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A B S T R A C T   

We have analyzed the overgrowth problem arising in decelerated growth processes of spherical crystals in the 
frame of classical nucleation and growth theory developed by Kolmogorov, Johnson and Mehl, and Avrami 
(KJMA). To do that, simulations of decelerated growth transformations with a constant nucleation rate have been 
performed, changing the linear growth rate of spherically shaped nuclei from null (instantaneous growth rate) to 
constant (characteristic of interface controlled growth processes). We propose the determination of the actual 
kinetic parameters through the analysis of the inflection point of time evolution of transformed fraction. The 
correlations found between the effective kinetic parameters from direct KJMA analysis and the actual ones make 
it possible obtaining physically meaningful parameters. The proposed analysis has been applied to the nano-
crystallization of amorphous FINEMET-type compositions.   

1. Introduction 

The classical theory of nucleation and growth developed by Kolmo-
gorov [1], Johnson and Mehl [2], and Avrami [3] (KJMA) is widely 
extended to analyze the transformation kinetics of many different solid 
state transformations [4], even though the premises required for the 
applicability of KJMA theory are strict (summarized in the five postu-
lates of Kolmogorov [5]).Briefly, KJMA theory stablishes a statistical 
relationship between the actual transformed fraction, X, and the 
so-called extended transformed fraction, Xext , which corresponds to the 
transformed fraction in the absence of any impingement between the 
different growing nuclei. Using statistical arguments, KJMA theory as-
sumes that the relationship between both magnitudes is: 

dX
dXext

= 1 − X. (1) 

In the early stages of transformation X≪1 and, therefore, X ∼ Xext, 
whereas at the final stages of transformation, despite Xext keeps growing 
beyond 1, X saturates. 

The great advantage of this description is that Xext can be easily 
calculated assuming the laws governing the nucleation and growth 
rates. In general, it can be considered a constant nucleation rate I and a 

power law for the linear growth rate such as dR(t,τ)
dt = G(t − τ)g− 1. In the 

previous expression, R(t, τ) is the radius at time t of a spherical crystal 
nucleated at time τ < t, g the growing exponent, and G a constant of the 
kinetic process. When g = 1, G becomes the constant linear growth rate 
of an interface controlled growth process. When g = 1/2, the growth 
law is characteristic of a diffusion controlled decelerated growth pro-
cess, being G =

̅̅̅̅̅̅
2D

√
, with D the corresponding diffusion coefficient. 

Finally, when g = 0, and thus, G = 0, the growth rate is null and an 
instantaneous growth process is described (the growth is so sudden to 
the final size that crystals appear with their final size and further growth 
is absent). Taking this into account, Xext can be calculated as: 

Xext = [k(t − t0)]
n
, (2)  

where n = 3g + 1 is the Avrami exponent particularized for three 
dimensional growth and constant nucleation rate and t0 is the induction 

time. The frequency factor is k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4πI(G/g)3
/3(g + 1)n

√

for g > 0 or k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πIR3

nuc/3n
√

for g = 0 [4], with Rnuc the radius of the nuclei (which was 
neglected for g > 0). Eq. (2) can be substituted in Eq. (1) and, after 
integration, leads to the well-known KJMA equation: 
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X = 1 − exp{ − [k(t − t0)]
n
}. (3) 

This equation predicts linearity between ln(− ln(1 − X)) and ln(t − t0)
and, consequently, the values of n and k can be easily obtained from its 
slope and its intercept. This simple analysis makes the Avrami plot a 
very attractive way to easily acquire kinetic parameters, leading to its 
extensive use found in the literature (e. g. a search of “Avrami exponent” 
1 in Web of Science platform leads to more than 2500 entries and more 
than 2800 in Scopus). However, KJMA theory is not always directly 
applicable to nucleation and growth based transformations. Particu-
larly, the variation of kinetic parameters along the transformation, as it 
occurs for non-isothermal regimes, has not been taken into account in 
KJMA theory [4]. On the other hand, it has been also shown that KJMA 
theory cannot be directly applied to analyze nanocrystallization pro-
cesses [6], transformation that involves simultaneous processes [7], the 
mechanical amorphization [8] or martensitic transformations [9]. In the 
case of decelerated growth processes, they deviate from KJMA pre-
dictions due to the overgrowth produced by phantom nuclei, which, in 
the frame of extended transformation, are those nuclei statistically 
appearing in an already transformed region and thus contributing to Xext 

but not to X. 
The KJMA theory accounts for the formation of phantom nuclei only 

when the phantom crystal is always within the transformed region [10]. 
However, this is not the case when the linear growth rate decelerates 
with time, as it occurs in diffusion controlled processes. In decelerated 
growth processes, a phantom nucleus formed close enough to the 
boundary of the already transformed region can grow beyond that 
boundary, leading to an overgrowth region that KJMA theory is not able 
to account for (i.e. statistically it would erroneously contribute to X). 

Different authors have afforded the overgrowth problem in order to 
propose a better description of decelerated processes [11]. In particular, 
Tomellini and Fanfoni [12] have mathematically solved the problem 
using a correlation function between nuclei to avoid the formation of 
phantom ones. However, these analyses do not yield the research com-
munity to abandon Avrami plot in benefit of a more correct analysis. 
This is because of the easy and straightforward character of the analysis 
by direct application of KJMA theory, which allows for a fast classifi-
cation of the transformation of interest with respect to its Avrami 
exponent. Once KJMA theory is not valid for a certain transformation, 
Avrami exponent is just an effective value and loses its physical mean-
ingful relationship with nucleation and growth mechanisms. 

In this work, we have analyzed the overgrowth problem character-
istics of the decelerated growth processes in the frame of the KJMA 
theory. Particularly, we have phenomenologically explored the effect of 
overgrowth on the deviation of actual kinetics from KJMA theory 
through different simulations of nucleation and growth processes of 
spherical crystallites with growth exponent g ≤ 1. The predictions of the 
proposed analysis have been compared to experimental results derived 
from isothermal nanocrystallization of amorphous FINEMET alloys. The 
correlations found between the actual kinetic parameters and the 
effective ones supply a practical tool to recover the physical meaning of 
the corresponding kinetic parameters. 

2. Simulations 

Simulations were performed by building up a MatLab script (MatLab 
R2022b, MathWorks) consisting on a cubic space of size L defined with 
periodic boundaries. Time is discretized in iteration steps. In every 
iteration step, a new nucleus with an initial radius R0 is created in a 
random position (I = L− 3 per iteration step). This nucleation position is 
checked whether it is in an already transformed region or not, and 
correspondingly labelled as phantom nucleus or real one. Moreover, all 
the already formed nuclei (independently whether they are phantom or 

not) are allowed to grow further following a power law R(t, τ) = Rnuc +

R0
( t− τ

Δt
)g, only valid for t > τ; t/Δt is the iteration step and τ/Δt is the 

iteration step at which the corresponding crystal was nucleated. 
Therefore, time dimension is explicitly used assigning a time Δt for an 
iteration step. The radius of the nucleus Rnuc ∼ 0 is neglected when g > 0 
and thus when g = 0, R(t, τ) = Rnuc is constant. This leads to an extended 
fraction, which can be analytically calculated as: 

Xext =
4πR3

0

3L3

( t
Δt

)3g+1
. (4) 

In every iteration step we proceed to check both actual transformed 
fraction and the overgrowth one. In order to do so, we check for 100 
random points in the explored volume whether each point is either in an 
already transformed region covered by at least a real crystal (contrib-
uting to X), or it is in a region only covered due to the growth of a 
phantom nuclei (contributing to overgrowth, Xover), or it is in an un-
transformed region. Normalizing the number of points contributing to 
each one to the number of checked points leads to the corresponding 
values of X(t) and Xover(t). In order to obtain statistically significant 
values of X(t) and Xover(t), the simulation was repeated and the average 
over 100-500 curves was taken as the signal to be analyzed. In a single 
simulation we can reduce the noise to signal ratio by increasing the 
number of checked points to estimate the transformed fractions (real 
and overgrowth ones). However, it is worth mentioning that a single 
simulation is not statistically significant (i.e. it should be possible, for a 
particular simulation event, that nuclei appear very close between them 
and leading to fortuitously high overgrowth fraction). Therefore, instead 
of increasing the number of checking points over 100, we found a better 
solution to increase the number of simulated curves (up to 500 was 
taken) to obtain the average values. 

Fig. 1(a) shows the plot of Xover(t) as a function of X(t) for 0 ≤ g ≤ 1. 
As can be seen, overgrowth is null for g = 1 and almost negligible for g ≥

0.5 (< 1 %) but it reaches 13 % in the case of g = 0. Figs. 1(b,c) show, as 
examples, X(t) and the theoretical prediction from KJMA, XKJMA(t), 
along with the addition Xplus(t) = Xover(t)+ X(t). It could be observed 
that XKJMA = Xplus independently of the simulation parameters. The only 
difference is that XKJMA is analytically calculated (see Eq. 3) and thus 
smooth, whereas Xplus, as an experimental result from simulations, is 
noisy. 

Figs. 2(a,b) show the Avrami plot applied to X(t) for g = 0 and g =

0.5 (corresponding X(t) curves are shown in Figs. 1(b,c)). Independently 
of g, Avrami plot applied to Xplus exactly follows KJMA theory, and both 
the slope and the intercept agree with the Avrami exponent, nplus = 1+

3g, and the frequency factor, lnkplus = ln
(

4πR3
0

3L3

)
(as expected from Fig. 1). 

In Fig. 2 we discuss that this does not occur when we study the Avrami 
plot applied to X(t) due to overgrowth of KJMA theory. In fact, when 
Avrami plot is applied to X(t), deviations from linearity appear for g ≥

0.5 (i.e. n ≥ 2.5), although they are not significant, in agreement with 
the reported validity of KJMA theory to describe diffusion controlled 
growth processes despite the overgrowth problem [13,14]. However, in 
strongly impinged growth processes, there is a clear deviation from 
linearity and a double slope behavior is appreciated, as can be observed 
in Fig. 2(a), which is widely described in the literature for experimental 
data of nanocrystallization [15–17]. In order to quantify this mentioned 
double slope behavior in the Avrami plot, we have obtained three values 
of the Avrami exponent: the maximum value, n1, associated with the 
first branch of the curve, i.e., when we use the range 0.1 < X(t) < 0.5 to 
perform the fitting; the minimum value, n2, associated with the second 
branch of the curve, i.e., when we use the range 0.5 < X(t) < 0.9 to 
perform the fitting; and finally, the medium value, nm, associated with 
the whole curve, i.e., when we use the range 0.1 < X(t) < 0.9 to perform 
the fitting (values below 0.1 and above 0.9 are excluded taking into 
account that they can be strongly affected by baseline in experimental 
data). The comparison between the overgrowth corrected nplus and the 

1 Date of search: November 28th 2022. 
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non-corrected nm, is presented in Fig. 2(c), showing that Avrami expo-
nent should be underestimated as nm < nplus but these values asymp-
totically tend to be equal as g approaches 1 and become almost equal at g 
= 0.5. 

To account for a stronger impingement than that considered by 
KJMA theory, some authors proposed a modification of Eq. (1) [18]: 

Fig. 1. Xover(t) as a function of X(t) for 0 ≤ g ≤ 1 (a). Actual transformed 
fraction, X(t), overgrowth, Xover(t), addition Xplus(t) = Xover(t) + X(t), and 
theoretical prediction from KJMA theory, XKJMA(t), for g = 0 (b) and g = 0.5 (c). 
In panel (c) the overgrowth fraction has been increased 10 times for the sake 
of clarity. 

Fig. 2. Avrami plot for two different values of the growing exponent, g = 0 (a) 
and g = 0.5 (b). The horizontal lines indicate values of X(t) = 0.01, 0.1, 0.5,
0.9 and 0.99, and the shaded areas the whole range of 0.1 < X(t) < 0.9 where 
we have performed the three fittings of n1, n2 and nm. Comparison between the 
Avrami exponents given by the KJMA theory, nplus, and the one obtained when 
the overgrowth is considered, nm (c). 
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dX
dXext

= (1 − X)γ
, (5)  

with γ the impingement parameter. In the following, the actual trans-
formed fraction following Eq. (5) will be denoted as Xγ and that obtained 
from Eq. (1) is Xplus. The analytical expression for Xγ as a function of Xext 

is [18]: 

Xext =
1 −

(
1 − Xγ

)1− γ

1 − γ
→Xγ = 1 − [1 − (1 − γ)Xext]

1
1− γ. (6) 

Using Eqs. 5 and 6 we can obtain an analytical expression for the 
theoretical overgrowth depending on γ as Xγ

over = Xplus − Xγ (analogously 
to Xover = Xplus − X). Fig. 3 shows a direct comparison between Xγ

over and 
Xover values as a function of the corresponding transformed fraction X. 
The data displayed correspond to the best fitted γ values of simulated 
Xover curves using different values of g indicated in Fig. 1(a). 

It is worth mentioning that departure from KJMA theory due to 
overgrowth in decelerated processes could be approximately described 
by Eq. (5) only for γ ≤ 1.57. Therefore, kinetic processes described by 
higher values of γ do not respond to classical KJMA premises including 
overgrowth correction in decelerated growth processes. This is, for 
example, the case of Austin-Rickett classical kinetic equation that is 
equivalent to Eq. (5) with γ = 2 [19], or Tagami and Tanaka equation 
with γ = 1 + η when η > 0.57 [20]. Fig. 4 shows the correlation of γ 
parameter and the theoretical nplus = 1 + 3g value after fitting simulated 
X curves to Xγ for the range 0.1 < X < 0.9. Therefore, one possible 
analysis to acquire the physical meaningful Avrami exponent could be, 
firstly, to fit experimental X data to Xγ and, secondly, from the obtained γ 
value and the correlation shown in Fig. 4, actual n = nplus could be 
inferred. However, this analysis should require a well-defined trans-
formation curve, which is not always available, and thus a simple and 
more robust analysis is proposed following the direct application of 
Avrami plot to the experimental data. From the linear fitting of the 
Avrami plot, we obtain an effective Avrami exponent, neff , and an 
effective frequency parameter, keff , that can be compared in our simu-
lations to the actual values of nplus and kr = keff/kplus, respectively. 
Moreover, these values can be recovered for our simulations from the 
linear fitting of Avrami plot applied to Xplus, which shows that the de-
viation due to noise is negligible. 

Therefore, Fig. 5 shows the relationships between neff and the ratio of 
keff/kplus (from Avrami plot applied to the range 0.1 < X(t) < 0.9) with 
the actual value of g ≤ 0.5, with nplus = 1+ 3g. The following linear 
equations are fitted to the simulation results: 

(0.1<X < 0.5)→ n1 = 3.197(16)g + 0.915(4), (7a)  

(0.1<X < 0.9)→ nm = 3.49(6)g + 0.777(15), (7b)  

(0.5<X < 0.9)→ n2 = 3.64(4)g + 0.670(9). (7c) 

Whereas there is a trend 1+ 3g = nplus ≥ n1 ≥ nm ≥ n2, this is not the 
case found for the normalized frequency factors, and krm is not in be-
tween kr1 and kr2 but, although all values are below 1, krm is the lowest 
and kr1 is the highest, independently of g. It must be taken into account 
that Eq. (2) was defined to preserve the time− 1 dimensionality of the 
frequency factor and it yields that the intercept in Avrami plot corre-
sponds to y0i = nilnki. Thus, although y0plus ≤ y01 ≤ y0m ≤ y02, the 
dependence of kri = (1 /kplus)ey0i/ni on ni affects the trend. As it is 
generally accepted, the highest uncertainty on kinetic experiments 
corresponds to the determination of the induction time or the final 
transformed fraction. Thus, in order to circumvent these limitations on 
the analysis of the data a specific range (abovementioned used to 
determine n1, nm and n2) should be selected. The obtained results 
constitute a very simple method for the determination of the physical 
meaningful parameters of KJMA theory in decelerated growth processes. 

A further result can be predicted from the performed simulations: the 
evolution of the crystal size with time during isothermal treatment and 
its relation with the growth exponent. From the simulation results, we 
can obtain the average radius of the crystallites as: 

〈R〉 ∼
̅̅̅̅̅̅̅̅̅̅〈
R3

〉3
√

= L
(

3
4π

X
Nnuc

)1/3

, (8)  

where Nnuc is the number of real nuclei formed. The time evolution of the 
average radius, 〈R〉 ∼

̅̅̅̅̅̅̅̅̅
〈R3〉3

√
, cannot be compared with a theoretical law 

〈R(t)〉 ∼ Reff (t − t0)geff , except for very low times. In any case, geff < g as 
the average size is referred to the induction time and new but smaller 
crystals are continuously nucleating. Moreover, when the geometrical 
impingement becomes significant, crystal size saturates, as it can be 
observed in Fig. 6. The average crystal volume, 〈Vcr〉 = 4

3 π〈R3〉, is also 
shown. 

Even though, some information could be obtained from the evolution 
of 〈R〉 with time after developing the dependence of Nnuc assuming a 
constant nucleation rate I. In this case: 

Nnuc(t) =
∫t

t0

I(1 − X)L3dt, (9) Fig. 3. Comparison of Xγ
over vs. X as a function of γ (solid lines) with Xover vs. X 

as a function of g (symbols). The color code used in this figure is the same than 
the one used in Fig. 1(a). 

Fig. 4. Correlation between γ and nplus = 1+ 3g. The fitting has been obtained 
with the sum of two exponential functions, i.e., γ = a exp(− bnplus) +

c exp(dnplus) with a = 2.89(8), b = 1.55(4), c = 0.92(2), and d = 0.019(4). 

J.S. Blázquez et al.                                                                                                                                                                                                                             



Journal of Non-Crystalline Solids 610 (2023) 122305

5

where it has been taken into account that the available volume for 
nucleation, (1 − X)L3, is reduced as transformation progresses. 

Using the differential form of dNnuc(t)
dt and combining Eqs. 8 and 9 with 

the average volume of crystals 〈Vcr〉 = 4
3 π〈R3〉, we obtain an expression 

for the nucleation rate: 

I =
1

〈Vcr〉(1 − X)

(
dX
dt

−
X

〈Vcr〉

d 〈Vcr〉

dt

)

, (10) 

This expression is independent on g and on whether or not the KJMA 
theory is followed. Therefore, from the slope of dX

dt −
X
〈Vcr〉

d 〈Vcr〉
dt vs. 

〈Vcr〉(1 − X) it is possible to obtain the value of I. Fig. 7 shows the result of 
this plot for g = 0.5 and different values of R0 in a explored cubic region 
of size L = 10. As nucleation is allowed to occur at each iteration step, 
the value of the nucleation rate is I = L− 3 = 10− 3 per unit volume and 
time as the red line in Fig. 7 shows. 

Finally, we study the effect of a non-constant nucleation rate on the 
effective parameters obtained from KJMA analysis. In order to do so, the 
nucleation in every step is allowed only when a random number be-
tween 0 < rand < 1 fulfills: rand < (1 − fX) where f is a weight factor on 

the effect the transformed fraction has on the decrease of I (i.e. f = 1 for 
nucleation site saturation at X = 1). Fig. 8 shows results from simula-
tions averaging 500 curves (L = 10, g = 0.5, R0 = 0.1) for the evolution 
of the transformed fraction, X, (a) and average crystal size, 〈Vcr〉, (b) as a 
function of time, overgrowth fraction Xover vs. X (c), and Avrami plot for 
three different values of f = 0, 0.5, 1 and 2 (d). 

According to Fig. 8, we can observe that the decrease in nucleation 
rate is not seriously affecting the previous results. Overgrowth slightly 
decreases as it does effective Avrami exponents from nm = 2.47 for 

Fig. 5. The values of the Avrami exponents n1 ≥ nm ≥ n2 along with nplus = 1 +
3g (red line (a), and reduced frequencies kr1 , krm, kr2 (b) obtained from the 
three defined X ranges as a function of the growing exponent g. Linear fitting 
has been used to fit symbols in (a) (See Eqs. 7(a − c)), and the sum of two 
exponential functions in (b), i.e.kri = aiexp(− big) + ciexp(dig) with a1 = −

0.190(14), b1 = 7.0(6), c1 = 1.003(15), and d1 = 0.002(3); am = − 0.33(2), 
bm = 6.6(4), cm = 1.019(18), and dm = − 0.03(3); a2 = − 0.261(16), b2 =

6.5(4), c2 = 1.013(16), and d2 = 0.02(3) (dashed blue lines). 

Fig. 6. Time dependence of average crystal radius, 〈R〉, (a) and average crystal 
volume, 〈Vcr〉 =

4
3 π〈R3〉, (b) for simulations performed averaging over 500 

curves with L = 10, g = 0.5 and several values of R0 = 0.1, 0.2, 0.5. Units are 
arbitrary in a explored space L3 with L = 10. 

Fig. 7. Representation of linearity predicted from Eq. (10) for g = 0.5 and R0 =

0.1, 0.2 and 0.5 The latter parameter is in arbitrary units in an explored space 
L3 with L = 10. The red line corresponds to the expected linear trend with slope 
I = L− 3 = 10− 3 nuclei per unit volume and time. 
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constant nucleation rate I = I0, to nm = 2.34 for I = I0(1 − X) thus about 
5 % (An even lower value of nm = 2.21 is obtained for I = I0(1 − 2X), for 
which exhaustion of nucleation sites occurs before the end of the pro-
cess). The frequency factors differ in an even smaller amount (<1 %). 
Overgrowth reduces as nucleation rate (source for new phantom nuclei) 
also reduces. As Avrami exponent (i.e. growth exponent) decreases, the 
effect maintains the dependence on the transformed fraction. As a limit 
situation, in the case of instantaneous growth, g = 0, it does not matter 
whether the nucleation rate changes or not, although the process must 
be delayed in time, the dependence on transformed fraction will be the 
same. 

3. Comparison with experimental data 

In order to test the results derived from our simulations, the 
isothermal nanocrystallization kinetics of two melt-spun amorphous 
FINEMET type alloys with composition Fe73.5Si16.5-yB9Cu1Nby (y = 3 
and 5) has been analyzed. To do that, both amorphous samples were 
annealed 5 h in a DSC7 Perkin-Elmer calorimeter. In this device, two 
independent furnaces heating the sample and the reference, respec-
tively, allows for a direct measurement of the heat flow. Annealing was 
performed at 10 K below the corresponding crystallization onset tem-
perature measured at 20 K/min, in order to study the crystallization 
process from the initial value of the transformed fraction X = 0. As can 
be determined in Fig. 9(a), these temperatures are 793 K and 828 K for 
the alloys with 3 and 5 at.% of Nb, respectively. Details on production 
and microstructure can be found elsewhere for the alloy with 3 at. % of 
Nb [21]. In that previous work, some of the authors proposed an un-
derstanding of the nanocrystallization process as the addition of multi-
ple classical microprocesses. In that case, the limitation of volume 
available for each individual process led to an effective impingement of 
the growth that can resemble qualitatively the low Avrami exponents 
experimentally found. Unfortunately, that interpretation prevents the 
acquisition of further information from kinetic analysis. However, in this 
new study we did not impose any volume limitation to any part of the 
system but the low values of the effective Avrami exponents can be 

obtained assuming an intrinsic low growth exponent. Moreover, these 
low growth exponents yield the overgrowth effect that is discussed here. 
Finally, in the present work we have found correlations between the 
effective and the actual kinetic parameters that allow us to recover the 
latter parameters, which are those with physical meaning. 

Nucleation in FINEMET alloys is heterogeneous, as formation of Fe(Si) 
(disordered α or ordered DO3 phase) is triggered by Cu-clusters, which are 
randomly distributed in the volume of the sample [22,23]. Therefore, the 
requirement for random nucleation in KJMA theory is fulfilled by this 
transformation. Nb and B are insoluble in the nanocrystals and thus must 
be rejected to the amorphous matrix. However, due to the low diffusivity 
of Nb, this element piles up at the edge of the nanocrystals constraining 
their size and enhancing the activation energy for transformation. This low 
diffusivity leads to a stabilization of the amorphous phase evidenced by 
the shift of the onset temperature observed in Fig. 9(a) as Nb content in-
creases in the alloy. 

Fig. 9 shows the differential scanning calorimetry (DSC) isothermal 
signals for the as-cast samples (Fig. 9(b)), along with the non-isothermal 
scans at 20 K/min for the as-cast samples and the samples after the 
isothermal treatment (Fig. 9(a)). The latter scans evidence a remaining 
enthalpy of the primary crystallization peak of both as-cast samples 
(ΔH ∼ 10 J/g), which isothermal treatment was not able to complete. 
This allows us to estimate the enthalpy that must be released during 
isothermal treatment ∼ 55 − 60 J/g. Moreover, these data are needed in 
order to correct the baseline of the isothermal signal in the following 
way: taking a straight line from a completion time, tend, with the slope of 
the DSC signal at that time and comparing the area below with the ex-
pected one. This shows that tend ∼ 1500 s. Baseline is one of the major 
experimental problems to solve when the process is widely extended in 
time and the procedure followed here is just the simplest approach to 
assume (a linear drift). Once the baseline is subtracted, transformed 
fraction can be taken as the normalized integral of the DSC signal, 
considering two different possibilities: normalizing the enthalpy 
released to that at tend, thus X(tend) = 1 is imposed; or defining X =

ΔHiso(t)/ΔHTotal
No− iso, where ΔHiso(t) is the enthalpy released at isothermal 

Fig. 8. Transformed fraction, X, (a) and average crystal volume, 〈Vcr〉, (b) as a function of time, overgrowth fraction, Xover, as a function of transformed fraction, X, 
(c) and Avrami plot for simulations performed for L = 10, g = 0.5, R0 = 0.1 and under different nucleation scenarios: I = I0(1 − fX), with f = 0, 0.5, 1 and 2 (d). In 
panel (d), the lines correspond to the linear fitting of each curve corresponding to a f value. 
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time t and ΔHTotal
No− iso is the addition of the enthalpy released at tend plus 

the remaining enthalpy measured in the following non-isothermal scan, 
thus X(tend) < 1. Taking this into account we delimit the uncertainty in 
saturation value. The use of this normalization implies the assumption 
that enthalpy of transformation is directly proportional to the trans-
formed fraction, which must be taken as an approximation as discussed 
by Fokin et al. [22] and Barandiarán et al. [23]. 

Once X is experimentally obtained, we proceed to estimate the in-
duction time, t0, which also has a significant effect in the effective pa-
rameters obtained [4]. In order to do so, we take into account that, for 
KJMA theory, t0 is related with the inflection point tinf and the induction 
time estimated from the interception of the steepest line to X = 0, tslope, 
through the Avrami exponent as: 

t0 = tslope + 0.57(n − 1)
(
tinf − tslope

)
. (11) 

Where the prefactor of the parenthesis has been rounded (with 
respect to the reported value in the Eq. 18 and Fig. 4 in ref. [4]) to fulfill 
that t0 = tslope for n = 1. It is worth noting that overgrowth is negligible 
at the values corresponding to the studied samples, tinf = 80 s and X(tinf )

= 0.13 for the alloy with 3 at.% of Nb, and tinf = 25 s and X(tinf ) = 0.04 
for the alloy with 5 at.% of Nb (or 0.15 and 0.05, respectively, when 
imposing X(tend) = 1). This allows us to neglect overgrowth (see Fig. 1) 
and use KJMA equation for these low values of transformed fractions, 
thus an Avrami exponent can be inferred from X(tinf ) as: 

n =
1

1 + ln
(
1 − X

(
tinf

)). (12) 

Errors in n obtained in this way can be estimated as 
Δn = n2ΔX(tinf )/(1 − X(tinf )) which, for low enough values of n, remains 
low. Finally, values obtained for the two studied alloys are between n =

1.16 and 1.19, (0.053 < g < 0.063) for the alloy with 3 at.% of Nb, and 
n = 1.04 and 1.05 (0.013 < g < 0.016), for the alloy with 5 at.% of Nb, 
depending on the chosen normalization. Error can be estimated ±0.03 
considering a confident ΔX(tinf ) = 0.02. 

Fig. 10 shows the Avrami plot for both alloys and the two different 
normalization criteria to obtain X. In the case of normalizing using 
X(tend) = 1, the increase in the slope at long times is indicative of an 
underestimation of the saturation value. However, when normalizing is 
done considering the total enthalpy registered in non-isothermal scans, 
the two slope behavior due to overgrowth predicted by the above sim-
ulations are coherent with the estimated Avrami exponents from the 
analysis of the inflection time. In this case, the process is not fully 
completed (evidenced by the remaining enthalpy detected in non- 
isothermal scans) and transformed fraction reaches ∼ 0.85 for both al-
loys during isothermal treatment. Uncertainty in the saturation value 
makes a more reliable analysis when Avrami plot is fitted in the range 
0.1 < X(t) < 0.5. Table 1 shows the parameters obtained in the corre-
sponding linear fitting. 

Using Eq. 7(a), 0.052 < g < 0.071 and 0.016 < g < 0.029 values are 
deduced for the alloys with 3 and 5 at.% of Nb, respectively, in good 
agreement with the data obtained from the inflexion point. As expected, 
a lower growth rate is related to the higher content in Nb and the 
impingement due to the slow diffusion of this element in the matrix 
piling up at the edge of the growing crystals [24,25]. The obtained 
ranges for k1 are 2.2⋅10− 3 < k1 < 2.7⋅10− 3 s− 1, for 3 at. % Nb alloy, and 
slightly smaller, 1.6⋅10− 3 < k1 < 2.0⋅10− 3 s− 1, for 5 at. % Nb alloy. 
Taking into account the dependence of kr on g shown in Fig. 5(b), these 
values would be about 82 % of the actual values of the frequency factors. 

In order to check the predictions for the evolution of the average 
volume of crystallites, we used the experimental data of the crystalline 
fraction, αcr, and the average crystals size, 〈Vcr〉, results for a FINEMET 
alloy isothermally treated at 748 K (50 K below the onset temperature of 
crystallization at 10 K/min) obtained from synchrotron radiation and 
reported in [26]. 

Fig. 9. (a) Non isothermal DSC scans at 20 K/min for as-cast Fe73.5Si16.5- 

yB9Cu1Nby (y = 3 and 5) alloys along with those for samples after 5 h 
isothermal treatment at 10 K below the onset temperature. (b) Isothermal DSC 
scans of as-cast samples at 10 K below the corresponding onset temperature. 

Fig. 10. Avrami plot applied to the isothermal DSC scans of Fe73.5Si16.5- 

yB9Cu1Nby (y = 3 and 5) alloys shown in Fig. 9(b). Dashed lines are the cor-
responding linear fittings in the range 0.1 < X(t) < 0.5. 
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However, Eq. (10) cannot be directly applied to the data. Experi-
mental data are noisy and Eq. (10) needs derivatives, which will even 
increase the noise. In order to handle smoother data, crystalline fraction 
(normalized to the saturation value at isothermal treatment) was fitted 
to Eq. (6) assuming αcr/αsat

cr = Xγ and Xext = k(t − t0) (i.e. n = 1 for 
simplification). On the other hand, the average crystallite volume was 
fitted to 〈Vcr〉 = atb, taken as the simplest curve resembling the evolu-
tion of this parameter. The data and the fitting curve are shown in 
Fig. 11. Fitting results of αcr are αsat

cr = 34(4) %, k = 1.46(10)⋅10− 4 s− 1, γ 
= 1.5(4) and t0 = 0.96(12)⋅103 s. It can be observed that γ is in agree-
ment with the expected value (see Fig. 4). In the case of 〈Vcr〉, fitting 
parameters are a = 73(8) nm3s− b and b = 0.252(13). 

Application of Eq. (10) (which is independent of the kinetic model) 
to these data is shown in Fig. 12. The nucleation rate , I(t), decreases as 
time increases during isothermal treatment, even after normalization of 
available space for nucleation using the saturation value of the crystal-
line fraction. This can be understood as the amorphous matrix becomes 
progressively enriched in elements non-soluble in the α-Fe(Si) phase (Nb 
and B) increasing the activation energy for nucleation and thus reducing 
I(t) as the isothermal transformation progresses. In fact, once I(t) is 
plotted vs. the transformed fraction (inset of Fig. 12) a linear decrease 
with αcr=αsat

cr X is found: I(αcr) = 271(1) − 9.4(3)αcr μm− 3s− 3 (with αcr in 
%) or I(X) = 271(1)[1 − 1.2(4)X]. In this second expression the close to 
1 value of the prefactor of X points to a nucleation site exhaustion as a 
plausible mechanism for the stop of the nanocrystallization process. As 
described above, this decreasing behavior of I(t) yields slight un-
derestimations of n of about 5 %. 

4. Conclusions 

In the frame of nucleation and growth KJMA classical theory, 
decelerated growth processes cannot be correctly interpreted due to 
overgrowth problem. Theoretically, overgrowth occurs for any trans-
formation with growth exponent g < 1. However, the simulations per-
formed showed that overgrowth effects are almost negligible for 
diffusion controlled growth, for which the radius of a transformed re-
gion not submitted to impingement is expected to grow as the root 
square of time since its nucleation (growth exponent, g = 1/2). Smaller 
values of g yields deviations from KJMA theory only for very low values 
of g. Particularly, values close to g = 0 (instantaneous growth processes) 
yield artifacts such as double slope behavior of KJMA plot. Moreover, 
the non-constancy of the nucleation rate may introduce slight underes-
timation of the Avrami exponent. 

From the analysis of the simulation results we have proposed simple 
procedures to acquire physically meaningful information from the 
application of KJMA plot. The correlation between the effective and the 
actual kinetic parameters is given and coherency is found with other 
kinetic models that assume a stronger impingement than the simple 
geometrical one considered in KJMA theory. 

Application of the results derived from the simulations to the 
experimental data of nanocrystallization of FINEMET-type alloys allows 
us to estimate a growth exponent of ∼ 0.06 that decreases to ∼ 0.02 for 
alloys with a higher content of Nb. The nucleation rate was found to 
linearly decrease with the transformed fraction pointing to an exhaus-
tion of nucleation at the end of the transformation. This can be related to 
the progressive enrichment in B and Nb of the amorphous matrix, which 
becomes stabilized, as the nanocrystallization progresses. 
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Table 1 
Kinetic parameters obtained from linear fitting of experimental Avrami plot in 
the range 0.1 < X(t) < 0.5.  

at.% 
Nb 

Normalizing 
X(tend)

n1 n1lnk1 r g k1 10− 3 

s− 1 

3 1 1.140(2) −

6.76(1)
0.9996 0.071 2.7 

< 1 1.082(3) −

6.61(2)
0.9990 0.052 2.2 

5 1 1.007(4) −

6.243(2)
0.99998 0.029 2.0 

< 1 0.965(1) −

6.201(5)
0.9998 0.016 1.6  

Fig. 11. Average size of nanocrystals, 〈Vcr〉, (a) and crystalline fraction, αcr , (b) 
as a function of time during the isothermal treatment at 748 K. Symbols 
correspond to synchrotron X-ray diffraction [26]. Red lines correspond to fitting 
curves: 〈Vcr〉 = V0tb and αcr = αsat

cr Xγ (see Eq. 6). 

Fig. 12. Nucleation rate, I(t), for the nanocrystallization of a FINEMET alloy 
from application of Eq. (10) to data shown in Fig. 11 (symbols) as a function of 
the isothermal time at 748 K (main panel) and as a function of the crystalline 
fraction (inset lower x-axis) and transformed fraction (inset upper x-axis). The 
black line in main panel corresponds to the smoothed curve obtained from the 
fit curves used in Fig. 11. The red line in inset corresponds to linear fitting of 
the data. 
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