnosability conflicts

From the diagnosability definition in [Console et al., 2000]
and the discriminable fault definition in [Trave-Massuyes er
al., 2001], we can conclude that a system is fully diagnosable
when all faults are discriminable among them. But, what to
do when this does not happen? We propose to offer all pos-
sible diagnostics. In other words, when two or more faults
produce the same sensor readings, we propose to offer all
possible causes. With the current methodology this is not
pgssible, because when decision trees are evaluated, only one
d{agnosis is possible. In order to be able to offer all possible
Q1agnosis for non-discriminable faults, a new step is proposed
in off-line phase of the methodology: Labelled trajectories
database will be replicated as many times as different labels
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exists. For each new database, only one label will be main-
[aiqed and the rest of labels are changed to the opposite of the
mamle_lined label. This way. each new database has only two
opposite labels, and there are as many databases as possible
behaviours for diagnosing. Of course, all of these databases
are classified individually, and a different decision trees set is
obtained for each database (figure 3).
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Figure 3: Multiple decision tree sets generation

On-line phase of the methodology must be adapted to the
new changes. Now, all decision rule sets must be evaluated
»\{ith the same sensor readings, and each one returns its own
diagnosis. The diagnosis returned by each new rule sets has
oqu two possibilities: positive (belonging to its class) or neg-
ative (not belonging to its class). The definitive diagnosis will
be all positive evaluations of each class (figure 4).
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Figure 4: Multiple evaluating of a observation

With this modification in the methodology, three possibil-
ities could occur:

1. Only one set of trees provides a positive diagnosis. This
means that is the diagnosis.

2. Some sets of trees provide a positive diagnosis. This
means that the correct diagnosis is one of them but can-
not be specified which one.

3. No sets of trees provide a positive diagnosis. This means
thfit a fault is present (because the free fault class is neg-
ative) but cannot be specified which one.

Third possibility lets to methodology to give a non-

incorrect result when a fault mode for which it has not been
prepared occurs.

3 Application to a DC motor

3.1 System description

The proposed methodology has been applied to a separately
excited DC motor which is supplied by a three phase recti-
fier circuit. The DC motor is fed by the three phase rectifier
through a chopper that consists of a IGBT transistor, and a
free-wheeling diode. The motor torque is controlled by the
armature current, which is regulated by a current control loop.
The motor speed is controlled by an external PI controller,
which provides the current reference for the current control
loop.

The DC motor drives a fixed load. This motor performs
a recurrent work, running from the stop state to reach the
reference. This could be the scenario of a motor driving a
centrifugal pump. This system has been implemented with
Simulink@® using components of the SimPowerSystems®
Toolbox. (figure 5)

3.2 Faults identification
Faults to diagnose are divided in two types:

Rupture Faults. When these faults occur, the faulty com-
ponent stops totally. For the present system, next rupture
faults will be considered:

e One phase fault. One phase voltage is missing.

e Two phases fault. Two phases voltage are missing.
o IGBT rupture. The IGBT transistor is always on.
e Free-wheeling diode is short-circuiting.

e Free-wheeling diode is open-circuiting.

Tire Faults. This type of faults occurs when components
are loosing its properties gradually, and this produces a
progressive alteration in the working system. Next tire
faults will be considered:

e Some turns in the armature winding are short-
circuited. This produces a decrement in the in-
ductance and resistance of the winding. The rate
between the number of short-circuited turns and the
decrease in resistance and inductance are given by
equations 3 and 4.

0 K% 3)
~HoN2A
L=bt—= )
i

e Some turns in the field winding are short-circuited.
The fault is the same that the previous one, but ap-
plied to the field winding.

e Bearing friction increasing. An excessive bearing
friction, due to stress, produces an increasing in the
friction torque.

3.3 Off-line phase

In order to obtain the labelled trajectories database, a set of
simulations have been done with the above described system.
Transient state simulated is from stop state to a reference of
50 rad/sec. Parameters for simulations are shown in table 3
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Nominal Power 39 KW
Armature resistance 0.6 Q
Armature inductance 0.0012 H
Field resistance 240 Q
Field inductance 120 H
Mutual inductances 1.8 H
Friction torque 0.5 N.m
Load torque 10 N.m

Table 3: DC Motor specifications

A tolerance interval is considered in nominal values of cach
component. These components are considered free of fault if
its value persists inside this interval. This represents the little
alterations that can be produced in a system without a fault
be considered. Tolerance rate has been established in a 4% of
the nominal value of the components.

Each rupture fault simulation has been performed by chan-
ging the system model to produce the fault.

For tire faults, the nominal values of the faulty component
are changed. For short-circuiting of turns in windings, has
been considered a decrease of inductance and resistance until
40%. Friction torque rising to 10 N.m has been considered
for bearing fault.

30 simulations per behaviour have been done by Monte-
carlo selection of interval values. Data gathered corresponds
to readings of the angular speed of the rotor (Wm) and the
control signal (Cv).

After simulations, the segmentation and normalization pro-
cess has been applied to labelled trajectories database. With
the aim of increase the available information, the value of the
derivate of each segment has been added to the segmented
trajectories database.

Finally, the classification tool C5.0® has been applied to
segmented trajectories database. Both options, a single de-
cision tree and multiples decision trees have been generated.
The size of the single tree is 9 nodes. Sizes of multiples trees
are between 1 and 6 nodes.

3.4 On-line Phase: Results

Results of table 4 have been obtained by 10 simulations per
behaviour. Each simulation has been appropriately treated
and evaluated with both sets of trees.

It is important to highlight that faults F2 and DS are non-
discriminable because both give the same sensor readings.

As can be found in results table, the rupture faults are
clearly diagnosed with the single tree, except for the non-
discriminable faults F2 and DS. Single tree gives an erro-
neous diagnosis for F2 fault in all simulations. Tire faults
are more imprecisely diagnosed, and a few simulations offer
an erroneous diagnosis. Motive for this is that sensors read-
ings are very similar when tire values are very closer to the
correct ones. By using multiples trees, all results are more
ambiguous. Various possible diagnosis are offered in some
fault modes which are correctly diagnosing with the single
tree. However, with non-discriminable faults DS and F2, both
diagnosis are offered, avoiding an erroneous diagnostic.
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Figure 5: Simulink@® model of the system

Behaviour Single tree | Multiple trees
diagnosis | diagnosis
(OK) No Fault 100% OK | 80% OK
20% OK or AW

(AW) Armature Wind. | 80% AW 60% AW

20% OK 20% AW or OK
20% AW or BF
(FW) Field Windings 90% FW 80% FW

10% BF 10% FW or F1
10% 77

(BF) Bearing Friction | 90% BF 80% BF

10% FW 20% BF or FW

(F1) 1 Phase Fault 100% F1 90% Fl

10% 7?
(F2) 2 Phase Fault 100% DS 100% F2 or DS
(IG) IGBT Fault 100% 1G 100% 1G

(DS) Diode Short-cir. | 100% DS 100% DS or F2
(DO) Diode Open-cir. | 100% DO 100% DO

Table 4: Diagnosis results

4 Conclusions and further works

A complete methodology to diagnose dynamic systems by
classification has been proposed.

This methodology is able to diagnose dynamic systems
when they are running in transient states that have been pre-
viously trained.

Models are not necessary when experimental data are
available; they are only used when it is impossible to acquire
real data.

It is not necessary to add new sensors to the system. When
diagnosis is not clear, all possibilities are offered.

When the trees have been generated, the diagnosis process
is very simple, and it can be performed with a very little com-
putational time. This allows that it can be implanted with low
cost components.
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Currently this methodology has been applied to a real im-
plementation of the modelled system. Some different faults
are being added, as eccentricity fault or brush fault. Also, im-
provements in data treatment and classification step are being
tested.
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