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Abstract

A semiqualitative model is the representation of the world by means of qualitative and quantitative
knowledge. It is motivated by the lack of quantitative knowledge in determined parameters or variables
of the model. We wish to obtain conclusions and generalization derived from these specific models.

In this work, we show as semiqualitative models may be transformed to interval constraint satisfaction
problems(ICSP). The inference process in an ICSP is based in combining constraint propagation and
branch and bound algorithms. The interval domains of the variables are to propagate through the
constraints. A defined operator must exist for every qualitative knowledge. It transforms this knowledge
to an interval constraint. The application of the constraint programming framework to a ICSP allows

the obtaining of conclusions in a automatic way.

Keywords: Qualitative reasoning, Constraint Programming, Consistency techniques.

1 Introduction

Different communities have studied the qua-
litative representation of the world and they
have proposed formalisms to qualitatively rea-
son about these representations. The main mo-
tivations are the lack of quantitative knowledge
and the excess of them that may obtain conclu-
sions and explanations understandable by hu-
mans. Generally the real models are not pure
qualitative or pure quantitative but are nor-
mally composed of quantitative and qualita-
tive knowledge. It is known as semiqualitative
model. All this knowledge must be considered
when these models are studied.

In the eighties, the main concepts of the quali-
tative techniques appeared in the area of Arti-
ficial Intelligence(AI), by means of the publica-

tion of the systems ENVISION [DeKleer84),
QSIM|Kuipers86] and QPT [Forbus84]. Diffe-
rent monographs have been published in the
90s [Weld90],[Faltings92],[Kuipers94),[Pierag5),
[Dague95),(Trave97], that reflect the topics and
the different developed techniques in qualita-
tive reasoning(QR). This qualitative know-
ledge is useful to understand, in a simple way,
some of the properties of the models, there-
fore the simplicity is its principal property. It
have been applied in different tasks, such as su-
pervision and diagnosis of chemical industrial
process[Penalva91][Bousson93][Chang93], ma-
rine motor [Moreno93], the control [Lepetit87),
analysis of dynamical systems [Aracil93]
[Gasca98], software analysis [Xanthakis94] and
conceptual design of structures in engineering
[Bozzo98). In a majority of the approaches to
modeling qualitative reasoning in AI, it is as-
sumed explicitly or implicitly that qualitative
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models are obtained directly from quantitative
models, or at least could be refined to a quan-
titative description of such system.

Different approaches have been proposed to
apply qualitative reasoning to real problems.
They have significant difficulties, since a lot
of importance is given to simple parameters
and the relationships among them are gener-
ally rejected. The first approach the qualita-
tive reasoning is related to the reasoning about
signs, where the qualitative space is +,0,-,7. In
most of the research applications of the qualita-
tive calculus, solving a set of qualitative equa-
tions is viewed as a constraint propagation pro-
blem. Since the possible values for each variable
are limited to previous values, we can always
use trial-and-error methods.The equations are
viewed as a set of constraints that need to be
satisfied, and values are propagated through the
the equations which have only one variable un-
known. If no such equation exist we are obliged
to take possibilities and backtrack in case of a
dead end. This approach produces sometimes
indeterminate conclusions, for example, if A is
positive and B is positive, the sum is easy to
infer that its result is positive but if the sub-
traction is carried out, the result may be nega-
tive, zero or negative. This fact together with
other considerations have given rise to new ap-
proximations to formalise structures and tools
for QR.

1.1 Order of Magnitude Reaso-
ning

In qualitative reasoning, apart from signs of
quantities, also it seems convenient to consider
the absolute or relative order of magnitude of
the quantities, and of course the approximate
numeric values. There are approachs that offers
a midway abstraction level between numerical
methods and qualitative formalisms is the order
magnitude reasoning.

In the absolute orders of magnitude approach
is divided the real line into more equivalence
classes than the relation “eguals sign than”.
Every equivalence class have associated a la-
bel to distinguish between two magnitudes
of the same type. In the bibliography have
been proposed Qualitative Algebras of Order
of Magnitude[Trave89] [Pieradl] and the hybrid

algebra [Williams91] that allows to incorporate
quantitative information in the models.

In the relative order of magnitude, the quali-
tative knowledge is represented by binary rela-
tions expressing orders of magnitude between
two quantities (e.g- ’close to’, ’negligible’,
‘distant of’). The first attempt to formalise
such reasoning appeared with the formal sys-
tem FOG[Raiman88] based on three basic re-
lations and 32 rules. Nevertheless, limitations
of FOG have been pointed out in the forma-
lism O(M) [Mavrovo90], which prevent it from
real use in engineering. In O(M) is considered
seven binary primitive relations between pos-
itive quantities, with interval semantics. In-
ference strategies are based on propagation of
order of magnitude relations through proper-
ties of the relations, solved or unsolved alge-
braic constraints. In O(M) there is the impos-
sibility, at a formal level, to express a gradual
change from one order of magnitude to another,
due to the non overlapping nature of the or-
ders of magnitude, then a new formal system
ROM(K) [Dague93a] is proposed to introduce
a new relation ’distant from’. Determined qua-
litative labels of ROM(K) correspond to the
sets Small and Rough defined previously in a
set-based general framework [Raiman91], that
uses a coarse equilibrium which weighs quanti-
ties with a variable level of precision.

In previous techniques, the two most important
problems are the difficulty to incorporate quan-
titative knowledge when available, and the dif-
ficulty to control the inference process, in or-
der to obtain valid results in the real world.
This last problem can be solved by exten-
ding these models with a tolerance calculus
that provides a measure of accuracy for the in-
ferred results. Such extensions were proposed
first for FOG[Dubois89] and more recently for
ROM(R) [Dagued3b]. These extensions may
cause a spurious deterioration of the results pro-
duced in the reasoning process. In order to
avoid such problem was proposed a refined de-
finition of the negligibility [Dollinger98]. Also
the chance of describing, in a qualitative way,
the natural grading of negligibility allows to ob-
tain a greater precision in particular problems
[Sanchez96a).

The first works about the integration qualita-

tive and quantitative knowledge are carried out
in O(M) and later in ROM(R), but the ob-
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tained results although sound are not in gene-
ral optimal. Later, a method of reasoning that
integrates absolute and relative order of mag-
nitude in qualitative models has been proposed
[Sanchez96b]. The last works are aimed at for-
malizing reasoning when disposes of some real
quantitative data and only disposes of the qua-
litative descriptions of other ones [Sanchez98],
[Gasca98].

Also, order of magnitude reasoning is used in
model simplification and to find an approxi-
mate model that is, in general, tractable and
captures the essence of the problem. It is done
by identifying and removing insignificant terms
and determine the significance of a term by
means of the definition of the order of mag-
nitude of a quantity on a logarithmic scale
and it uses a set of rules to propagate orders
of magnitudes through equations [Nayak92].
Also, model simplification is based in a theory
of asymptotic order of magnitude of functions

[Yip93].

1.2 Interval Constraint Satisfac-
tion Problem

Reasoning on the ranges of values of varia-
bles is another type of reasoning often used
in qualitative systems, where there are inaccu-
rate data or partially defined parameters. The
first formalisms was Quantity Lattice system
[Simmon86], and BOUNDER [Sacks87). Diffe-
rent problems of interval-based qualitative rea-
soning has been analyzed in the bibliography
[Struss90]

The previous reasoning can be considered as
an Interval Constraint Satisfaction Problem
(ICSP). It is a triple (X,D,C) where X
denotes a set of variables, D denotes a set of
domains, D,; denotes the interval containing
all aceptable values for z; and C is the conjunc-
tion of constraints that have to be satisfied.
A natural way of reasoning on the ranges of
values is to propagate the interval domains of
the variables through the constraints. Then
consistency techniques have been applied to
ICSP to detect inconsistent values and delete
them. Different techniques have been proposed
in the bibliography [Davis87], [Hyvonen92],
[Lhomme93], [Lhomme94], [VanHent95a,
[SamHaroud95], [Benhamou96], [VanHent97],

[Marti97], [Jussien98] and [Granvilliers98].
A lot of techniques have a major drawback
since they introduce choice points and they
are exponential complexity. Some efficiency
aspects of the filtering algorithms based in
partial consistency have been mentioned in the
bibliography [Lhomme93] [Collavizza99).

These techniques with search algorithms may
be included in a constraint programming
paradigm to obtain solutions of the ICSP.
In this paradigm, the semiqualitative models
easily can be to express in a declarative way, it
provides substantial expressive power. In this
paper the semiqualitative models are convert
into an interval constraint satisfaction problem
by means of rules of transformation. After the
inference strategies are based on constraint pro-
gramming framework. This framework com-
bines constraint propagation and “branch and
prune” algorithms. It efficiently constrains the
inferences and obtain results which are suitable
for many activities. The automation of the qua-
litative reasoning is accomplished by means of
a program. It express the domains of the qua-
litative constrained variables and all the cons-
traints of the model where some real quantita-
tive data and qualitative descriptions of other
ones are known.

2 Semiqualitative Models

2.1 Elements of representation

A semiqualitative model can be considered as a
constraint network where the elements may be:

e Basic Operators, represent the set of
unary and binary arithmetic operators.
A example of these operators may be:
{+ =% /,...}

e Order of Magnitude Operators (OM ope-
rators),

— Absolute OM operators allow repre-
sents the orden relation the set of
equivalence classes of every qualita-
tive magnitude of the problem. For
example U = large, small, medium,
negative, short, acid, high,...

— Relative OM operators allow repre-
sents the set of equivalence classes
of the relative order of magnitude
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between magnitudes . For example
B = much smaller than, moderately
smaller than, slightly smaller than,
ezactly equal to, much larger than,
negligible, distant from....

e Functions and Envelope Functions, let R
be the set of reals numbers, then F repre-
sents a set of functions f: R — R. It is
defined by f(z) =< e(z), I, I, >, where
I and I are of domain and range of f
respectively. The envelope function F rep-
resents a family of functions between two
functions of one variable fiand f,,

F(z) =< fl(z)’f2(z)’11;12 >
sothat Vz el : fi(z)< fo(z) (1)

where I; and I, stand for the domain and
range of F. Also we permit to express
"piecewise functions” and those ones that
are not continuous in certain points. They
are defined by

fe) =<' @), B8 5, < LS
sothat If (I =9 2
i#j

In the same way this concept may be used
to envelope functions.

® Predicates, P where every p; is a unary
predicate u;(e) of the set of operators U
that is used to stand for the qualitative
knowledge of the expression e, or a bi-
hary predicate b;(e;,es), where b; € B.
It stands for a qualitative relation between
the values of e; and e,.

o Constraints, C' where every c; is a predi-
cate about the variables of the model that
must satisfy all values of the model, and
Tepresents the knowledge of the problem.

* Single Queries, Q where every g; is a query.

It may be a unary query, such as e?, that

indicates the qualitative value of the ex-

pression e and a binary query such as
€1%e3, which indicates the relative order of

magnitude relation between e; and e,.

Compound Queries are boolean expres-

sions of queries.

2.2 Transformation to an ICSP

The rules of transformation of the Previous ele-
ments transform an initial model into a norma-
lized one. If r always denotes a new variable,

the transformations applied to the initial model
are the following:

® Renamed of constants that are intervals:
Every interval constant of model is sub-
stituted by a variable and a constraint.
c(..1,.) = (..., r..),r€rl

e Absolute OM operators: The following
transformation is carried out

u(e)Ee—r:O,rGI., 3)

where I, is the associated interval to the
unary operator u. This transformation is
carried out to express the qualitative know-
ledge that somebody has about the expres-
sion. In the bibliography there are diffe-
rent spaces of qualitative description, one
of them uses two landmarks, denoted as
@ and B [Trave89] and other uses more
landmarks [Agell98]. It depends on every
magnitude of the reasoning problem and
the level of precision to denote a quan-
tity. This association between operators
and intervals is carried out according to
the knowledge of the expert. The absolute
order of magnitude scale for every quan-
tity of the model must be coherent with
the corresponding relative order of magni-
tude scale.

® Relative OM operators: Binary predicates
are related to the division and they have
the following semantics

bleez) =e1—erxr=0,re 1, @

Iy is the interval corresponding to symbol
b. In the bibliography there are different
spaces of relative order of magnitude de-
scription, one of them uses one tolerance
parameter [Mavrovo90] and other uses two
parameters [Dague93b]. This may express
a gradual change from one order of mag-

~ nitude to another and the first may not
express it. The consistency between both
scales to every magnitude dependent of the
choosing of the values of the parameters.

® Rules of transformation of functions and
envelope functions: In accordance with the
definition of these functions the following
transformation is applied

=] f(@-r=0
r=f(z)={ 361],1‘612

9(2) ~r =0
r=g(z) = { 9(@)=g(x) + (1 ~r))g(z)
nel0leeh, rer
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The envelope functions express qualita-
tive aspects, and represent a family of
functions enveloped in an upper function
ﬁ:R-—)Randloweroneg:R—)R
Then, if a = 0 = 9(z) = §(z) and
fa=1= 9(z) = g(z) and any other
value of o belonging to the interval [0,1]
represents a set of values between 9(z)
and g(z). .
The transformation that we carry
out in the piecewise function is:
elz)—r=0
zell,rel}
r=f(z) =
e*(z)-r=0
zell,rerp

® Rules of transformation of single query:
Depending on the type of query, the follo-
wing transformation is carried out

a? = a-r=0
r?
€ —ex*xr=_(
? = 1 2
€1fes —{T?

¢ Rules of transformation of compounds
query: For all the single queries the previ-
Ous transformation is carried out and the
boolean operators are not transformed.

3 Semiqualitative Reaso-

ning
3.1 Interval methods

Interval methods are based on interval analysis
techniques, seem to be the only methods which
are capable of infallibly solving the problem of
Global Solution[KolerS]. However, all interval
methods known to date suffer from a serious
drawback which severely limits their applica-
bility, numerical complexity grows too rapidly
with the dimension n of the system. The main
problem is the function evaluations in interval
form to locate the solutions. Global search a)-
gorithms have been widely used in the cong-
traint Programming framework to solve cons-
traint systems over continuous domains,

3.2 Constraint Programming
Framework for Semiqualita-
tive Reasoning

In this work the field of constraint network is
focused on producing a library of efficient pro-
cedures to solve general constraints over quali-
tative data types(transformed in interval data).
These procedures are defined and implemented
in a constraint programming paradigm. In this
paradigm different bases are proposed with res-
pect to other programming paradigm. These
ones provides the computer with fully deter-

tation. Constraint languages, in contrast, im-
plement a form of declarative Programming in
which only the relations between objects are
specified by the programmer while leaving the
procedural details of how enforce these relationg
up to the constraint-solving system. As are-
sult, constraint languages require significantly
more intelligence in their interpreter, whose op-
eration is thus harder to understand.

In constraint programming paradigm, the re-
presentation of the problem is the input and
a problem solver would produce a solution. It
is known that these problems are NP-hard. In
other words, a general algorithm uses can grow
exponentially but only in the worst case In this
problem solver ig possible that the user may
adapt the algorithm in order to achieve better
running time. It is accomplished by means of
different heuristics,

3.3 Heuristics

We can make the search itself more efficient by
exploiting knowledge about the problem. The
algorithms for constraint satisfaction do not
specify the order in which variables and values
are selected. It is well known that these order-
ings have a dramatic effect on the algorithm’s
efficiency [Dechter94]. That kind of information
is known as strategic knowledge since it deals
with the way the problem should be solved.
Heuristics can be grouped into two categories:

e Static Heuristic, that establish an ordering
before the search starts and that maintains
this ordering throughout all the search,

¢ Dynamic heuristic make selections dynam-
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ically during search, the decisions about
variable and value orderings is decided at
each search node.

A well-known static heuristic is to consider first
the most constrained variables because they are
likely to be more difficult to assign. Inconsis-
tencies are expected to be found at early tree
levels, where recovering from mistakes is less
costly. This has been often used in the biblio-

graphy.

It is strongly believed that dynamic variable or-
derings are more effective than static ones. The
more popular variable ordering heuristic selects
the variable with the minimum number of va-
lues in its current domain. A general criterion
which can be followed in the interactive frame-
work tends to minimize knowledge acquisitions.

In a work about numeric constraint satisfac-
tion problem is proposed [Hyvonen92] to se-
lect a cutset variable z by some criterion
(e.g. select the variable with the largest
width and split z exhaustively into intervals by
some criterion(e.g. bisect X). In another work
[VanHent97] is used a round-robin heuristic to
split the domains of the variables.

In general a constraint programming frame-
work allows the user the introduction of diffe-
rent splitting strategies. The user can choose
static orderings or dynamic orderings, and if
the user said nothing then all the variables of
the constraint network are split and the order-
ing is based on to consider first the most con-
strained variables. The different orderings run
the version of the program noticeably faster or
slower.

3.4 Generation of redundant
constraints

The problem solver in constraint programming
languages as PROLOG IV [Colmerauer96],
CLP(BNR) [Older93), NEWTON [VanHent97]
and systems addressing numerical constraints
are based on local applications of operators re-
ducing the domains of possible values for some
variables, followed by a search phase recursively
applying the operators to selected sub-domains.
A consequence of the local application of these
operators is that the computacional efficiency

can be drastically improved by adding redun-
dancies to the constraint network. The gen-
eration of redundant constraints is based on
the method of Grobner basis [Buchberger85],
that were used in non-linear constraint solv-
ing [Benhamou97b]. The basic idea is to trans-
form a set of polynomials into a certain stan-
dard form. Given a system of multivariate
polynomials equations, its Grobner basis is an
equivalent system, that is, a system that has
the same solutions with the same multiplici-
ties. The Grébner basis are computed by Buch-
berger’s algorithm, that is an algorithm that
generalizes both Gaussian elimination for lin-
ear multivariate equations and the Euclidean
algorithm for univariate polynomial equations.
Using Grobner basis has the following advan-
tages:

e A Grdbner basis has better computational
properties than the original system. In
particular, it is very easy to determine
whether the system is solvable.

e The over-constrained problems with re-
dundant equations, a Grobner basis elimi-
nates the redundant ones.

e In over-constrained and inconsistent net-
work is obtained the constraint 1=0, that
it is obviously inconsistent

e If the under-constrained problems, the new
network give useful information in order to
resolve the problem.

These redundant constraints in the constraint
programming framework improve the perfor-
mance of the search algorithms. Other experi-
ence proposed [Cheng99] the idea of increasing
constraint propagation by redundant modeling.

3.5 Constraint Solver in Conti-
nuous domains

In the constraint programming paradigm to
continuous domains, the Constraint Solver in-
cludes the procedures of propagation of interval
values and application of heuristics. For it is
necessary to have narrowing operators, whose
aim is to help the constraint solving to ob-
tain optimal results. There are single narrow-
ing operators to arithmetic interval extension
and mathematical functions, that are based

80

in previous works [Cleary87] [Hyvonen92] and
complex narrowing operators are based upon
partial consistency filtering techniques. Infor-
mally speaking, a ICSP satisfies a partial con-
sistency property if a relaxation of it is con-
sistent. In the bibliography have been pro-
posed hull consistency [Lee93] [Lhomme93] boz-
consistency [Benhamou94] [VanHent95a], 3B-
consistency [Lhomme93], Bound-Consistency
[VanHent97] [Puget98] and combination of
the box-consistency and hull consistency
[Granvilliers98]. A analysis of these partial con-
sistency have been investigated and a set of
properties have been obtained[Collavizza99].

In this work we proposed to have a library of
these different partial consistency. They are
goals in the constraint programming paradigm.
The propagation of interval values of the va-
riables is accomplished by means of the appli-
cation of the different narrowing operators to
the constraint network until no pruning takes
place. The goal of the function ConstSolver
is to obtain the list of boxes that are possible
solutions of the ICSP. It eliminates most of
the spurious solutions. The function has four
parameters, where the first one represents the
queries, the second one the selected search al-
gorithm, the third one represents the type of
partial consistency used by means of narrowing
operators during the search and the last one
the heuristic of selection of variables. The rules
of transformation applied to a semiqualitative
model generates a program in the constraint
paradigm framework. This program may be:
Program
Parameters
e=10"1,0 =103
Variables
z,Y,2,w
Domains
D 2] D Y D Zy D w
Constraints
Cl 0] 02 ) C3
Solving
ConstSolver(Q, BB, HullC, H;)
endProgram
The execution of this program determines the
boxes that are solutions of the queries. They
are interpreted later to obtain qualitative labels
of the semiqualitative model. The propagation
and branching of boxes takes place until there
is not pruning possible. Also we allows users to
specify the accuracy. The key idea of this al-

gorithm is to split the set of boxes solutions by
a determined face only if it is necessary. If the
result of the application of narrowing operators
obtains neighbor boxes then we carries out the
intelligent join of these to improve the efficiency
of the algorithm. This program depends on two
parameters € and o that determine respectively
the size of canonical interval and the quantity
to consider two boxes which are neighbor.

3.6 Examples

The main utility of qualitative reasoning in
practical applications is most important when
the studied models are more complex. But we
only show a simple example, whose descrip-
tion and steps can the reader easily understand.
In the bibliography [Mavrovo90} has been stu-
died qualitatively the comparison of the order
of magnitude behavior of a continuos tank re-
actor(CSTR) and a plug-flow reactor(PFR), for
the irreversible first-order reaction:

A— B (5)

In these systems whose rate r is given by r =
k[A] where [A] stands for the concentration of
A. In both reactors we define the residence time
as T' = V/F where V stands for the reactor vo-
lume and F is the flowrate through the reac-
tor. If for isothermal operation the reaction’s
time constant is ¢ = 1/k, then we can obtain
constraint involving the concentration of 4 in
the feed(C;) and the concentration of A in the
effluent of the reactor from the mass-balance
for the reactor. It depends on the reactor type.
For a PFR reactor the constraint between is:

In(C1/C2) =T/t (6)
while for a CSTR reactor is:
Cit—Cat—C3T =0 )

The queries in these systems are C/C,? for
different relative order of magnitude relation
T/t. Then the generated program by means
of the rules of transformation and generation of
redundant constraint is:
Program
Parameters
e=10"1,0=10"3
Variables P
C1,C2,T, 1,71, ry KO “7/07.

w4
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Domains
[01 °°]1 [Ov °°]’ [07 OO]’ [07 OO]’ [07 °°]7 [0’ °°]
Constraints
(Clt—Czt—CzT = O,T—t*f‘l = 0,
Cy—Cy*x72 =0,-14+re+mnr:= 0,
01 = Cz = Czrl = 0); (r1 = 1);
(1‘1 > 0, ™ S 0.1); (1‘1 > 01, ™ S 0.9)
(1 >09,r <1.0); (n>1,m<11)
(r, > 1, 11 <10); (r1 > 10)
Solving
ConstSolver(rs, BB, BozC,SH,)
endProgram
where the disjunction of constraints is repre-
sented by means of ”;” and the conjunction is
represented by means of ”,”. In the Const-
Solver function has been chosen as parame-
ters, the variable ro that stands for the rela-
tion Cz/C), the search algorithm branch and
bound, the box-consistency techniques and a
static heuristic to the selection of variables.

The execution of this program produce the
following results The results is similar to the re-

Semiqualualitative Answers

1 PFR CSTR
Tt Cy ~< Cy Cy ~< Cy
T-<..> Cy— < Cy Co— < Cy

T>-t Cz<<..—<Cl Co— < Cy
T>t Cz<<c1 C2<<Cl

Tabla 1: Table of results of the questions of the
models of PFR and CSTR

sults obtained in the bibliography [Mavrovo90]
and show the qualitative behavior of the diffe-
rent reactor. The introduction of quantitative
in the previous model is easy. It corresponds
to interval whose bounds are the quantitative
value.

4 Conclusions

This paper has provided a way to carry out
automatically the semiqualitative reasoning by
means of the transformation of a semiqualita-
tive model to a interval constraint satisfaction
problem. Qualitative knowledge is transformed
to interval labels by means of the defined rules
of transformation. The knowledge qualitative
may be order of magnitude knowledge and diffe-
rent, functions.

The generation of a program allow the appli-
cation of constraint programming framework.
The results obtained are valid in the real world
and they are obtained with an adjusted effi-
ciency. The main improvements of our work
are the automation of the semiqualitative rea-
soning and the possibility of the user to adapt
the process of search of solutions in accordance
different heuristics. In the future, we are going
to apply the previous techniques to more com-
plex real problems. We would like to enrich
the expressivity of the qualitative knowledge,
with purely qualitative functions and to ap-
ply our techniques to semiqualitative analysis of
dynamic system where it is possible obtain the
stability and bifurcations regions. Another pos-
sible field of applications of our methodology
is the semiqualitative simulation of dynamical
systems which must hold a set of constraints.
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