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Abstract: How to efficiently implement Model Predictive Control (MPC) in embedded systems
is a topic that is attracting a lot of research recently, due to its impact in practical applications.
Implementing MPC in industrial Programmable Logic Controllers (PLCs) is of particular
interest due to their widespread prevalence in the industry in comparison with other embedded
systems, such as FPGAs or microcontrollers. In this paper, we present a PLC implementation
of real-time embedded MPC for multivariable systems described by linear time-invariant
input/output models subject to upper and lower bounds on input and output variables. The
MPC algorithm uses a recently developed primal active-set method for bounded-variable least-
squares problems. We highlight and address some crucial challenges that arise in implementing
the MPC algorithm in a PLC. Possible extensions of the proposed methods are presented along
with hardware-in-the-loop simulation results of controlling a nonlinear multivariable system
using a real industrial PLC.
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
method with increasing popularity in the industry due to
its ability to optimize closed-loop performance of systems
subject to input and output constraints (Camacho and
Bordons Alba, 2013). In MPC, the control law is derived
at each time step from the solution of an optimization
problem. This leads to one of the main obstacles for the
implementation of MPC in an industrial setting, which
is the fact that control loops are typically implemented
using embedded systems, whose limited computational
and memory resources are not generally suitable for com-
puting the MPC control law in real time. Specifically,
the most common embedded control hardware used in
the industry is the Programmable Logic Controller (PLC)
(Alphonsus and Abdullah, 2016), which is a rugged and
highly reliable digital computer specifically designed to
cope with the environmental conditions of an industrial
setting, and it typically has very limited resources.

One possible approach used to overcome this limited avail-
ability of resources is the use of explicit MPC (Bemporad,
2019), such as in (Valencia-Palomo and Rossiter, 2012),
or (Raha et al., 2019), where the solution of the MPC
control law is computed offline and stored in the embed-
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ded system as an explicit, continuous and piecewise affine
function of the state (Tøndel et al., 2003). However, the
memory requirements of this approach become prohibitive
for medium to large-sized systems and/or MPC problems
involving many constraints.

Another solution is to use efficient algorithms capable of
solving the optimization problem on line that are tailored
to embedded systems, such as CVXGEN (Mattingley
and Boyd, 2012), FiOrdOs (Ullmann, 2011), qpOASES
(Ferreau et al., 2014), and (Cimini et al., 2017). These
tools have successfully been used to implement MPC
in embedded systems, such as in (Huyck et al., 2012),
(Kufoalor et al., 2015), and even in automotive mass
production (Bemporad et al., 2018). Certain solvers are
tailored to a certain MPC formulation and a specific
embedded platform. Some examples of this approach are
(Krupa et al., 2018), (Patrinos and Bemporad, 2013) and
(Wang and Boyd, 2010).

Most of the advancements in recent years on this topic
share two common features. First, they usually target
embedded systems such as FPGAs or microcontrollers,
instead of PLCs. Second, the prediction model is usually
a state-space one, whereas in an industrial setting the use
of an input/output (I/O) model for MPC design would be
preferable, since systems are often identified from I/O data
as step-response, impulse-response, or transfer-function
models.

This paper presents the implementation on a PLC of
the MPC approach based on I/O models developed by
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(Saraf and Bemporad, 2017). Additionally, the cited MPC
approach is extended to get offset-free control by adding
an observer (Pannocchia et al., 2015). The MPC opti-
mization problem is posed as a bounded-variable least-
squares (BVLS) problem, which is solved on line using
the primal active-set algorithm developed in (Saraf and
Bemporad, 2019). In order to highlight the practical use
of the proposed methods in an industrial setting, the linear
MPC algorithm is implemented in a real industrial PLC
for offset-free control of a nonlinear quadruple water-tank
system in a hardware-in-the-loop (HIL) setting.

The paper is structured as follows. Section 2 describes the
MPC and observer formulations, including the system de-
scription. Furthermore, it describes how offset-free control
is attained. In Section 3 we discuss the implementation
of the controller in the PLC, highlighting the associated
challenges. Section 4 shows the results of the HIL tests,
including the system description, closed-loop trajectories
of reference tracking and disturbance rejection tests, and
memory/computational requirements. Finally, Section 5
provides some final conclusions and future lines of work.

Notation: The component i of a vector x is denoted by xi.
Vector x = (x(1), x(2), . . . , x(N)) is a column vector formed
by the concatenation of vectors x(1) to x(N). Given a

matrixM ∈ Rn×m,M� denotes its transpose. For a vector

x, ‖x‖2 is its Euclidean norm, i.e. ‖x‖2
.
=

√
x�x. Given

two vectors x and y, x ≤ (≥) y denotes component-wise
inequality. An identity matrix of dimension n is denoted
by In. A matrix in Rn×m whose elements are all zero
is denoted by 0n×m, and 0n×n is shortened as 0n. The
expression M � 0 denotes that a square matrix M is
positive definite. Given a signal x, x(k) is its value at
time instant k, and x(k|j) is the estimation of its value at
time instant k based on the knowledge available at time
instant j.

2. PROBLEM FORMULATION

We consider a system described by the following linear
time-invariant I/O model in autoregressive exogenous form

y(k) =

na∑
j=1

Ajy(k − j) +

nb∑
j=1

Bju(k − j), (1)

where na, nb > 0, Aj ∈ Rp×p, Bj ∈ Rp×m, y ∈ Rp

is the system output and u ∈ Rm is the system input.
Additionally, we want (1) to satisfy the following box
constraints

u ≤ u(k) ≤ u

y ≤ y(k) ≤ y.
(2)

The control objective is to steer the measured system
output ym ∈ Rp, i.e. the true system output, to a desired
constant reference r ∈ Rp with zero offset while satisfying
the system constraints (2), which is achieved by the use of
the MPC controller and observer described in the following
sections. Figure 1 shows a block representation of the
controller architecture, that is very common in control
applications.

2.1 Observer formulation

We include an observer in order to estimate steady-state
offsets (or unmeasured constant disturbances), which may

Ref 
Gen MPC System

Observer

Fig. 1. Controller architecture.

arise, for instance, due to model mismatch. We consider
the following augmented model

y(k) =

na∑
j=1

Ajy(k − j) +

nb∑
j=1

Bju(k − j) (3a)

d(k + 1) = d(k) (3b)

ŷm(k) = y(k) + d(k), (3c)

where d ∈ Rp is the disturbance, ŷm ∈ Rp is now
modeling the measured output ym, and where we are
slightly abusing notation by using the same symbols as
in (1). The controller is then designed to steer ŷm(k) to r,
or equivalently, to steer y(k) to r − d(k).

The observer estimates, at each sample time k, the values
of y(k+1|k) to y(k−na+2|k) and the value of d(k+1|k)
based on the augmented model (3) as follows,

e(k) = ym(k)− y(k|k − 1)− d(k|k − 1) (4a)

y(k + 1|k) =
na−1∑
j=0

Ajy(k − j|k − 1)+

nb−1∑
j=0

Bju(k − j) + L1e(k) (4b)

y(k|k) = y(k|k − 1) + L2e(k) (4c)

...

y(k − na + 2|k) = y(k − na + 2|k − 1) + Lna
e(k) (4d)

d(k + 1|k) = d(k|k − 1) + Lde(k), (4e)

where matrices Li ∈ Rp×p for i = 1 . . . na and Ld ∈ Rp×p

are chosen so that the observer is stable (see Proposi-
tion 2), and e ∈ Rp is the estimation error. Note that
the estimation error e(k) (4a) is the difference between
the measured output ym(k) and its estimate

ŷm(k|k − 1)
.
= y(k|k − 1) + d(k|k − 1).

Remark 1. Observer (4) is constructed by taking the
observer from (Maeder et al., 2009), which is built for a
state-space model. Consider the state, input, and output
vectors defined by

x̃(k) =̇ (y(k), y(k − 1), . . . , y(k − na + 1)) ,

ũ(k) =̇ (u(k), u(k − 1), . . . , u(k − nb + 1)) ,

ỹ(k) =̇ y(k),

(5)

respectively. Then, model (1) can be rewritten as the state-
space model x̃(k+1) = Ax̃(k)+Bũ(k), y(k) = Cx̃(k), with

A =




A1 A2 A3 . . . Ana

Ip 0p 0p . . . 0p
0p Ip 0p . . . 0p

0p 0p
. . . 0p 0p

0p . . . . . . Ip 0p



, C = [ Ip 0p . . . 0p ] . (6)
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(Saraf and Bemporad, 2017). Additionally, the cited MPC
approach is extended to get offset-free control by adding
an observer (Pannocchia et al., 2015). The MPC opti-
mization problem is posed as a bounded-variable least-
squares (BVLS) problem, which is solved on line using
the primal active-set algorithm developed in (Saraf and
Bemporad, 2019). In order to highlight the practical use
of the proposed methods in an industrial setting, the linear
MPC algorithm is implemented in a real industrial PLC
for offset-free control of a nonlinear quadruple water-tank
system in a hardware-in-the-loop (HIL) setting.

The paper is structured as follows. Section 2 describes the
MPC and observer formulations, including the system de-
scription. Furthermore, it describes how offset-free control
is attained. In Section 3 we discuss the implementation
of the controller in the PLC, highlighting the associated
challenges. Section 4 shows the results of the HIL tests,
including the system description, closed-loop trajectories
of reference tracking and disturbance rejection tests, and
memory/computational requirements. Finally, Section 5
provides some final conclusions and future lines of work.

Notation: The component i of a vector x is denoted by xi.
Vector x = (x(1), x(2), . . . , x(N)) is a column vector formed
by the concatenation of vectors x(1) to x(N). Given a

matrixM ∈ Rn×m,M� denotes its transpose. For a vector

x, ‖x‖2 is its Euclidean norm, i.e. ‖x‖2
.
=

√
x�x. Given

two vectors x and y, x ≤ (≥) y denotes component-wise
inequality. An identity matrix of dimension n is denoted
by In. A matrix in Rn×m whose elements are all zero
is denoted by 0n×m, and 0n×n is shortened as 0n. The
expression M � 0 denotes that a square matrix M is
positive definite. Given a signal x, x(k) is its value at
time instant k, and x(k|j) is the estimation of its value at
time instant k based on the knowledge available at time
instant j.

2. PROBLEM FORMULATION

We consider a system described by the following linear
time-invariant I/O model in autoregressive exogenous form

y(k) =

na∑
j=1

Ajy(k − j) +

nb∑
j=1

Bju(k − j), (1)

where na, nb > 0, Aj ∈ Rp×p, Bj ∈ Rp×m, y ∈ Rp

is the system output and u ∈ Rm is the system input.
Additionally, we want (1) to satisfy the following box
constraints

u ≤ u(k) ≤ u

y ≤ y(k) ≤ y.
(2)

The control objective is to steer the measured system
output ym ∈ Rp, i.e. the true system output, to a desired
constant reference r ∈ Rp with zero offset while satisfying
the system constraints (2), which is achieved by the use of
the MPC controller and observer described in the following
sections. Figure 1 shows a block representation of the
controller architecture, that is very common in control
applications.

2.1 Observer formulation

We include an observer in order to estimate steady-state
offsets (or unmeasured constant disturbances), which may

Ref 
Gen MPC System

Observer

Fig. 1. Controller architecture.

arise, for instance, due to model mismatch. We consider
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d(k + 1) = d(k) (3b)

ŷm(k) = y(k) + d(k), (3c)

where d ∈ Rp is the disturbance, ŷm ∈ Rp is now
modeling the measured output ym, and where we are
slightly abusing notation by using the same symbols as
in (1). The controller is then designed to steer ŷm(k) to r,
or equivalently, to steer y(k) to r − d(k).

The observer estimates, at each sample time k, the values
of y(k+1|k) to y(k−na+2|k) and the value of d(k+1|k)
based on the augmented model (3) as follows,

e(k) = ym(k)− y(k|k − 1)− d(k|k − 1) (4a)

y(k + 1|k) =
na−1∑
j=0

Ajy(k − j|k − 1)+

nb−1∑
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Bju(k − j) + L1e(k) (4b)

y(k|k) = y(k|k − 1) + L2e(k) (4c)

...

y(k − na + 2|k) = y(k − na + 2|k − 1) + Lna
e(k) (4d)

d(k + 1|k) = d(k|k − 1) + Lde(k), (4e)

where matrices Li ∈ Rp×p for i = 1 . . . na and Ld ∈ Rp×p

are chosen so that the observer is stable (see Proposi-
tion 2), and e ∈ Rp is the estimation error. Note that
the estimation error e(k) (4a) is the difference between
the measured output ym(k) and its estimate

ŷm(k|k − 1)
.
= y(k|k − 1) + d(k|k − 1).

Remark 1. Observer (4) is constructed by taking the
observer from (Maeder et al., 2009), which is built for a
state-space model. Consider the state, input, and output
vectors defined by

x̃(k) =̇ (y(k), y(k − 1), . . . , y(k − na + 1)) ,

ũ(k) =̇ (u(k), u(k − 1), . . . , u(k − nb + 1)) ,

ỹ(k) =̇ y(k),

(5)

respectively. Then, model (1) can be rewritten as the state-
space model x̃(k+1) = Ax̃(k)+Bũ(k), y(k) = Cx̃(k), with

A =




A1 A2 A3 . . . Ana

Ip 0p 0p . . . 0p
0p Ip 0p . . . 0p

0p 0p
. . . 0p 0p

0p . . . . . . Ip 0p



, C = [ Ip 0p . . . 0p ] . (6)

Observer (4) is then constructed as observer (9) from
(Maeder et al., 2009) but written for the I/O augmented
model (3) instead of using the state-space form (5). As
such, the results from the cited paper apply to (4). Note
that ŷm(k) of (3c) is playing the role of output y(t) of (3)
and (4) in (Maeder et al., 2009).

In order to achieve offset-free control, the following two
conditions must be satisfied (Maeder et al., 2009). First,
the augmented model (3) must be observable. And second,
the observer (4) must be stable. The satisfaction of these
conditions is given by the following two propositions,
obtained from (Maeder et al., 2009) and rewritten for our
formulation and notation.
Proposition 1. The augmented system (3) is observable
if and only if [

A− Ip 0n×p

C Ip

]

has full column rank, where A and C are given by (6).
Proposition 2. The observer (4) is stable if and only if[

A− LxC −Lx

−LdC Ip − Ld

]

is a stabilizing matrix for a discrete LTI state-space model,

where Lx=
[
L�
1 . . . L�

na

]�
, and A and C are given by (6).

Remark 2. The reader may note that the results from
(Maeder et al., 2009) require the system model to be
observable, which we do not formally specify in the above
due to our use of an I/O model instead of a state-space
one. However, note that (6) is clearly observable. As such,
the above results hold.

2.2 MPC formulation

We consider the predicted outputs y(j), j = 1, . . . , Np,
and predicted inputs u(j), j = 0, . . . , Nu − 1, as decision
variables, where Np is the prediction horizon and Nu (with
Nu ≤ Np) is the control horizon, i.e. u(j) = u(Nu − 1),
∀j ≥ Nu.

At each time step k, the control action u(k) is taken as
the optimal value u(0) of the following convex quadratic
optimization problem,

min
u,y

Np∑
j=1

1

2
‖Wy(y(j)− yr)‖22 +

Np∑
j=0

1

2
‖Wu(u(j)− ur)‖22

(7a)

s.t. y(j) = y(k + j|k − 1), ∀j ∈ {−na + 1, . . . , 0} (7b)

y(j) =

na∑
i=1

Aiy(j − i) +

nb∑
i=1

Biu(j − i), (7c)

y ≤ y(j) ≤ y, ∀j ∈ {1, . . . , Np} (7d)

ū ≤ u(j) ≤ u, ∀j ∈ {0, . . . , Nu − 1} (7e)

where Wy � 0 and Wu � 0 are tuning weights and yr
and ur are the steady-state output and input references,
respectively. In order to achieve offset-free control, we set

yr = r − d(k|k − 1),

and ur is usually computed such that (yr, ur) is a steady-
state of (1), or by solving a static optimization problem.

Note that the MPC is initialized with the estimates
y(k|k − 1) to y(k − na + 1|k − 1) provided by the ob-
server (4). Additionally, the reference is corrected by the

current estimate of the disturbance d(k|k − 1). We refer
the reader to (Maeder et al., 2009) and (Pannocchia et al.,
2015) for insights regarding how this approach is able to
eliminate steady-state offsets.

Note that y(j) for j ∈ {−na + 1, . . . , 0} (see Eq. (7b))
and u(j) for j ≥ Nu are not decision variables, but are
included in (7) for simplicity of notation.

2.3 BVLS formulation

Problem (7) can be compactly recast as the following
quadratic programming (QP) problem

min
z

1

2
‖Wz(z− zr)‖22 (8a)

s.t. Gz− g = 0, (8b)

z ≤ z ≤ z, (8c)

where Wz ∈ R(Num+Npp)×(Num+Npp) is a block diagonal
matrix constructed by stacking weights Wy and Wu ac-
cording to the arrangement of the decision variables z;
vector zr contains the steady state references yr and ur

stacked accordingly; vectors z and z impose the constraints
(7d) and (7e); and G, g contain the equality constraints
(7c) and the values of y(k|k − 1) to y(k − na + 1|k − 1).

Problem (8) can be in turn recast as the BVLS problem

min
z

1

2

∥∥∥∥
[

Wz√
ρG

]
z−

[
Wzzr√

ρg

]∥∥∥∥
2

2

(9a)

s.t. z ≤ z ≤ z (9b)

by relaxing the equality constraints (8b) using a quadratic
penalty function weighted by a sufficiently large parameter
ρ > 0 (Saraf, 2019, Section 3.5.3). A detailed discussion on
the benefits of formulation (9) may be referred in (Saraf
and Bemporad, 2017, Section II.B) and (Saraf, 2019).

3. PLC IMPLEMENTATION

This section discusses the implementation of the MPC
controller in a PLC, highlighting the main challenges and
describing how (9) is solved on line.

3.1 Controller implementation

The controller is programmed using the FBD program-
ming language, in which functions are represented as
blocks with a series of inputs and outputs connected to
those of other blocks, fixing a layout that determines
the execution order. The FBD programming language,
along four others, are standardized in norm IEC 61131,
which sets the guidelines and construction requirements
for PLCs.

The controller is composed of the blocks shown in Figure 1
within the dashed line: the MPC, the observer and a
block that computes (yr, ur) as described in Section 2.2.
Additionally, the program contains blocks that interface
the input and output signals of the PLC with those of the
controller. The functions executed by the blocks are coded
using Structured Text, which is an IEC 61131 standardized
sequential programming language that resembles Pascal.

All of the above blocks are programmed on the PLC’s
main task, which is executed cyclically. At the start of
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each cycle there is an overhead due to the execution of
diagnostic processes and to the reading/writing of PLC’s
inputs/output signals. This can limit the application of
the PLC for controlling systems with fast dynamics.

PLCs have limited computational and memory resources,
as is common in many embedded systems. As an example,
the resources of a Schneider ElectricR© Modicon M340 with
a BMXP3420302 processor module, which is a medium-
range industrial PLC that we used for the HIL tests,
are: 256Kbytes of data memory (user declared data),
3840Kbytes of program memory (user defined executable
code, diagnostics, system, etc.), and an execution time of
0.12µs for boolean operations and 1.16µs for floating point
operations. The overhead for the main task is 0.7ms.

3.2 Challenges

The following list summarizes the main challenges of
implementing MPC in real time on a PLC:

(i) Even though the syntax of Structured Text resembles
that of high level programming languages such as
Pascal or C, it does not support the use of external
libraries. It is thus preferable to use a library-free
MPC algorithm.

(ii) Most PLCs work with single-precision arithmetic.
Therefore, the MPC algorithm must be robust against
numerical errors due to limited computing precision.

(iii) It is desirable for the entire source-code of the MPC
algorithm to be a single set of instructions in order
to avoid overhead due to ‘function’ calls, which might
not even be supported by the PLC.

3.3 Optimization solver

In order to efficiently solve problem (9) while addressing
the aforementioned challenges, we propose to use the
BVLS solver of (Saraf and Bemporad, 2019), which is
computationally efficient, library-free, easy to code in
Structured Text, and stable in single precision. Under
the presence of numerical errors, typically encountered
in single-precision, theoretical convergence properties of
active-set methods may not hold. In our implementation
we use anti-cycling procedures in order to detect numerical
errors and to ensure that in such cases the algorithm
terminates in finite iterations to a primal feasible (possibly
suboptimal) solution of (9).

The proposed BVLS algorithm solves a sequence of over-
determined linear systems using recursive thin QR factor-
ization for computational efficiency. Numerical stability for
the recursive factorization method is provided using the
reorthogonalization procedure from (Daniel et al., 1976),
which is performed when numerical cancellation is de-
tected. The reader is referred to (Saraf and Bemporad,
2019; Saraf, 2019) for further details on the solver.

4. HARDWARE-IN-THE-LOOP TESTS

4.1 Quadruple water-tank system

We consider the quadruple water-tank system described
in (Alvarado et al., 2006), which is shown in Figure 2.
This system consists of four water tanks, two of which

Fig. 2. Quadruple water-tank system.

are located above the other two. Water can be directed
to the tanks via two separate pumps, each one of which
feeds water into one of the upper tanks and one of the
lower ones as shown in the figure. The nonlinear system
dynamics are described by the following set of ordinary
differential equations

At
dH1

dt
= −a1

√
2gH1 + a3

√
2gH3 + γ1

Q1

3600
(10a)

At
dH2

dt
= −a2

√
2gH2 + a4

√
2gH4 + γ2

Q2

3600
(10b)

At
dH3

dt
= −a3

√
2gH3 + (1− γ2)

Q2

3600
(10c)

At
dH4

dt
= −a4

√
2gH4 + (1− γ1)

Q1

3600
, (10d)

where Hi[m] is the height of water tank i, Qi[m
2/h] is

the water flow rate of pump i and g = 9.81[m/s2]. The
parameters of the system are At = 0.03, a1 = 1.3104·10−4,
a2 = 1.5074 · 10−4, a3 = 9.2673 · 10−5, a4 = 8.8164 · 10−5,
γ1 = 0.3, and γ2 = 0.4.

The control objective is to steer the system output y =
(H1, H2) to the desired heights by acting on the input
u = (Q1, Q2). The input and output of the system are
subject to the following constraints

(0, 0) ≤ ui ≤ (3, 2.1)

(0, 0) ≤ yi ≤ (1.2, 1.2).
(11)

We obtain a discrete time-invariant linear I/O model (1)
of the system around the operating point

H0
1 = 0.7175, H0

2 = 0.7852, H0
3 = 0.6594, H0

4 = 0.8950,

Q0
1 = 1.9, Q0

2 = 2.0 (12)

in Matlab by using the System Identification ToolboxTM.
The dataset for identification is obtained by the following
procedure:

1 A pseudorandom input sequence û with a holding
time of 15s is generated around the operating point
input u0 .

= (Q0
1, Q

0
2). The range of the signal is

u0
i − 0.2 ≤ ûi ≤ u0

i + 0.2.
2 Signal un is obtained by adding white noise to û.
3 The system is simulated for the input sequence un

starting at the operating point by numerically inte-
grating (10), providing the output signal ŷ.

4 Signal yn is obtained by adding white noise to ŷ.
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each cycle there is an overhead due to the execution of
diagnostic processes and to the reading/writing of PLC’s
inputs/output signals. This can limit the application of
the PLC for controlling systems with fast dynamics.

PLCs have limited computational and memory resources,
as is common in many embedded systems. As an example,
the resources of a Schneider ElectricR© Modicon M340 with
a BMXP3420302 processor module, which is a medium-
range industrial PLC that we used for the HIL tests,
are: 256Kbytes of data memory (user declared data),
3840Kbytes of program memory (user defined executable
code, diagnostics, system, etc.), and an execution time of
0.12µs for boolean operations and 1.16µs for floating point
operations. The overhead for the main task is 0.7ms.

3.2 Challenges

The following list summarizes the main challenges of
implementing MPC in real time on a PLC:

(i) Even though the syntax of Structured Text resembles
that of high level programming languages such as
Pascal or C, it does not support the use of external
libraries. It is thus preferable to use a library-free
MPC algorithm.

(ii) Most PLCs work with single-precision arithmetic.
Therefore, the MPC algorithm must be robust against
numerical errors due to limited computing precision.

(iii) It is desirable for the entire source-code of the MPC
algorithm to be a single set of instructions in order
to avoid overhead due to ‘function’ calls, which might
not even be supported by the PLC.

3.3 Optimization solver

In order to efficiently solve problem (9) while addressing
the aforementioned challenges, we propose to use the
BVLS solver of (Saraf and Bemporad, 2019), which is
computationally efficient, library-free, easy to code in
Structured Text, and stable in single precision. Under
the presence of numerical errors, typically encountered
in single-precision, theoretical convergence properties of
active-set methods may not hold. In our implementation
we use anti-cycling procedures in order to detect numerical
errors and to ensure that in such cases the algorithm
terminates in finite iterations to a primal feasible (possibly
suboptimal) solution of (9).

The proposed BVLS algorithm solves a sequence of over-
determined linear systems using recursive thin QR factor-
ization for computational efficiency. Numerical stability for
the recursive factorization method is provided using the
reorthogonalization procedure from (Daniel et al., 1976),
which is performed when numerical cancellation is de-
tected. The reader is referred to (Saraf and Bemporad,
2019; Saraf, 2019) for further details on the solver.

4. HARDWARE-IN-THE-LOOP TESTS

4.1 Quadruple water-tank system

We consider the quadruple water-tank system described
in (Alvarado et al., 2006), which is shown in Figure 2.
This system consists of four water tanks, two of which

Fig. 2. Quadruple water-tank system.

are located above the other two. Water can be directed
to the tanks via two separate pumps, each one of which
feeds water into one of the upper tanks and one of the
lower ones as shown in the figure. The nonlinear system
dynamics are described by the following set of ordinary
differential equations

At
dH1

dt
= −a1

√
2gH1 + a3

√
2gH3 + γ1

Q1

3600
(10a)

At
dH2

dt
= −a2

√
2gH2 + a4

√
2gH4 + γ2

Q2

3600
(10b)

At
dH3

dt
= −a3

√
2gH3 + (1− γ2)

Q2

3600
(10c)

At
dH4

dt
= −a4

√
2gH4 + (1− γ1)

Q1

3600
, (10d)

where Hi[m] is the height of water tank i, Qi[m
2/h] is

the water flow rate of pump i and g = 9.81[m/s2]. The
parameters of the system are At = 0.03, a1 = 1.3104·10−4,
a2 = 1.5074 · 10−4, a3 = 9.2673 · 10−5, a4 = 8.8164 · 10−5,
γ1 = 0.3, and γ2 = 0.4.

The control objective is to steer the system output y =
(H1, H2) to the desired heights by acting on the input
u = (Q1, Q2). The input and output of the system are
subject to the following constraints

(0, 0) ≤ ui ≤ (3, 2.1)

(0, 0) ≤ yi ≤ (1.2, 1.2).
(11)

We obtain a discrete time-invariant linear I/O model (1)
of the system around the operating point

H0
1 = 0.7175, H0

2 = 0.7852, H0
3 = 0.6594, H0

4 = 0.8950,

Q0
1 = 1.9, Q0

2 = 2.0 (12)

in Matlab by using the System Identification ToolboxTM.
The dataset for identification is obtained by the following
procedure:

1 A pseudorandom input sequence û with a holding
time of 15s is generated around the operating point
input u0 .

= (Q0
1, Q

0
2). The range of the signal is

u0
i − 0.2 ≤ ûi ≤ u0

i + 0.2.
2 Signal un is obtained by adding white noise to û.
3 The system is simulated for the input sequence un

starting at the operating point by numerically inte-
grating (10), providing the output signal ŷ.

4 Signal yn is obtained by adding white noise to ŷ.

5 An I/O model (1) with a sampling time of 5s is
obtained with the System Identification Toolbox in
Matlab using the input/output sequences û and yn.

This procedure aims at mimicking the data that would be
available in a real industrial setting. The amount of white
noise added to the signals has a magnitude of 0.2% of the
signal value.

We obtain the following I/O model with na = nb = 4,

A1 =

[
0.68391 �0.35285
�0.31309 0.58412

]
A2 =

[
0.34456 �0.09245
�0.08057 0.31709

]

A3 =

[
�0.06323 0.26467
�0.08908 0.30807

]
A4 =

[
0.00723 0.16411
0.45853 �0.23229

]

B1 =

[
0.01374 0.00076
0.00079 0.01816

]
B2 =

[
0.00359 0.00722
0.00533 0.00617

]

B3 =

[
�0.00087 0.00881
0.00631 0.00077

]
B4 =

[
0.00098 0.00419
0.00775 �0.00356.

]
,

and an 84-85% fit to training and validation data for each
output channel.

4.2 Simulation setup

The PLC used is a Modicon M340 from Schneider
ElectricR© equipped with a BMXP3420302 processor mod-
ule, an AMI0410 analog input module, and an AMO0210
analog output module. The input and output modules of
the PLC, which read and write the output and control
input of the system, respectively, are connected to a Na-
tional Instruments USB-6211 data acquisition card, which
is in turn connected to a PC where the quadruple water-
tank system gets simulated in real-time by integrating the
ODEs (10) using Simulink with the QUARCR© software
package. The interface between the user and the PLC
is done by using the PLC’s programming software Unity
Pro XL.

The program described in Section 3.1 is loaded to the PLC,
occupying a total of 35.95Kbytes of data memory (14.04%
of the total available data memory) and 312.53Kbytes of
program memory (8.14% of the total available program
memory). However, we note that an empty project oc-
cupies a total of 23.13Kbytes and 160.56Kbytes of data
and program memory, respectively, due to the storage of
system and diagnostic information. Therefore, the com-
plete MPC setup itself only occupies 12.82Kbytes (5.01%)
of data memory and 151.97Kbytes (3.96%) of program
memory. 1

4.3 Hardware-in-the-loop results

We show the results of two closed-loop tests, one for
reference tracking and one for disturbance rejection. In
each test, the system is initialized at the operating point
(12) and with the operating point control input u0 =
(Q0

1, Q
0
2) being manually applied to it. Then, the PLC is

engaged with the reference r = (H0
1 , H

0
2 ). After some time,

either the reference is changed or a disturbance is added
to the system.

The tuning parameters of the MPC and observer are
Q = 10I4, R = 5I2, Np = 9, Nu = 2, L1 = 0.5I2,

1 Percentages are obtained by taking 1Kbyte = 1024bytes.

Ld = 0.6I2, and Li = 02 for i = 2, 3, 4 – for which
Propositions 1 and 2 are satisfied.

Figures 3 and 4 show the resulting outputs and inputs of
a reference tracking test where the reference r is changed
from r = (H0

1 , H
0
2 ) to r = (0.7754, 0.9). Inputs and outputs

are represented in solid lines and the reference in dashed
lines 2 . As can be seen in the figures, offset-free control
is attained in spite of the nonlinearity of the simulated
process. Additionally, note that the control input Q2 has
reached its upper bound. The maximum computation time
of the controller is 28ms, including an overhead of 9ms.
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Fig. 3. Reference tracking: system output.

0 5 10 15 20 25 30 35 40 45 50

Time (min)

1.9

2

2.1

2.2

2.3

W
a
te

r 
fl
o
w

 (
m

3
/h

)

 Q
1

 Q
2

Fig. 4. Reference tracking: system input.

Figures 5 and 6 show the resulting outputs and inputs
of a disturbance rejection test where tank 1 receives an
instantaneous addition of water, resulting in a sudden
increase of H1. The maximum computation time of the
controller is 23ms, including an overhead of 7ms.
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Fig. 5. Disturbance rejection: system output.

2 The markers are added to help identifying the signals and have no
relation with the sample time.
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Fig. 6. Disturbance rejection: system input.

The median computation time of the controller is 16ms in
both tests, without including the overhead due to other
PLC tasks. We note that the overhead of the PLC may
vary each cycle, ranging from 6 to 9ms.

5. CONCLUSIONS

The memory requirements of the proposed MPC imple-
mentation are well within that of medium-range industrial
PLCs such as the one used for the HIL tests. Furthermore,
the computational requirements are in the order of mil-
liseconds, making the proposed implementation suitable
for the systems typically controlled by PLCs, which rarely
require higher sampling frequencies. The computation
time and memory requirements could both be further im-
proved with the development of a sparse implementation
of the BVLS solver, specific to the structured optimization
problem arising in MPC. Additionally, the implementation
of nonlinear MPC in a PLC is another future line of work.
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