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Abstract

A wn:e(tio' obtfxin behaviour patterns of semiqualitative models of dynamic systems automatically is
prope in this paper. The temporal evolution of these models is stored into a database. This is a time

#ories database. This database may be obtained
#hnulations. In any way, the database contains
for similar patterns in such database is essential

In general, in data mining and rule discovery.

by means of sensor data or by means of semiqualitative
the values of state variables and parameters. Searching
» because it helps in predictions, hypothesis testing and,

A language to carry out queries about the qualitative and temporal properties of this time-series databasge

I8 proposed. The language is also intended to classi
Thiy classification may be carried out accordin,

. fy the different qualitative behaviours of a model.
g with a specific criterion or automatically by means of

clustering algorithms. The semiqualitative behaviour of i

) a system is e; i i
:!llﬂ obtained by eans of machine learning algorithms. g pressed by means of hierarchical
he methodology is applied to a logistics growth model with a delay.

1 Introduction

In real gystems studied in science and engineer-
Ing, 1t is difficult to find mathematical models
that Ipresent them in an appropriate way. The
wul®ling techniques should obviate certain as-
|™0ts Of the system. The simulation of these
models helps us to study the evolution of the
roal syStem. A way to carry out these simu-
Iatlons is described in [11] in depth. However,
I In pot always possible to obtain a mathema-
oAl model of a system. Thus, it is necessary
1) Bpply other techniques in order to carry out
I8 gtudy, A possibility may be placing sensors
In 'h® real system. The analysis of these data
Allown to study the system evolution.

Oy the other hand, knowledge about dynamic

systems may be quantitative, qualitative, and
semiqualitative. When these models are stud-
ied all this knowledge should be taken into ac-
count. Different levels of numeric abstraction
have been considered: purely qualitative [8],
semiqualitative [6] [10], and quantitative.

In this paper, a technique to carry out the
analysis of dynamic systems with qualitative
and quantitative knowledge is proposed. The
idea follows: the gquantitative behaviours of a
real system are stored into a database and tech-
niques of Knowledge Discovery in Databases
(KDD) are applied to study the system. The
way to obtain the behaviours does not matter:
by means of the simulation of a model or by
means of the data sensors.

The term KDD is used to refer to the over-




all process of discovering useful knowledge from
data. The problem of knowledge extraction
from databases involves many steps, ranging
from data manipulation and retrieval to funda-
mental mathematical and statistical inference,
search and reasoning. Although the problem
of extracting knowledge from data (or observa-
tions) is not new, automation in the context of
databases opens up many new unsolved prob-
lems. We are interested in time-series databases
corresponding to the evolution of semiqualita-
tive dynamic systems. Databases theories and
tools provide the necessary infrastructure to
store, access, and manipulate data.

A new way to study dynamic systems that
evolve in the time is proposed merging “data
mining”, “time-series” and “databases engine”.
The proposed perspective tries to discover the
underlying model in the database by means of
a query/classification language. It is also pos-
sible to obtain the behaviour patterns of these
systems automatically by means of clustering
techniques. Clustering is a discovery process in
data mining. These discovered clusters can help
to explain the features of the underlying data
distribution. The semiqualitative behaviour of
a system is expressed by means of hierarchical
rules obtained by means of machine learning al-
gorithms [1]. The methodology is applied to a
logistics growth model with a delay.

2 Our approach

In this paper, we focus on those dynamic sys-
tems where there may be qualitative knowledge
in their parameters, initial conditions and/or
vector field. They constitute the semiquali-
tative differential equations of the system. A
semiqualitative model is represented by means
of

&(#,z,q,t), z(to) =70,  Po(g,z0) (1)

being € IR™ the state variables, ¢ the param-
eters, ¢ the time, & the derivative of the state
variables, ® the interval constraints among
%,%,q,t, and ®o constraints with the initial con-
ditions. These models are described in [11] in
depth.

There is enough literature that studies station-
ary states of dynamic systems, however, the

Figure 1: Our approach.

study of transient states is also necessary. Sta-
tionary and transient states of a semiqualitative
dynamic system may be studied with the pro-
posed approach (figure 1).

We begin with a time-series database. It may
be obtained by means of semiqualitative simu-
lations [11] or by means of data sensors. This
is a trajectory database. A trajectory contains
the values of the parameters and the values of
all state variables from their initial value un-
til their final value. Therefore, every trajectory
stores the values of the transient and the sta-
tionary states of these variables of the system.
Every trajectory is a set of time-series of state
variables.

We propose a language to carry out queries
about the qualitative properties of the set of
trajectories included in the database. A la-
belled database is obtained when these trajec-
tories are classified according to some criteria.
It is also possible to classify the database by
means of an automatically process. In such
case, it is necessary to apply clustering tech-
niques. Qualitative behaviours patterns of the
system may be automatically obtained from
this database by applying rule discovery based
on genetic algorithms [1].

3 Qualitative knowledge

In this paper, we are interested in applying qua-
litative operators to carry out semiqualitative
queries with the language.
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3.1 Unary Qualitative Operators

Every magnitude of the problem with qua-
litative knowledge has its own unary opera-
tors defined. Let U, be the unary opera-
tors for a variable z, i. e, U, = {VN,,
MN,,LN,AP0;,LP,,MP,,VP,}. They de-
note for z its qualitative labels: very negative,
moderately negative, slightly negative, approzi-
mately zero, slightly positive, moderately posi-
ve, and very positive respectively.

The transformation rule for a unary operator is

= e—-r=0
opule) = { rel, @
being r a new generated variable, and I, the
Interval associated with operator op, which is
established in accordance with [13].

3.2 Binary Qualitative Operators

Lot ¢), e2 be two arithmetic expressions. A bi-
nary qualitative operator b(e;, e2) denotes the
fualitative order relationship between e; and
#y. These operators are classified into:

# Operators related to the difference >, =, <.
T'he following transformation rules are applied:

e =e = e —ex=0 (3)
< = eg—e—r=0

e = {re[—oo,()] )
> - 61—€2~1‘=0

it S {rG[O,oo] )

# Operators related to the quotient <, — <, ~
M, » Vo, Ne,.... The applied transformation
fulo s

— e; —ex*xr =0
mienen) = { O ©
belng r a new variable and I, the interval asso-
tlated to ops in accordance with [13].

4 Query/classification lan-
guage

W propose a language to carry out queries and
1o classify with labels a time-series database T'.
Therefore, this language allows us to classify
the behaviour patterns of the system.

Table 1: Queries abstract syntax.

Q: VreCeP P. B
| AreCeP | PAP
| Pv P
| ~P
Pb : Pd Pd : EQ
| Or | CL
| es(OL(IFL,{L}) | =
Or: always F OL : increase
| sometime F | decrease
| always F before F | periodic
Il sometime F until F | length
Il s
F: Fb Fb D€
| F&F | eelI
’ ﬁ | FF | ule)
= b(e
| il | ( 1762)

C: [r € C,automatic]
| [TEC,PA]=>A,C,,1,...
[ s

- 4.1 Abstract Syntax

Let T be the time-series database and let r be
every trajectory in this database. The abstract
syntax of the language is in the table 1.

A query @ on the database T may be a quan-
tifier V,3 applied to T. This query try to de-
termine if all the trajectories (V) or if at least
one (3J) verify the property P. This property
may be formulated by means of the composition
of other properties using the Boolean operators
A,V, - and its result is the application of these
operators among the partial properties.

A basic property P, may be: a predefined
property Py, a temporary operator Or, or a
Boolean expression e, applied to a list operator
OL([F],{L}). This operator returns the list L
of points or intervals of the trajectory which
verify the formula F.

A temporary operator O is used to describe
properties in a concrete time of a trajectory, or
to compare among different times of a trajec-
tory, or to establish a sequence of behaviours of
a trajectory.

A defined property Py is one whose formulation
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is automatic. They are queries commonly used
in dynamic systems. There are two predefined:
EQ, which is verified when the trajectory ends
up in a stable equilibrium; and CL that it is
verified when it ends up in a limit cycle.

A formula F may be composed of other formu-
las combined by means of Boolean operators
&,|,! and its result is the application of these
operators among the partial formulas. A basic
formula F;, may be: a Boolean expression ey, Or
if a numeric expression e belongs to an interval
I, or a unary u or binary b qualitative operator.

Finally, a classification rule C is formulated:
automatically [r € C, automatic], or according
with a specific criterion as a set of basic queries
[r € C,Py] with labels L and possibly other
expressions e.

4.2 Semantics

The semantics of every proposed statement is
translated into a query of the database. A
query V r € C o P is true when all trajecto-
ries 7 € C verifies property P. To prove that
an 3 statement is true, it is necessary to find
at least one trajectory r € T that verifies the

property P.

A property P, which is formulated by means of
the application of Boolean operators A, V, =, is
true when the result of the application of these
operators among the partial properties is true.

The result of the evaluation of a temporary ope-
rator Ot depends on its semantics. For exam-
ple, always F returns a true value if all the va-
lues of r verify F. If this operator is sometime
F returns a true value when at least a value of
r verifies F. The semantic of these temporary
operators are described in accordance with [9].

Let e5(Or ([F},{L})) be a basic property. This
property is true if the Boolean expression ap-
plied to the list operator Op returns a true
value. The operator Of returns the intervals
or points of a trajectory which verify a formula
F. In order to evaluate a formula F, it is nece-
ssary to substitute its variables by their values.
These values are obtained from T'.

Let [r, Pa] = A, ea be a classification rule. A
trajectory r € T is classified with the label A if

Figure 2: Similar qualitative behaviours.

it verifies property Pa. It is also included into
the database for this trajectory the result of
the evaluation of e4;. This process is repeated
with every classification rule. When the classifi-
cation rule is [r € C, automatic}, it is necessary
to apply clustering techniques in order to clas-
sify the database automatically.

5 Behaviour patterns

A behaviour pattern is each one of the possible
behaviours that may appears in a dynamic sys-
tem from its initial state until its final state.
A qualitative model has a group of qualita-
tive behaviours. Each one of them is a be-
haviour pattern. In figure 2 there are three
different quantitative trajectories but they fol-
low the same qualitative pattern: begins with a
value next to zero, then it goes growing until it
reaches a mazimum and next it oscillates un-
til arriving to a positive value where it remains
stable.

Tt is possible, that there are different ways to
reach a stationary state. Therefore, it is nece-
ssary to further out the study with the transient
state to discover these behaviours.

6 Labeling of the database

In order to obtain the patterns, the database
must be labeled. The labeling assigns one or
more labels to every trajectory of the database.
These labels may be assigned by a certain cri-
terion provided by the user or by means of
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AN automatic process. The data normaliza-
tlon 18 necessary to classify automatically the
database. This normalization helps us to as-
#lgn the labels to the trajectories by means of
tlustering algorithms.

The result of the classification is a bidimen-
slonal dynamic array where the rows are the
trajectories and the columns are the param-
m, the labels and optionally other expres-

#.1 Labelling with Specific Crite-
ria

L#t T' be the database for the following classi-
fleation rules: C = {C1,Cs,...}:

C‘ = [T € T7PL1] = Llael
Ca=[r €T, Pr,] = Ly, .. @

belng r the trajectories of T, Py, the i-th prop-
#rty of the classification rule C;, L; labels and
# Bxprossions.

A label L is assigned to trajectory r when it ver-
{fles the property P. In order to apply the be-
lisviour pattern algorithms, it is necessary that
#ll trajectories have at least one label, in other
8¢ It In assigned an empty label.

8.2 Automatic Labelling

e sutomatic labelling classifies the database
aoordance with the different behaviours of
* dynamic system. It is necessary to supply
similarity degree to carry out this classifi-
#8blon, It is a number in the interval [0,1] and
14 funotionality is explained bellow.

L84 I' bo the trajectories database. The idea is
40 flud the different patterns that appear in T.
trajoctory is classified with a label L in
#etordance with its behaviour pattern.

Bah trajectory r € T' contains a temporary se-
~ Husnce for every state variable, therefore, a tra-
Joetory Is a vector of time sequences. It is nece-
By Lo apply a clustering algorithm on these
Hinie nerlon of the database to discover the be-
haviours, These sequences may be previously

normalized. Any clustering algorithm needs to
define a metric among the elements to be clas-
sified.

6.3 NORMALIZATION

Two trajectories with a similar behaviour may
have a distance next to 0. In figure 2, the three
trajectories follow the same qualitative pattern,
but if we apply among them a distance like the
Euclidean, it is concluded that they follow dif-
ferent behaviours. It is necessary to normal-
ize these data to obtain the same pattern for
similar qualitative behaviours. Therefore, these
data will be scaled, translated and weighted.

6.3.1 Scaling

Let r be a trajectory, and let z,, ...,z be the
values stored in the database of the state vari-
ables of r. These values will be scaled to the
interval [0,1]. For every variable z € r, it
is necessary to obtain its maximum and mini-
mum values Ty,qz, Tmin respectively. The value
Ty = Tmaz — Tmin 1S the range of values of z.
Let z; be the value of z at time t. Let z; be
the escalated value. It is obtained by means of
the expression

_ Tt — Tmin ®)

=t
Zr

6.3.2 Translation

The trajectories ra, ...,y are translated to the
first trajectory r; with T3 = ¢ —¢;. Let sbe a
trajectory s € {rs,...,rn}. For each trajectory
s is defined T; = 82 — s1. The expression T; is:
the time between two consecutives maximum
points in oscillate trajectories, in other case it
is the wide time.

The translation ¢, of s is obtained by the follo-
wing expression:

B t182 + tas) — 4t T,
g = ———




6.3.3 Weighting

Once every trajectory has been translated, it is
not possible to compare them directly. There-
fore, it is necessary to interpolate these values.
Let r be a fixed trajectory and let s be the
one that will be interpolated. Let t; be the
value obtained by the translation (9). Let t;,%;
be instant of time being t; = to + kAt and
tj = t; + At, where k is a natural number that
verifies that t, € [t:, t;]. Let y;,y; be the trans-
lated values stored in the database for ¢;,; re-
spectively. We are interested in calculating the
value t,. There are several ways to calculate
it: linear approximations, §-splins, ... In this
paper, the value g, is calculated by means of a
linear approximation as follows:

w=yu+ 2B -6 (10

being At =t; — t;. This is the value of trajec-
tory s that may be compared with the corre-
sponding on the trajectory r.

7 Distance among trajecto-
ries

Let T be a normalized database. Let D be a
distance matrix among the trajectories of T'. It
is a triangular matrix with its main diagonal
equal to zero. This matrix is necessary for the
clustering techniques.

Let 6(r;,r;) be the distance between two trajec-
tories. The trajectories are time series, there-
fore is appropriate to calculate § by means of
the Fourier coefficients ag, a1, .... There are sev-
eral reasons to elect the Fourier coefficients [2]:
the distance is preserved, they are easy to cal-
culate, they concentrate the signal energy in a
few coefficients and there is an algorithm Fast
Fourier Transform (FFT) that calculate this
coefficients efficiently. The features of the orig-
inal trajectory are obtained with a few Fourier
coefficients [2].

Besides the magnitude, there are other features
that are interesting to take into account from a
qualitative perspective: the shape (first deriva-
tive) and the concavity (second derivative). In
this paper, the distance § between two trajecto-
ries 7;,7; is defined as an expression depending

on: Fourier coefficients, weights, variable mag-
nitudes and first and second variable deriva-
tives, as follows:’

Polao: — ao;|’+
pijay; - 01j|2+
oy ) pelaai —axsP+
Brom) =N s [lat) - i (D
pa [ |2:(2) — &;(t)| dt+
ps [ |&:(t) — z;(D)Pdt

being z the state variables, po, p1, ---, Ps Weights,
@y the u-th Fourier coefficient, z;,z; normal-
ized values stored in the database for the trajec-
tories 1, j respectively, and &;,; and £;, &; first
and second derivative of z;,z; values respec-
tively. Weights are introduced to take prece-
dence over the magnitudes, the shapes or the
concavity of the trajectories.

8 Clustering and decision
rules

Clustering is a discovery process in data mining.
It groups a set of data in a away that maximizes
the similarity within clusters and. minimizes the
similarity between two different clusters. These
discovered clusters can help to explain the fea-
tures of the underlying data distribution. In
recent years, a number of clustering algorithms
for databases have been proposed: DBScan [4],
CURE [}, -..

The scalable clustering technique proposed in
this paper puts together a trajectory and a
label. This label determines the behaviour
pattern of the trajectory. First, the distance
matrix D among trajectories may be calculated,
and it is calculated the mean of D. This mean
distance dmean is calculated to know the mag-
nitude of the distance.

Next, a weighted graph G is obtained with the
k-neighbours of every trajectory. The vertex of
G are the trajectories. The arcs are weighted
with the relationship between dmeqn and the
distance between two trajectories. Figure 3
shows examples of graph building: original (a)
and with 1- (b), 2- (c) and 3-(d) neighbours.

Some arcs between neighbours vertices of the
k-neighbours graph are broken using the simi~
larity degree a. The number of clusters depend-
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Figure 3: Graph with k-neighbours.

4

time

Figure 4: Logistics growth model.

ing on this number. Those whose weight w is

loss than
a * dyean

100
Finally, the obtained connected graphs repre-
pont every different behaviour pattern of the
dynamic system. All the trajectories of every
eonnected graph are classified with the same
label.

w < (12)

Once the database has been labelled, the
pattern behaviour of the system is represented
by means of a set of hierarchical decision rules.
These rules are obtained using the program
COGITO (1] to the bidimensional dynamic ar-
ray described in the section 6 of this paper.

§ Application

It I8 very common to find growth processes in
which an initial phase of exponential growth
I followed by another phase of approaching
10 & saturation value asymptotically (figure 4).
These are given the following generic names: lo-
glatie, sigmoidal, and s-shaped processes. This
growth is exhibited by systems for which expo-
nential expansion is truncated by the limitation
of the resources required for this growth.

In literature, these models have been profusely

studied. They abound both in natural pro-
cesses, and in social and socio-technical sys-
tems. They appear in the evolution of bacte-
ria, in mineral extraction, in world population
growth, in economic development, ... Thereisa
bimodal behaviour pattern attractor: A stands
for normal growth, and O for decay. This phe-
nomenon was first modeled by the Belgian so-
ciologist P. F. Verhulst in relation with human
population growth.

Let S be the qualitative model. If we add a
delay in the feedback paths of S, its differential
equations are:

& = z(nr —m),y = delay-(z),
>0, r=h(y),
hl = {(—00, —00), +, (dO’ 0): +, (O$ l)a
+, (dl,eo), 4 (170): —(+°°’ —OO)}

L
i

being n the increasing factor, m the decreas-
ing factor, and h; a qualitative function with a
maximum point at (z1,yo). The initial condi-
tions are:

Tg € [LP,,, MPz],
&y ={ LP.(m),LP.(n),
T € [MP;,VP]

where LP, MP,VP are the qualitative unary
operators slightly positive, moderately positive
and very positive for z, T variables.

We would like to know:

1. if an equilibrium is always reached

2. if there is an equilibrium whose value is not
Zero

3. if all the trajectories with value zero at the
equilibrium are reached without oscillations.
4. To classify the database in accordance with
the behaviours of the system.

Firstly, it is necessary to define the intervals
associated with every qualitative operator:

LP,=[0,1] MP,=[1,3]
MP, =[0.5,4] VP, =[4,10]

The methodology described in [11] is applied to

obtain the trajectory database T'. Applying the

language, the proposed queries are formulated

as follows:

1.VreTeEQ

2.3r € T o (EQ A sometimet ~t; => x % 0)

3.VreT e (EQAsometimet~t; => T ~0A
length(c = 0 A & < 0))

The list of points where £ = 0 and £ < 0 is
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the list with the maximum points. There are
no oscillations when its length is 0.

The answers to the proposed questions were:
1. by = True, all the trajectories of T reach
a stable equilibrium. Therefore, we conclude:
there is no cycle limit.

2. by = T'rue, some trajectories of T reach an
equilibrium whose value is not zero. Therefore,
this is the first behaviour we have obtained. We
know it as recovered equilibrium.

3. b3 = False, there are at least two ways to
reach this equilibrium: with oscillations (this
behaviour is called as retarded catastrophe) and
the other way is without oscillations (that it is
called as decay and eztinction).

We apply to T the described clustering tech-
nique with a similarity degree of @ = 0.1. This
algorithm found the three possible behaviours
patters for this system (figure 5).

The obtained results and the behaviour pa-
tterns are in accordance with others appeared
in the bibliography [3] and [7] where the re-
sults were concluded by means of a mathema-
tical reasoning. This circumstance encourages
us to continue developing our approach.

10 Conclusions and further
work

In this paper, we have presented a way to ob-
tain temporal and semiqualitative behaviour
patterns of dynamic systems with qualitative
and quantitative knowledge. This approach is
based on a transformation process, definition of
a query/classification, language on a quantita-
tive behaviours database, and clustering tech-
niques.

In the future, the query/classification language
must be enriched with operators for compar-
ing trajectories, spatial operators, etc. Dy-
namic systems with constraints and with mul-
tiple scales of time are also one of our future
points of interest.
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