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Abstract

The aim of this paper is to introduce the Flexible Periodic Vehicle Routing Problem with Heterogeneous

Fleet, a variant of the Periodic Vehicle Routing Problem. Flexibility is introduced in service schedules and

delivered quantities, heterogeneity comes from different vehicles capacities and speeds. Three Mixed-Integer

Linear Programming formulations and a matheuristic, based on Kernel Search, are proposed. Computational

tests are made to evaluate the performance of the three formulations and to assess the quality of the solutions

provided by the matheuristic.

Keywords: Kernel Search; Matheuristics; Vehicle Routing; Heterogeneous Fleet.

1. Introduction

In this work we introduce the Heterogeneous Flexible Periodic Vehicle Routing Problem (HFPVRP),

which generalizes the Flexible Periodic Vehicle Routing Problem (FPVRP) [see Archetti et al., 2017] in

the sense that not all the available vehicles have the same characteristics. The effect of this generalization

is twofold. On the one hand, under similar traffic conditions, vehicles of different types travel at possibly

different average speeds, thus incurring different routing costs. On the other hand, the capacity of the vehicles

may vary among different types.

The FPVRP is, in turn, a generalization of the Periodic Vehicle Routing Problem (PVRP) introduced

by Beltrami and Bodin [1974], where the aim is to define a distribution plan to serve a set of customers

with periodic demand over a given planning horizon. In particular, in the PVRP we have potential schedules

for customers, on the basis of the visit frequency, and each customer will be visited at every time period

according to the chosen schedule. The quantity delivered at each customer visit is constant. On the contrary,

the FPVRP imposes no restriction related to the schedule. Each customer is associated with a total demand,
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which has to be served within the time horizon, and a maximum quantity that can be delivered in each

time period. Then, any distribution plan that satisfies these two sets of constraints, together with the

vehicle capacity constraints, defines a feasible schedule. Also, the quantity delivered at each visit is not fixed

in advance and can thus vary from visit to visit. Applications of the FPVRP are related to distribution

problems in which the binding constraints are those related to the total quantity that has to be delivered to

each customer in the planning period and to the maximum quantity that can be delivered in each visit like,

for example, delivery operations for interlibrary loan items [see Francis et al., 2006].

The study of the FPVRP and the HFPVRP goes in the direction of a growing research trend in the routing

literature, namely, relaxing modeling assumptions and allowing more flexible settings than those of classical

routing problems. Two well-known examples are the Split Delivery Vehicle Routing Problem (SDVRP) [see

Archetti and Speranza, 2012], which generalizes the VRP by relaxing the single visit constraint, and the

Maximum-Level policy in Inventory Routing Problems (IRPs), which relaxes the constraints of filling the

inventory level up to capacity at each customer visit [see Archetti et al., 2007]. Indeed, Archetti et al. [2008]

and Archetti and Speranza [2016] show that flexibility can produce remarkable total cost savings in the

SDVRP and in the IRP setting, respectively. Specifically, Archetti and Speranza [2016] study the advantages

of a distribution policy which relaxes constraints related to delivery frequency and fixed delivery quantity in

the IRP, in the same vein as for the FPVRP with respect to the PVRP.

In the current work, we aim at continuing in this research trend by studying a generalization of the

FPVRP that considers a heterogeneous fleet, rather than a homogeneous one. As discussed in Section 2,

the existing literature on routing problems with heterogeneous fleets is much narrower than the one related

to homogeneous fleets. However, many practical applications deal with heterogeneous fleets. For example,

distribution activities may involve different types of vehicles that are deployed according to the characteristics

of the service area (narrow vs. large streets, areas that forbid the access to fuel-engine vehicles, etc.). This

is becoming more and more common, especially in distribution operations in urban areas.

The purpose of this paper is to explore formulations and solution approaches for the HFPVRP that are

tailored to exploit the heterogeneous fleet structure. To this end, we follow two different approaches. First,

we focus on three alternative mixed-integer linear programming (MILP) formulations for the HFPVRP. Even

if these formulations progressively outperform each other, all of them clearly highlight the difficulty of the

HFPVRP, as only very small-size instances can be solved to proven optimality in one hour. Thus the need

for alternative algorithms that provide good quality solutions in shorter computing times becomes evident.

For this reason, we also propose a Kernel Search matheuristic, which combines heuristically driven decisions

with decisions driven by the information obtained from MILP formulations.

The contributions of this paper can be summarized as follows:

� We introduce the heterogeneous FPVRP and provide different mathematical formulations for the prob-

lem.

� We identify the best formulation through computational tests.
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� We propose a solution approach based on the Kernel Search scheme.

� We provide an extensive computational analysis to assess the performance of the algorithm.

The rest of this paper is organized as follows. The relevant literature is overviewed in Section 2. A formal

definition of the problem is provided in Section 3. Three different mathematical formulations are presented

in Section 4, and the Kernel Search algorithm is described in Section 5. Computational experiments and

results are presented and analyzed in Section 6, while conclusions are drawn in Section 7.

2. Literature review

Since the HFPVRP is a generalization of the more classical PVRP, we start by providing a brief overview of

the literature on the PVRP, which was initially introduced by Beltrami and Bodin [1974]. Early mathematical

formulations were proposed in Russell and Igo [1979], and Christofides and Beasley [1984]. The literature

on this problem is extensive, and the interested reader is referred to the survey provided by Campbell and

Wilson [2014].

Successive studies have progressively incorporated some sort of flexibility in the PVRP setting. In partic-

ular, Francis et al. [2006] introduced the PVRP with Service Choice (PVRP-SC) where the frequency of visit

of each customer is not fixed and is, instead, one of the decisions of the problem. Still, once the frequency

is determined, the visit schedule follows a defined calendar satisfying the corresponding frequency. Further

studies on the problem are available in Francis and Smilowitz [2006], Francis et al. [2007, 2008]. Note that

the FPVRP differs from the PVRP-SC in that any visit schedule (and frequency) is allowed. In addition,

in the PVRP-SC, once the frequency of visit of a customer is fixed, the quantity delivered in each visit is

constant and determined as the ratio between the total quantity and the number of visits. Instead, in the

FPVRP, the quantity delivered has to be decided and can vary from visit to visit.

As mentioned above, the FPVRP was introduced in Archetti et al. [2017], where the authors theoretically

showed that, by relaxing the constraints of complying with pre-defined visit schedules, it is possible to achieve

remarkable cost savings. Different mathematical formulations were proposed and an extensive computational

study was presented with the aim of showing the actual benefits achieved by introducing the above mentioned

flexibility in the PVRP setting. In Archetti et al. [2018] the same authors proposed a matheuristic algorithm

to solve the problem.

As already stated, the aim of the current work is to study the HFPVRP, i.e., the FPVRP with an hetero-

geneous fleet of vehicles. The literature on routing problems with an heterogeneous fleet is notably narrower

than the one considering an homogeneous fleet. We refer to Koç et al. [2016] for a survey on the VRP with

heterogeneous fleet. To the best of our knowledge, there are just a few contributions related to the PVRP

with heterogeneous fleet, mainly related to real-case studies [see Abreu and Arroyo, 2015, Baptista et al.,

2002, Angelelli and Speranza, 2002].
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3. Problem Definition

In Archetti et al. [2017] the FPVRP is defined as follows. A complete directed graph G = (N,A) is given,

where the set of nodes is N = {0} ∪ C, being C = {1, ..., n} the set of customers, and 0 the depot where

vehicles start and end their routes. A set of time periods P = {1, ..., p} is given, where p is the planning

horizon. Each customer i ∈ C has a deterministic total demand Wi over the whole time horizon. Also, a

maximum quantity wi can be delivered to customer i in each visit. No split deliveries are allowed at any

time period, i.e., each customer can be visited at most once in each time period. A homogeneous fleet of

vehicles M = {1, ...,m} is available, each with a capacity of Q units. Each time an arc (i, j) ∈ A is traversed,

a routing cost cij ≥ 0 is incurred. We assume that costs cij satisfy the triangle inequality. The FPVRP

consists in finding a set of routes that minimize the total routing costs, satisfying the vehicles capacities as

well as the demand and maximum delivery quantity of all customers.

The HFPVRP is a natural extension of the FPVRP that arises when the available fleet of vehicles is

heterogeneous. Let V = {1, ..., v} be the set of vehicle types. Let also Mh = {1, ...,mh} be the set of vehicles

of type h ∈ V , where mh denotes the number of available vehicles of type h and M =
⋃v

h=1 Mh. All vehicles

of the same type are associated with the same capacity and the same routing costs, which are defined as

follows:

1. chij : routing cost for a vehicle of type h ∈ V to traverse arc (i, j).

2. Qh: capacity of a vehicle of type h ∈ V .

For the sake of readability, and abusing notation, in the following we refer to ckij as the routing cost of

vehicle k ∈M , and Qk as the capacity of vehicle k. In the following, we assume that routing costs chij satisfy

the triangle inequality for each vehicle type h. In addition, we define δ+(i) and δ−(i) as the set of arcs leaving

and entering node i, respectively.

4. Mathematical formulations for the HFPVRP

In this section we present three MILP formulations for the HFPVRP. We start with a formulation that is

a natural extension of the one proposed in Archetti et al. [2017] for the homogeneous case, and then propose

two more formulations tailored to the HFPVRP.

4.1. Formulation with vehicle index variables

The first formulation that we consider uses the following decision variables:

� yktij : Binary routing variable that takes the value 1 if arc (i, j) ∈ A is traversed by vehicle k ∈ M at

time period t ∈ P , and 0 otherwise.

� zkti : Binary assignment variable that takes the value 1 if customer i ∈ C is visited by vehicle k ∈M at

time period t ∈ P , and 0 otherwise.

� qkti : Continuous non-negative variable that indicates the quantity delivered to customer i ∈ C by vehicle

k ∈M at time period t ∈ P .
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� ut
i: Continuous non-negative variable that prevents subtours in Miller-Tucker-Zemlin (MTZ)-type con-

straints [Miller et al., 1960].

The first MILP proposed, denoted as Formulation 1 (F1), is:

(F1) min
∑
t∈P

∑
k∈M

∑
(i,j)∈A

ckijy
kt
ij (1)

s.t.: zkt0 ≤ 1 k ∈ M, t ∈ P (2)∑
k∈M

zkti ≤ 1 i ∈ C, t ∈ P (3)

∑
(i,j)∈δ+(i)

ykt
ij = zkti i ∈ N, k ∈ M, t ∈ P (4)

∑
(i,j)∈δ+(i)

ykt
ij =

∑
(j,i)∈δ−(i)

ykt
ji i ∈ N, k ∈ M, t ∈ P (5)

∑
t∈P

∑
k∈M

qkti = Wi i ∈ C (6)

qkti ≤ wiz
kt
i i ∈ C, k ∈ M, t ∈ P (7)∑

i∈C

qkti ≤ Qkzkt0 k ∈ M, t ∈ P (8)

ut
j ≥ ut

i + 1− (n− 1)(1−
∑
k∈M

ykt
ij ) t ∈ P, (i, j) ∈ A, j ̸= 0 (9)

ut
0 = 1 t ∈ P (10)∑

k∈M

ztki ≤ ut
i ≤ (n− 1)

∑
k∈M

ztki i ∈ C, t ∈ P (11)

zkti ≥ 0 i ∈ N, k ∈ M, t ∈ P (12)

ut
i ≥ 0 i ∈ C, t ∈ P (13)

qkti ≥ 0 i ∈ C, k ∈ M, t ∈ P (14)

ykt
ij ∈ {0, 1} (i, j) ∈ A, k ∈ M, t ∈ P (15)

The objective (1) defines the total routing cost. Inequalities (2)-(3) establish that, at each time period,

each vehicle is used at most once and at most one vehicle serves each customer. Constraints (4) state that,

for every vehicle and time period, one arc must leave every visited node and no arc can leave a non-visited

node, whereas the equalities (5) guarantee flow conservation. Constraints (6) ensure that the total demand

of each customer is satisfied, and inequalities (7) impose that, at any time period, no customer receives a

quantity exceeding its maximum delivery quantity. Constraints (8) guarantee that the capacity of the vehi-

cles is respected. The MTZ-type constraints (9) prevent subtours, and (10)-(11) set suitable bounds for the

variables. Finally, (12)-(15) define the domain of the variables.

Because of constraints (3)-(4), the binary condition on the assignment variables z associated with customers

i ∈ C can be relaxed to continuous non-negative, as these variables will take binary values due to the binary

nature of the y variables. Still, for the index i = 0 corresponding to the depot, we have to impose constraint

(2), since the depot is not affected by constraints (3), which are not valid for i = 0 (they would imply that

at most one vehicle can be used at each time period).
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Several variations of F1 or alternative formulations can be derived. Below we present two of them, which

outperformed other alternatives that we tested in preliminary experiments.

4.2. Formulation with aggregated assignment and quantity variables

The formulation in this section has two main differences with respect to F1. On the one hand, it uses

aggregated assignment and quantity variables over all vehicles to identify the customers that are served

at each time period and the quantities delivered. On the other hand, subtours are prevented using load

variables associated with the traversed arcs. The formulation uses the same y and u variables as in F1, plus

the following ones:

� z̃ti : binary variable that takes the value 1 if customer i ∈ C is visited at time period t ∈ T , and 0

otherwise.

� q̃ti : continuous non-negative variable determining the quantity delivered to customer i ∈ C at time

period t ∈ T .

� ltij : continuous non-negative variable that indicates the load of the vehicle when traversing arc (i, j) ∈ A

at time period t ∈ P . The definition of these variables implicitly takes into account that at each time

period at most one vehicle will traverse each arc.

The reader may note the relation between some of these new variables and those used in F1: z̃ti =
∑

k∈M zkti

and q̃ti =
∑

k∈M qkti .

The second formulation we propose (F2) is:

(F2) min
∑
t∈P

∑
k∈M

∑
(i,j)∈A

ckijy
kt
ij (16)

s.t.:
∑

(0,j)∈δ+(0)

ykt
0j ≤ 1 k ∈ M, t ∈ P (17)

∑
k∈M

∑
(i,j)∈δ+(i)

ykt
ij = z̃ti i ∈ C, t ∈ P (18)

∑
(i,j)∈δ+(i)

ykt
ij =

∑
(j,i)∈δ−(i)

ykt
ji i ∈ N, k ∈ M, t ∈ P (19)

∑
t∈P

q̃ti = Wi i ∈ C (20)

q̃ti ≤ wiz̃
t
i i ∈ C, t ∈ P (21)

ltij ≤
∑
k∈M

Qkykt
ij (i, j) ∈ A, t ∈ P (22)

∑
(i,j)∈δ+(i)

ltij =
∑

(j,i)∈δ−(i)

ltji − q̃ti i ∈ C, t ∈ P (23)

ut
j ≥ ut

i + 1− (n− 1)(1−
∑
k∈M

ykt
ij ) i ∈ C, j ∈ C, t ∈ P (24)

ut
0 = 1 t ∈ P (25)
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z̃ti ≤ ut
i ≤ (n− 1)z̃ti i ∈ C, t ∈ P (26)

ut
i ≥ 0 i ∈ C, t ∈ P (27)

q̃ti ≥ 0 i ∈ C, t ∈ P (28)

0 ≤ z̃ti ≤ 1 i ∈ N, t ∈ P (29)

ltij ≥ 0 (i, j) ∈ A, t ∈ P (30)

ykt
ij ∈ {0, 1} (i, j) ∈ A, t ∈ P (31)

While constraints analogous to (3) are no longer needed, since they are imposed by the rationale of the

aggregated z̃ variables, constraints (17), (18)-(19) and (20)-(21) play now a similar role to the F1 constraints

(2), (4)-(5) and (6)-(7), respectively. The capacity constraints on the vehicles are now imposed using the

load variables through inequalities (22). Load variables are also used in the load balance constraints (23),

which regulate the load of the vehicles when traversing the arcs, and are now used to prevent subtours.

Indeed, constraints (24)-(27) are no longer needed, although we keep them in the formulation with the only

purpose of improving the bound and speeding up the process of optimally solving the instances. Note that

(29) relaxes variables z̃, analogously as in formulation F1.

4.3. Formulation with aggregated routing variables

In the formulation that we introduce in this section we keep the aggregated z̃ and q̃ variables as well as the

vehicle load variables (l) used in F2. However we use different routing variables, which are now aggregated

over all the vehicles of the same type. The rationale behind this aggregation is that, at each time period, at

most one vehicle of each type will visit each customer due to the assumptions that the graph is complete and

that the triangle inequality holds. In principle, it could be possible that some arc be traversed by more than

one vehicle of the same type at some time period. However, the triangle inequality assumption on the routing

costs together with the assumption that the graph is complete, allow us to avoid such a case by applying

shortcuts.

In particular, we introduce the following set of decision variables:

� ỹhtij : Binary routing variable that takes the value 1 if and only if arc (i, j) ∈ A is traversed by a vehicle

of type h ∈ V at time period t ∈ P . Note the relation with the variables used in formulations F1 and

F2: ỹhtij =
∑

k∈Mh
yktij .

The resulting formulation (F3) is:
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(F3) min
∑
t∈P

∑
h∈V

∑
(i,j)∈A

chij ỹ
ht
ij (32)

s.t.:
∑

(0,j)∈δ+(0)

ỹht0j ≤ mh h ∈ V, t ∈ P (33)

∑
h∈V

∑
(i,j)∈δ+(i)

ỹhtij = z̃ti i ∈ C, t ∈ P (34)

∑
(i,j)∈δ+(i)

ỹhtij =
∑

(j,i)∈δ−(i)

ỹhtji i ∈ N,h ∈ V, t ∈ P (35)

q̃ti ≤ wiz
t
i i ∈ C, t ∈ P (36)∑

t∈P

q̃ti = Wi i ∈ C (37)

∑
(i,j)∈δ+(i)

ltij =
∑

(j,i)∈δ−(i)

ltji − q̃ti i ∈ C, t ∈ P (38)

ltij ≤
∑
h∈V

Qhỹhtij (i, j) ∈ A, t ∈ P (39)

ut
j ≥ ut

i + 1− (n− 1)(1−
∑
h∈V

ỹhtij ) i ∈ C, j ∈ C, t ∈ P (40)

ut
0 = 1 t ∈ P (41)

z̃ti ≤ ut
i ≤ (n− 1)z̃ti i ∈ C, t ∈ P (42)

ut
i ≥ 0 i ∈ C, t ∈ P (43)

q̃ti ≥ 0 i ∈ C, t ∈ P (44)

0 ≤ z̃ti ≤ 1 i ∈ N, t ∈ P (45)

ltij ≥ 0 (i, j) ∈ A, t ∈ P (46)

ỹhtij ∈ {0, 1} (i, j) ∈ A, h ∈ V (47)

Constraints (33) impose that, at each time period, no more than mh vehicles of type h ∈ V leave the

depot, and constraints (34)-(35) are analogous to (18)-(19). The remaining sets of constraints are the same

as in F2, except for the MTZ constraints (40), which are now expressed in terms of the new routing variables

ỹ.

5. A Kernel Search algorithm for the HFPVRP

The Kernel Search (KS) algorithm was proposed for the first time in Angelelli et al. [2010] for the

multi-dimensional knapsack problem. Starting from this pioneering paper, different applications to other

combinatorial optimization problems have been proposed (Angelelli et al. [2012], Guastaroba and Speranza

[2014], Filippi et al. [2016], Carvalho and Nascimento [2018], Archetti et al. [2021]). KS embeds mathematical

programming in a heuristic framework to obtain good quality solutions efficiently. The main idea is to split

a whole set of integer/binary decision variables into several subsets called kernel and buckets and, in an

iterative process, to solve a series of restricted MILPs (RMILPs) considering only the variables in the kernel
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and one bucket at a time, fixing to zero the remaining ones. The kernel is composed of the most promising

variables, those that are more likely to be selected in a good solution. On the other hand, the buckets define

a partition of the remaining variables sorted from the most promising to the least promising according to

certain criteria. Each bucket is therefore a subset of variables which are not in the kernel.

5.1. Kernel Search for the HFPVRP

The scheme of the proposed KS for the HFPVRP, called KSHFP from now on, is shown in Algorithm 1.

The input for the algorithm consists of the original set of routing variables y and the bucket size LB . Two

main phases are considered: the initialization phase and the improvement phase. In the first one (lines 1-2),

a heuristic algorithm (H) is run to create an initial solution and to gather information about promising arc

variables. The best solution found by H (denoted by sUB) is used as a part of the initial kernel K, and the

optimal value of such solution (denoted as zUB) is considered to compute a cut-off value CutOff = zUB − ϵ,

where ϵ is a very small number. This CutOff is used to speed up the solver by discarding all the solutions

whose objective value is greater than it. The remaining arc variables are obtained from a set of matrices, one

per time period t ∈ P , where each element (i, j) of a matrix is associated with arc (i, j) ∈ A. These matrices

are built when running H (see details in Section 5.1.1), and their entries indicate the number of times arc

(i, j) ∈ A is traversed at time period t ∈ P in the solutions found by H. The matrices are used to populate

the initial kernel and to create a bucket list B, where arc variables are arranged by non-increasing values of

the number of visits in the matrices. Note that B is a list, each of its elements being a bucket. At the end

of the initialization, the original MILP is solved restricted to the variables in K.

At each iteration of the Improvement phase (lines 4-17), a bucket Bi ∈ B of size LB is selected. Then,

the corresponding RMILP is solved by considering only the subset of variables in K∪Bi. If a better solution

s is found (note that any feasible solution improves the incumbent because of the cut-off value), the current

kernel K, the best solution found sUB , and the zUB and CutOff values are updated. The MILP that we

solve at each iteration of the algorithm is formulation (F3) described in Section 4.3, as it provides the best

trade-off between solution quality and computing time (see the experiments section), among the formulations

we tested.

The KSHFP stops when a maximum number of buckets Nb is analysed or a maximum time limit is

reached. We describe with more detail the main components of the initialization and improvement phases in

the following sections.
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Algorithm 1 The KSHFP algorithm.

Input: y: Original set of arc variables, LB : Bucket size.

▷ Phase 1: Initialization

1: (sUB , zUB , K, B) ← Initialization()

2: (sUB , zUB)← MILP(K)

3: CutOff = zUB − ϵ

4: Nb =
⌈

|B|
LB

⌉
▷ Phase 2: Improvement

5: ℓ = 1, B1 = ∅.

6: while ℓ ≤ Nb and time limit is not reached do

7: Construct Bℓ from the bucket list B.

8: (s, z)← RMILP(K ∪Bℓ, CutOff)

9: if z < zUB then

10: K ← K ∪ {s}

11: sUB ← s

12: zUB ← z

13: CutOff = zUB − ϵ

14: end if

15: B ← B \Bℓ

16: ++ℓ.

17: end while

Output:

18: sUB : Best solution found.

19: zUB : Best solution cost.

5.1.1. Initialization phase

The main goal of the Initialization phase (see Algorithm 2) is to identify the most promising arc variables

to be inserted in the kernel and define a criterion to sort the remaining arcs in the bucket lists. This is

done by running a heuristic for the HFPVRP and gathering relevant information on arcs ‘quality’, as an

indicator of their likelihood of being part of high-quality solutions. We use an adaptation of the solution

algorithm proposed in Archetti et al. [2018] for the homogeneous FPVRP. This matheuristic starts from a

feasible solution that is constructed by first determining a distribution plan through the solution of a MILP

(DPMILP), and then applying the Lin-Kernighan (LK) algorithm [Lin and Kernighan, 1973] for constructing

vehicle routes (lines 2-3).

Given that the adaptation to the heterogeneous case of the DPMILP is not straightforward, we now

provide further details.

The initial solution given to the Tabu Search (TS) is generated by solving the DPMILP (line 2) and

then, by solving the routing part using the Lin-Kernighan heuristic (line 3) on the solution provided by

assignment DP. In order to represent an heterogeneous fleet in this step, we proposed the following 3-vehicle
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index formulation.

Data:

� c̃kti : approximate costs of serving customer i ∈ C by vehicle k ∈ M in time period t ∈ P . We define

c̃kti = fk
h , where fk

h is the speed factor of vehicle k of type h ∈ V . Notice that at the very beginning

of the initialization phase it is enough to start with any feasible solution. Considering that we have

several vehicle types, where the main difference is the speed factor fk
h , the initial approximate costs are

set to these values in such a way that vehicles with smaller fk
h represent a “less expensive but slow”

option to serve a given customer, while the vehicles with higher fk
h are considered a “fast but costly”

alternative (in the homogeneous case it is similar to consider all these values equal to one). In the

following iterations of the initialization, these approximate costs are computed according to the best

solution found by the TS as the cheapest insertion cost of visiting a customer in a route performed at

each time period (as it is done in Archetti et al. [2018]).

Variables:

� zkti = 1 if customer i ∈ C is assigned to vehicle k ∈M in time period t ∈ P .

� qkti : quantity delivered to customer i ∈ C by vehicle k ∈M in time t ∈ P .

Then, the DPMILP is as follows:

min
∑
t∈P

∑
k∈M

∑
i∈C

c̃kti zkti (48)

s.t.: qkti ≤ wiz
kt
i i ∈ C, k ∈M, t ∈ P (49)∑

i∈C

qkti ≤ Qkzkt0 k ∈M, t ∈ P (50)

∑
k∈M

zkti ≤ 1 i ∈ C, t ∈ P (51)

∑
t∈P

∑
k∈M

qkti = Wi i ∈ C (52)

qkti ≥ zkti i ∈ C, k ∈M, t ∈ P (53)

zkti ∈ {0, 1} i ∈ N, k ∈M, t ∈ P (54)

qkti ≥ 0 i ∈ C, k ∈M, t ∈ P (55)

The objective function (48) minimizes the total approximate costs for all visited customers during the time

horizon. Constraints (49) and (50) avoid to exceed the maximum customer capacity and the vehicle capacity,

respectively. Constraints (51) state that each customer must be visited at most once at each time period.

Constraints (52) impose to satisfy customer demands. Constraints (53) force to deliver at least one unit of

product if customer i is visited by vehicle k at time t. Constraints (54)-(55) define the domain of variables.

The solution of DPMILP provides the schedule of visits per each vehicle. Then, the LK heuristic is applied

to determine the vehicle routes at each time period. Finally, a feasible solution s with an objective value

f(s), which is considered as the initial incumbent solution sUB with value zUB , is provided.
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Once an initial feasible solution s is obtained, the TS heuristic is applied to possibly improve it (s̃) and to

obtain the matrices with the information related to the most traversed arcs (line 5). If s̃ is better than the in-

cumbent, the best solution is updated (lines 6 - 9). Finally, the objective function of the DPMILP is updated

considering the new solution (line 10). This procedure is iterated until a maximum number of iterations is

met. The initialization phase ends with the creation of the initial kernel K and the bucket list B (lines 12 - 13).

Some additional considerations must be taken into account during the initialization phase:

1. In the TS heuristic, each time a new solution is visited, the information related to the arcs traversed in

this solution is stored. In particular, a set of matrices, one per time period t ∈ P , is built, where entry

(i, j) of the matrix associated with time t reports the number of times arc (i, j) has been traversed at

time t in TS solutions. We note that it may happen that many entries are equal to 0. In this case, the

corresponding arc variables are ordered according to the their closeness to the kernel by computing the

following formula:

closeness(i, j) = cai + cij + cjb, (56)

where (i, j) is the arc with zero value in the matrix while a and b (a ̸= b) are the closest nodes to i and

j belonging to K.

2. At the end of the initialization phase, the best solution found is used in two ways:

� Its objective function value zUB is used as an upper bound to the solutions found by KSHFP.

� The arcs traversed in this solution, A(sUB), are inserted in the kernel, together with the arcs that

connect the nodes visited, N(sUB), to the depot.

The procedure is iterated until a stopping criterion is met. We refer the reader to [Archetti et al., 2018]

for further details on this matheuristic.
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Algorithm 2 Initialization

Input: Instance data

1: while maximum number of iter is not met do ▷ Adapted solution algorithm

2: DP← DPMILP()

3: s← LK(DP)

4: sUB ← s, zUB = f(s)

5: (s̃, VisitMatrix)← TS(s)

6: if f(s̃) < zUB then

7: zUB = f(s̃)

8: sUB ← s̃

9: end if

10: updateObjFunction(s̃)

11: end while

12: K ← A(sUB) ∪ {(i, 0), (0, i) : i ∈ N(sUB)}

13: B ← getBucketList(VisitMatrix)

Output: (sUB , zUB ,K,B) ▷ Best solution, solution cost, kernel, and bucket list

Finally, the resulting ordered bucket list B will be partitioned into Nb buckets of size LB , according to

the values of the variables in the frequency matrices. The original MILP, based on F3 (Section 4.3), is solved

considering only the variables in K and the zUB to compute the cut-off value.

5.1.2. Improvement phase

At each iteration ℓ > 0 of the improvement phase, a bucket Bℓ is merged with the current kernel K and

an RMILP (the original MILP plus some considerations explained in (i)-(iii)) is solved on the merged set of

variables. Depending on the incumbent status at termination, a new constraint is added to the next RMILP,

i.e., to the RMILP solved at iteration ℓ + 1. Let us call sℓ the solution obtained when solving RMILP at

iteration ℓ. Then:

(i) sUB ← sℓ and zUB = f(sℓ), which is used to compute the cut-off value for the next iteration.

(ii) If incumbent sUB is optimal, then any feasible solution sℓ must include at least one arc from the current

bucket ℓ. Thus, we add the constraint: ∑
(a,b,h,t)∈Bℓ

ỹhtab ≥ 1.

(iii) If incumbent sUB is feasible, then any feasible solution sℓ must include at least one arc from Bℓ or

kernel K (not selected in sℓ). Thus, we add the constraint:∑
(a,b,h,t)∈K\{sUB}

ỹhtab +
∑

(a,b,h,t)∈Bl

ỹhtab ≥ 1.
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The reason why we restrict the MILP through the former two constraints is to speed up and diversify

the search during the optimization by forcing the selection of at least one arc different from the ones of the

solution obtained in the current iteration. The arcs selected in the new solution that belong to the current

bucket are included in the kernel, and the remaining arcs are discarded. KSHFP ends when all buckets are

evaluated or when the time limit is reached.

6. Computational experience

Computational experiments were conducted on a Workstation HP Intel(R)-Xeon(R) at 3.5GHz with 64

GB RAM (Win 10 Pro, 64 bits) with a processor with 6 cores, and considering only one thread. The solution

algorithms have been implemented in C++ with ILOG Concert Technology API (CPLEX 12.10).

The reminder of this section is organized as follows. In Section 6.1, we provide a description of the test

instances. Section 6.2 summarizes the results of the tests performed to evaluate the proposed formulations,

and to calibrate the main KSHFP parameters (kernel and buckets size). Finally, Section 6.3 describes the

final performance comparison of the different solution algorithms. All the instances used for the tests as well

as detailed preliminary and final results can be accessed at https://github.com/DianaHuertaM/HFPVRP.git.

For all instances, we measure the quality of the solution produced by a given methodM , SM , by computing

the Relative Percentage Deviation (RPD) of its objective function value, f(SM ), with respect to the objective

function value of the best-known solution, f(S∗), defined as

RPD =
f(SM )− f(S∗)

f(S∗)
× 100%. (57)

6.1. Benchmark instances

We generated two sets of HFVRP instances from the homogeneous FPVRP benchmark instances used in

Archetti et al. [2017, 2018] (see Archetti et al. [2017] for a more detailed explanation about how they were

generated for the homogeneous case):

� Calibration set: set of 30 instances, with n ∈ {10, 30, 50} customers, time horizon of |P | = 5 days,

and vehicle capacity of Q = 300. Customers are clustered in circular areas areas with radius r = 0.50,

which determines the coverage area where customers are randomly located. When r is small (near

zero) customers are clustered in small areas, while when r is close to one customers locations are more

scattered (see Figure 1). There are 10 randomly generated instances for each value of n.

� Evaluation set: set of 90 instances, divided into small and large size. The small set consists of instances

with n ∈ {10, 15, 20}, and radius r ∈ {0.15, 0.30, 0.50}). There are 5 randomly generated instances

for each combination of n and r, having in total 45 instances. The vehicle capacity is set to Q =

{200, 250, 300} if n = {10, 15, 20}, respectively. The large set consists of instances with n ∈ {50, 75, 100}

and r ∈ {0.15, 0.30, 0.50}. There are 5 randomly generated instances for each combination of n and r,

having in total 45 instances. The vehicle capacity is set to Q = 500. In both cases, small and large

instances, the time horizon is |P | = 5 days.
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(b) r = 0.30
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(c) r = 0.50

Figure 1: Three 50-customer instances generated using different values of r.

In both sets:

� C, M and P are the same as in the homogeneous FPVRP instances, as well as all the parameters

related to customers, i.e., Wi and wi, i ∈ C.

� The number of vehicles m depends on capacities and demands, and varies between 4 and 21.

� There are two vehicle types, i.e., V = {1, 2}, defined as follows: If k ≤ m/2, vehicle k is of type h = 1;

If k > m/2, vehicle k is of type h = 2.

� Each vehicle type h ∈ V is associated with a parameter fh, which affects both the capacity of the vehi-

cle, Qh, as well as its routing costs (chij)(i,j)∈A. In particular, Qh = fhQ and chij = fhcij , where Q and

(cij)(i,j)∈A denote the capacity and routing costs of the original homogeneous instance, respectively.

We set f1 = 0.8 and f2 = 1.2.

6.2. Calibration experiments

Preliminary experiments were performed to assess the effectiveness of the formulations presented in Section

4 and to calibrate the parameters of the KSHFP (kernel and bucket size). In all the preliminary experiments

we used the calibration set.

6.2.1. Effectiveness of HFVRP formulations

In order to evaluate the performance of the HFVRP formulations presented in Section 4, all three formu-

lations (F1, F2, and F3) were solved using CPLEX 12.10 with a time limit of 3600 sec.

The results obtained are summarized in Table 1. For each instance size (measured as its number of

customers n), we report the following results for each tested formulation:

� The average Relative Percent Deviation (RPD%).

� The total number of feasible/optimal solutions found (#Feas/#Opt).

� The average MIP gap at termination (MIP-G%).
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The last row of the table reports a summary of the results over all instances tested for which a feasible

solution was found.

For instance sizes n ≤ 30, all three formulations find at least a feasible solution. Still, only F3 produced

a solution of proven optimality within the time limit. Moreover, for the instances with n = 50, only F3

produces a feasible solution in the time limit.

Note also that, for n = 30, F1 and F2 find just one feasible solution, with a very large MIP-G value.

Thus, the results show a clear superiority of F3 as it is the formulation that produces the largest number of

feasible/optimal solutions and yields the smallest values of MIP-G. Note that the number of feasible solutions

found is an important factor to determine the best formulation to use in a heuristic approach, like the KSHFP.

Table 1: Comparison among models F1, F2, and F3

Instance size
F1 F2 F3

RPD% #Feas/#Opt MIP-G% RPD% #Feas/#Opt MIP-G% RPD% #Feas/#Opt MIP-G%

10 0.27 10/0 12.49 0.21 10/0 12.44 0.05 10/1 2.22

30 30.84 1/0 53.23 30.84 1/0 53.23 0.00 5/0 10.09

50 — 0/0 — — 0/0 — 0.00 3/0 20.07

Summary 3.05 11/0 16.19 3.00 11/0 16.15 0.03 18/1 7.38

6.2.2. Calibration of kernel and bucket size

The second preliminary test focuses on finding the best combination for the kernel and bucket sizes used

in the KSHFP. Below we indicate the alternatives that we considered.

� For the kernel size, we first point out that, during the initialization phase (see Section 5.1.1), we insert

in the kernel the arc variables corresponding to the best solution found by the matheuristic plus the

connection of the nodes to the depot. We then add additional variables to the kernel according to the

following three strategies:

– 33%K: correspond to a kernel size of |K| = 33% of the variables with positive values in visit

matrices obtained in the initialization phase. The variables are selected according to a descending

value of the term in the visit matrices.

– 67%K: a kernel size of |K| = 67% of the variables with positive values in visit matrices obtained

in the initialization phase.

– TSK: the initial kernel is composed of the arcs of the best solution of the TS plus the arcs that

connect the visited nodes with the depot at each time period.

� For the bucket size, we test three different levels: LB = {50, 100, 200}. Note that we take the first

L̃B = LB

|V | arcs from the bucket list, and replicate them by the number of vehicle types (|V | = 2).

Therefore, the number of buckets will be Nb =
⌈

|B|
L̃B

⌉
.

By combining these two factors, we have 9 different parameter settings for the KSHFP. Table 2 shows the

average RPD with respect to the best solution found among all options for each instance size. We observe
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that, on average, all kernel size options combined with the bucket size LB = 50 obtain better results than

the other combinations.

Table 2: Comparison among several options of kernel and bucket sizes

Instance size

Average RPD

33%K 67%K TSK

LB = 50 LB = 100 LB = 200 LB = 50 LB = 100 LB = 200 LB = 50 LB = 100 LB = 200

10 0.11% 0.01% 0.07% 0.05% 0.09% 0.09% 0.50% 0.59% 0.22%

30 0.98% 1.27% 1.40% 2.98% 2.60% 2.60% 0.27% 0.71% 0.79%

50 0.94% 1.06% 0.88% 2.24% 2.92% 2.87% 0.66% 0.87% 1.18%

Total average 0.68% 0.78% 0.78% 1.76% 1.87% 1.85% 0.48% 0.73% 0.73%

In general, the best performance is given by the option TSK with LB = 50, which are the values that

will be used to evaluate the final performance of the KSHFP.

Further details on the calibration tests can be consulted at the repository provided above.

6.3. Evaluation experiments

Final tests have been carried out to assess the performance of the KSHFP, as calibrated above. We used

the 90 instances of the evaluation set, with a time limit of 7200 seconds. For these tests we considered three

alternative solution approaches:

(A) MathHFP: the adapted version of the matheuristic proposed by Archetti et al. [2018] (see Section 5.1.1).

(B) MILP-R: Reduced-Formulation F3. Since F3 cannot optimally solve the instances in the evaluation set,

we solve F3 restricted to a smaller subset of arc variables y and l, which are chosen from the results of

MathHFP, in a similar way as explained in Section 5.1.1. In particular, we consider the subset of ỹhtij

variables associated with arcs with a value greater than 0 in the visit matrices. Furthermore, the best

solution obtained by the MathHFP is used as an initial solution (option MIPStart in CPLEX).

(C) KSHFP. The Kernel Search solution algorithm presented in Section 5 with the best parameters values

from the calibration tests, i.e., initial kernel TSK with LB = 50.

It is worth mentioning that (A), with a maximum computing time limited to a fraction of the total computing

time allowed in (A), is used the initialization phase of both (B) and (C).

Table 3 shows the average performance of the three methods, per instance size. For each method, the

Average RPD (ARPD) and the total computing times (Time) are presented. Detailed results per instance

are provided in the Appendix.

We can observe that when instance size is small (up to size 20) method (B) outperforms, on average, the

other methods in terms of solution quality. However, when instance size increases, better gaps are obtained

with (C). In particular, for the largest instances with 100 customers, KSHFP provides an ARPD which is
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almost one third of the one provided in MILP-R. This shows that, exploiting the information provided by

the initialization phase through a kernel scheme, i.e., by a repetitive solution of small-size MILPs, provides

a more scalable and effective solution approach than the one in which a larger MILP, including the entire

information, is solved at once, especially when the instance size grows. Moreover, KSHFP always outperforms

MathHFP. We emphasize MathHFP is an adaptation to the heterogeneous case of a solution algorithm that

was originally designed for the homogeneous case. However, MathHFP proved to be effective in solving the

homogeneous FPVRP (see Archetti et al. [2018]). Thus, this proves that moving to the heterogeneous case

is not straightforward and requires ad-hoc formulations and approaches.

Table 3: Comparison of the performance among solution methods - per instance size

n
(A) MathHFP (B) MILP-R (C) KSHFP

ARPD Time ARPD MIPGap Time ARPD Time

10 6.20% 42.58 0.02% 2.23 6574.03 0.88% 180.69

15 6.35% 106.14 0.07% 5.07 7199.52 0.54% 1031.79

20 5.20% 212.31 0.19% 4.10 7199.61 0.27% 2244.38

50 6.44% 2477.68 3.65% 16.30 7199.59 0.00% 7198.59

75 2.40% 6942.53 2.82% 14.97 7200.19 0.03% 7199.29

100 2.16% 8112.39 4.19% 15.26 7200.30 1.49% 7200.26

Total Avg 4.79% 2982.27 1.82% 9.66 7095.54 0.54% 4175.83

An ANOVA analysis showed significant differences between the performance of the different algorithms

(p-values below 10−7). Focusing on the differences between algorithms (A) and (C), we performed a t-test

with paired data (instances). Again, the differences found are statistically significant: p-value 3 × 10−4 in

the small set in favor of algorithm (A), and p-value 7× 10−15 in the large set in favor of algorithm (B). For

more detailed information about these analyses we refer the reader to the repository provided for the online

material.

7. Conclusions

In this paper we introduced the Heterogeneous Flexible Periodic Vehicle Routing Problem. In this variant

of the Periodic Vehicle Routing Problem, flexibility is introduced in service schedules and delivered quantities,

and heterogeneity comes from different vehicles capacities and speeds. We proposed three mixed-integer

linear programming formulations and developed a matheuristic based on Kernel Search to solve the problem

efficiently.

Numerical results from computational experiments show that the best formulation is the one taking

advantage of the aggregation over different vehicles’ types. In terms of solution algorithms, a comparison

between the KSHFP with two other heuristic approaches has been performed. The two approaches are

obtained by adapting a former heuristic proposed for the homogeneous FPVRP and by solving the best

formulation over a restricted and promising set of variables, respectively. The results show that KSHFP

outperforms the competitors. Thus, this is a further successful application of KS for the solution of a

complex routing problem. In addition, it shows that KS is a powerful solution approach which can beat
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other matheuristic schemes. In fact, the two heuristic approaches we compared the KSHFP with are indeed

matheuristics.
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Appendix A.

Tables A.4-A.5 summarize the results obtained on the evaluation set. For all methods, we present the

best solution found (Sol), the overall computing time (Time), and the RPD with respect to the best-known

solution. Also, for (B) we provide the MIP gap (MIP-G) and for (C) we report the iteration (IterKS) in

which the KSHFP found the best solution. We observe that, on average, the best RPD is obtained by (B)

for the small instances. However, for the large instances the best results are given by (C). (A) outperformed

the other two methods only in very few instances.

Table A.4: Comparison of the performance among solution methods - Small instances

Instance r
(A) MathHFP (B) MILP-R (C) KSHFP

BEST
ARDP

Sol Time Sol MIPGap Time Sol Time IterKS (A) (B) (C)

FPVRP n10k5t5 1

0.15

20994 32.75 19679 2.63 7199.63 19645 442.62 8 19645 6.87% 0.17% 0.00%

FPVRP n10k4t5 2 12835 40.94 12033 6.07 7199.80 12224 133.42 10 12033 6.67% 0.00% 1.59%

FPVRP n10k5t5 3 13165 64.14 12277 1.06 7199.22 12425 204.62 1 12277 7.23% 0.00% 1.21%

FPVRP n10k4t5 4 13528 55.28 12527 3.49 7199.42 12652 124.34 6 12527 7.99% 0.00% 1.00%

FPVRP n10k8t5 5 26882 47.22 26211 0.01 3763.34 26486 65.20 3 26211 2.56% 0.00% 1.05%

FPVRP n15k10t5 1 35853 129.35 34989 0.18 7199.51 34927 216.25 16 34927 2.65% 0.18% 0.00%

FPVRP n15k6t5 2 18247 120.30 16974 5.34 7199.57 17011 984.98 7 16974 7.50% 0.00% 0.22%

FPVRP n15k10t5 3 25906 113.65 24742 3.09 7199.21 24811 3014.37 12 24742 4.70% 0.00% 0.28%

FPVRP n15k8t5 4 31835 90.71 30163 1.66 7199.28 30163 190.59 4 30163 5.54% 0.00% 0.00%

FPVRP n15k7t5 5 25119 132.96 23215 5.59 7199.13 23627 320.42 4 23215 8.20% 0.00% 1.77%

FPVRP n20k10t5 1 24611 225.92 23951 4.98 7199.70 23973 4624.56 19 23951 2.76% 0.00% 0.09%

FPVRP n20k12t5 2 36001 240.72 34405 2.08 7199.64 34383 1956.89 16 34383 4.71% 0.06% 0.00%

FPVRP n20k11t5 3 24186 213.29 23474 3.27 7199.60 23523 1420.80 36 23474 3.03% 0.00% 0.21%

FPVRP n20k10t5 4 35952 238.31 33857 3.84 7199.31 33897 739.13 32 33857 6.19% 0.00% 0.12%

FPVRP n20k10t5 5 30507 198.32 29171 4.06 7199.56 29108 3047.27 27 29108 4.81% 0.22% 0.00%

Avg 129.59 6970.39 1165.70 5.43% 0.04% 0.50%

FPVRP n10k6t5 1

0.3

18865 33.11 18173 2.21 7199.39 18384 192.66 14 18173 3.81% 0.00% 1.16%

FPVRP n10k6t5 2 14539 60.36 13778 3.61 7199.19 14062 150.67 2 13778 5.52% 0.00% 2.06%

FPVRP n10k5t5 3 13411 41.75 13268 0.23 7199.16 13370 215.08 3 13268 1.08% 0.00% 0.77%

FPVRP n10k5t5 4 14015 38.56 13444 1.06 7199.10 13435 509.35 16 13435 4.32% 0.07% 0.00%

FPVRP n10k8t5 5 18935 60.91 18693 1.22 7199.08 18801 104.88 1 18693 1.29% 0.00% 0.58%

FPVRP n15k9t5 1 27696 118.91 27094 2.31 7199.62 27361 342.25 0 27094 2.22% 0.00% 0.99%

FPVRP n15k9t5 2 30711 122.34 29657 0.99 7199.53 29757 368.49 6 29657 3.55% 0.00% 0.34%

FPVRP n15k7t5 3 26860 106.78 25293 1.61 7199.94 25413 249.23 6 25293 6.20% 0.00% 0.47%

FPVRP n15k7t5 4 18909 111.75 17207 5.94 7199.92 17224 559.94 8 17207 9.89% 0.00% 0.10%

FPVRP n15k6t5 5 21412 84.60 20191 5.52 7199.57 20032 6078.81 16 20032 6.89% 0.79% 0.00%

FPVRP n20k10t5 1 29564 193.56 28287 4.03 7200.07 28179 1075.87 22 28179 4.92% 0.38% 0.00%

FPVRP n20k12t5 2 32756 242.37 31561 3.99 7199.50 31651 1812.94 57 31561 3.79% 0.00% 0.29%

FPVRP n20k10t5 3 27782 200.69 25450 5.48 7199.51 25560 7196.49 13 25450 9.16% 0.00% 0.43%

FPVRP n20k13t5 4 44642 218.34 42966 1.02 7199.49 43261 415.05 16 42966 3.90% 0.00% 0.69%

FPVRP n20k12t5 5 37948 180.36 35594 2.21 7199.83 35632 724.24 8 35594 6.61% 0.00% 0.11%

Avg 120.96 7199.53 1333.06 4.88% 0.08% 0.53%

FPVRP n10k4t5 1

0.5

12449 25.36 11093 4.31 7199.14 11448 243.87 16 11093 12.22% 0.00% 3.20%

FPVRP n10k4t5 2 14859 36.09 14186 2.97 7199.68 14186 83.20 2 14186 4.74% 0.00% 0.00%

FPVRP n10k4t5 3 14035 31.60 12857 2.11 7199.04 12929 69.96 5 12857 9.16% 0.00% 0.56%

FPVRP n10k5t5 4 14475 41.19 13751 2.44 7199.19 13751 105.57 1 13751 5.27% 0.00% 0.00%

FPVRP n10k3t5 5 12813 29.50 11213 0.01 1256.09 11216 64.89 8 11213 14.27% 0.00% 0.03%

FPVRP n15k4t5 1 15744 104.24 15072 11.16 7199.07 15238 462.63 7 15072 4.46% 0.00% 1.10%

FPVRP n15k4t5 2 15362 68.41 13668 7.24 7199.69 13965 299.06 7 13668 12.39% 0.00% 2.17%

FPVRP n15k4t5 3 16843 105.44 15428 8.08 7199.88 15427 1588.85 21 15427 9.18% 0.01% 0.00%

FPVRP n15k5t5 4 19105 103.07 17820 7.07 7199.41 17915 460.71 11 17820 7.21% 0.00% 0.53%

FPVRP n15k5t5 5 20090 79.61 19189 10.34 7199.50 19222 340.25 19 19189 4.70% 0.00% 0.17%

FPVRP n20k14t5 1 33010 195.98 31668 1.41 7199.90 32042 316.70 8 31668 4.24% 0.00% 1.18%

FPVRP n20k10t5 2 28936 214.71 28028 4.97 7199.30 27854 965.74 26 27854 3.88% 0.62% 0.00%

FPVRP n20k7t5 3 25693 230.42 23677 7.61 7199.80 23761 836.09 19 23677 8.51% 0.00% 0.35%

FPVRP n20k10t5 4 26127 209.56 24992 9.37 7199.46 24617 7199.20 27 24617 6.13% 1.52% 0.00%

FPVRP n20k11t5 5 38314 182.11 36360 3.27 7199.54 36554 1334.77 22 36360 5.37% 0.00% 0.53%

Avg 110.49 6803.25 958.10 7.45% 0.14% 0.66%

Total Avg 120.35 6991.06 1152.29 5.92% 0.09% 0.56%
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Table A.5: Comparison of the performance among solution methods - Large instances

Instance r
(A) MathHFP (B) MILP-R (C) KSHFP

BEST
ARDP

Sol Time Sol MIPGap Time BestSol Time IterKS (A) (B) (C)

FPVRP n50k9t5 1

0.15

41025 2001.19 38717 9.66 7199.21 38350 7193.90 24 38350 6.98% 0.96% 0.00%

FPVRP n50k7t5 2 35893 5186.09 33061 10.20 7199.39 32209 7199.65 30 32209 11.44% 2.65% 0.00%

FPVRP n50k8t5 3 34348 1461.10 32312 13.23 7199.43 31677 7200.00 28 31677 8.43% 2.00% 0.00%

FPVRP n50k8t5 4 30685 1418.58 29238 12.38 7199.71 29110 7199.30 14 29110 5.41% 0.44% 0.00%

FPVRP n50k10t5 5 34853 1685.13 33500 9.95 7199.99 32795 7199.79 18 32795 6.28% 2.15% 0.00%

FPVRP n75k15t5 1 57211 4716.41 55307 8.15 7200.17 55539 7200.17 26 55307 3.44% 0.00% 0.42%

FPVRP n75k14t5 2 65060 6537.57 66145 11.59 7200.20 64371 7200.01 19 64371 1.07% 2.76% 0.00%

FPVRP n75k16t5 3 67618 6271.21 67682 8.55 7200.33 66929 7200.02 21 66929 1.03% 1.13% 0.00%

FPVRP n75k17t5 4 68878 6559.63 69374 8.43 7200.20 68495 7197.08 26 68495 0.56% 1.28% 0.00%

FPVRP n75k16t5 5 59640 6243.66 58132 10.40 7200.55 57188 7199.38 45 57188 4.29% 1.65% 0.00%

FPVRP n100k17t5 1 71082 8567.81 71983 13.80 7200.49 71249 7200.54 4 71082 0.00% 1.27% 0.23%

FPVRP n100k18t5 2 82172 8782.87 85758 14.40 7200.00 87301 7200.34 24 82172 0.00% 4.36% 6.24%

FPVRP n100k20t5 3 84355 9509.24 84454 10.03 7200.59 83142 7199.88 0 83142 1.46% 1.58% 0.00%

FPVRP n100k21t5 4 77235 7673.54 77746 10.76 7200.43 76135 7200.58 16 76135 1.44% 2.12% 0.00%

FPVRP n100k18t5 5 95482 8606.43 97320 12.46 7200.06 92779 7199.95 20 92779 2.91% 4.89% 0.00%

Avg 5681.36 7200.05 7199.37 3.65% 1.95% 0.46%

FPVRP n50k11t5 1

0.3

55931 2774.19 55820 16.21 7199.85 53708 7199.61 28 53708 4.14% 3.93% 0.00%

FPVRP n50k10t5 2 46748 2020.69 46090 18.36 7199.34 43743 7191.26 36 43743 6.87% 5.37% 0.00%

FPVRP n50k10t5 3 45543 2650.07 44850 16.15 7199.50 43363 7197.27 25 43363 5.03% 3.43% 0.00%

FPVRP n50k9t5 4 44823 2718.34 44194 20.09 7199.81 41529 7200.06 34 41529 7.93% 6.42% 0.00%

FPVRP n50k9t5 5 48867 3374.8 48582 21.66 7199.32 46460 7199.54 21 46460 5.18% 4.57% 0.00%

FPVRP n75k14t5 1 72897 8386.44 73383 142.589 7199.94 71779 7199.89 21 71779 1.56% 2.23% 0.00%

FPVRP n75k15t5 2 78519 7828.66 78867 148.121 7199.95 76739 7200.32 25 76739 2.32% 2.77% 0.00%

FPVRP n75k14t5 3 62756 8275.07 63508 18.554 7200.25 60434 7200.46 0 60434 3.84% 5.09% 0.00%

FPVRP n75k15t5 4 66483 6673.73 67347 15.509 7199.58 64629 7200.15 27 64629 2.87% 4.21% 0.00%

FPVRP n75k13t5 5 69568 6498.55 69811 147.766 7200.05 67924 7200.07 29 67924 2.42% 2.78% 0.00%

FPVRP n100k19t5 1 96829 9018.67 100806 164.347 7200.93 96974 7200.52 0 96829 0.00% 4.11% 0.15%

FPVRP n100k19t5 2 92691 8200.12 92713 156.332 7200.06 90689 7200.61 0 90689 2.21% 2.23% 0.00%

FPVRP n100k19t5 3 94205 7809.12 93618 142.037 7200.47 90350 7200.14 20 90350 4.27% 3.62% 0.00%

FPVRP n100k18t5 4 85856 6675.18 102022 198.768 7200.67 98456 7200.72 11 85856 0.00% 18.83% 14.68%

FPVRP n100k18t5 5 91477 10139 92865 14.012 7200.1 92482 7199.74 28 91477 0.00% 1.52% 1.10%

Avg 6202.84 7199.99 7199.36 4.74% 3.24% 1.06%

FPVRP n50k10t5 1

0.5

47181 2509.49 46933 174.319 7199.53 44987 7200.22 26 44987 4.88% 4.33% 0.00%

FPVRP n50k10t5 2 37819 1869.78 37814 210.177 7199.81 35863 7199.56 36 35863 5.45% 5.44% 0.00%

FPVRP n50k9t5 3 42232 2004.08 41140 198.908 7199.54 38976 7199.62 15 38976 8.35% 5.55% 0.00%

FPVRP n50k9t5 4 41194 2345.76 40506 215.979 7199.75 39244 7199.45 21 39244 4.97% 3.22% 0.00%

FPVRP n50k12t5 5 53885 3145.94 53403 166.085 7199.7 51210 7199.59 31 51210 5.22% 4.28% 0.00%

FPVRP n75k14t5 1 66064 8446.69 65576 193.711 7200.46 63395 7199.39 4 63395 4.21% 3.44% 0.00%

FPVRP n75k17t5 2 75503 8537.11 76188 160.044 7200.45 74016 7200.32 25 74016 2.01% 2.93% 0.00%

FPVRP n75k13t5 3 66507 7487.83 69202 226.235 7200.4 65627 7199.8 21 65627 1.34% 5.45% 0.00%

FPVRP n75k15t5 4 65980 6463.61 66402 184.858 7200.4 64409 7200.15 16 64409 2.44% 3.09% 0.00%

FPVRP n75k13t5 5 58512 5211.71 58968 231.139 7199.88 57004 7192.07 21 57004 2.65% 3.45% 0.00%

FPVRP n100k18t5 1 84682 5545.47 82064 203.023 7200.02 77648 7200.19 0 77648 9.06% 5.69% 0.00%

FPVRP n100k18t5 2 84628 8102.54 85654 182.664 7200.25 82850 7200.59 0 82850 2.15% 3.38% 0.00%

FPVRP n100k18t5 3 87249 7299.19 87717 139.418 7199.93 85479 7200.3 13 85479 2.07% 2.62% 0.00%

FPVRP n100k17t5 4 89738 7873.39 87510 149.605 7200.16 86014 7199.87 23 86014 4.33% 1.74% 0.00%

FPVRP n100k18t5 5 83323 7883.31 85279 197.712 7200.31 81246 7199.89 0 81246 2.56% 4.96% 0.00%

Avg 5648.39 7200.04 7199.40 3.97% 4.11% 0.00%

Total Avg 7200.03 5844.20 7199.38 3.55% 3.67% 0.51%
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