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ABSTRACT: Proximal spinal muscular atrophy,

the most frequent genetic cause of childhood lethality, is

caused by homozygous loss or mutation of the SMN1
gene on human chromosome 5, which codes for the sur-

vival motor neuron (SMN) protein. SMN plays a role in

the assembly of small nuclear ribonucleoproteins and,

additionally, in synaptic function. SMN deficiency pro-

duces defects in motor neuron b-actin mRNA axonal

transport, neurofilament dynamics, neurotransmitter

release, and synapse maturation. The underlying molec-

ular mechanisms and, in particular, the role of the cyto-

skeleton on the pathogenesis of this disease are starting

to be revealed. ' 2011 Wiley Periodicals, Inc. Develop Neurobiol

72: 126–133, 2012
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SMN: AN ESSENTIAL PROTEIN

Low levels of survival motor neuron (SMN) protein

result in spinal muscular atrophy (SMA), the most

frequent genetic cause of early childhood lethality

(Crawford and Pardo, 1996). SMA is an autosomal

recessive degenerative disease characterized by sym-

metrical muscular weakness and atrophy of limb and

trunk muscles. Currently, there is no effective treat-

ment for SMA. SMN is encoded by two genes that lie

on a duplicated region of human chromosome 5

[5q13; (Lefebvre et al., 1995)]. SMN1 produces full-

length SMN (SMN-FL), and SMN2 produces an

unstable truncated form of SMN (SMND7) and a

small amount (*10%–20%) of SMN-FL, which

results from alternative splicing (Gennarelli et al.,

1995; Lorson et al., 1999; Monani et al., 1999). SMA

is caused by mutations or loss of the SMN1 gene and

retention of the SMN2 gene (Lefebvre et al., 1995). In

the absence of a functional SMN1 gene, the severity

of the disease depends on the amount of SMN-FL

produced by SMN2 (the SMN2 copy number varies in

the population). Low number of SMN2 copies results

in severe childhood forms of the disease that lead to

rapid paralysis and early death (types I and II),

whereas higher number of copies lead to milder forms

(types III and IV) in which patients reach normal age

despite impairment by muscle paralysis.

SMN is a 38 kDa protein ubiquitously expressed in

all tissues that localize to both the cytoplasm and nu-

cleus of cells. The best-characterized SMN function is

its participation in the assembly of small nuclear ribo-

nucleoproteins as part of a multiprotein complex in the

spliceosome (Fischer et al., 1997; Liu et al., 1997;

Meister et al., 2001; Pellizzoni et al., 2002). Although

the absence of SMN is embryonically lethal, low lev-

els of SMN produce loss of a-motor neurons in the spi-

nal cord, which causes muscle weakness and muscle

atrophy in particular in proximal muscle groups of the

body axis. It is still not understood, however, why

reduced levels of the ubiquitously expressed SMN

Correspondence to: L. Tabares (ltabares@us.es).
Contract grant sponsor: Spanish Ministry of Science and Innova-

tion; contract grant number: BFU2010-21648.
Contract grant sponsor: Junta de Andalucı́a; contract grant num-

ber: P09-CVI-4862.

' 2011 Wiley Periodicals, Inc.
Published online 12 May 2011 in Wiley Online Library
(wileyonlinelibrary.com).
DOI 10.1002/dneu.20912

126



protein specifically cause motor neuron disease. Cur-

rently, two hypotheses are postulated (Monani, 2005;

Burghes and Beattie, 2009; Chari et al., 2009). In one

of them, disturbed RNA processing specially relevant

for motor neurons is proposed (Pellizzoni et al., 2002;

Wan et al., 2005; Winkler et al., 2005; Eggert et al.,

2006; Gabanella et al., 2007; Pellizzoni, 2007; Zhang

et al., 2008; Burghes and Beattie, 2009). In the other,

it is postulated that SMN has additional functions in

axons and synapses, which are independent of its role

in small nuclear ribonucleoprotein biogenesis (Fan and

Simard, 2002; McWhorter et al., 2003; Rossoll et al.,

2003; Carrel et al., 2006; Eggert et al., 2006; Gaba-

nella et al., 2007; Pellizzoni, 2007; Burghes and Beat-

tie, 2009). Moreover, SMN is found not only in the

cell soma but also in axons in vivo (Pagliardini et al.,

2000), and at branch points and growth cones in cul-

tured motor neurons (Jablonka et al., 2001). Within

axons and growth cones, SMN localizes in granules

and is rapidly transported bi-directionally (Zhang

et al., 2003) together with Gemin2 and Gemin3 (Zhang

et al., 2006).

SMN-Deficient Animal Models:
Development, Axonal, and Synaptic
Dysfunctions

In various invertebrates and vertebrates animal mod-

els of SMA, morphological and functional evidence

shows that the loss of function of SMN leads to im-

portant defects, ranging from embryonic lethality to

impairment of the motor system. The severity of the

phenotype is inversely proportional to the level of

SMN expression. The study of model organisms with

motor defects is of major importance for the under-

standing of the molecular mechanisms implicated in

the pathophysiology of SMA in humans, as the dys-

function of the motor system is its most striking alter-

ation. Interestingly, the synaptic and axonal defects

observed in these models do not seem to be caused

by motor neuron cell death, which is generally a rela-

tively late manifestation of the disease (Kariya et al.,

2008; Kong et al., 2009).

In Caenorhabditis elegans the knockdown of smn-

1 (the worm orthologue of human SMN) by RNA in-

terference, results in a severe embryonic lethal phe-

notype (Miguel-Aliaga et al., 1999; Fraser et al.,

2000; Sonnichsen et al., 2005). A less complete re-

moval of smn-1 produces an arrest in late larval de-

velopment [Fig. 1(A)], reduced lifespan, sterility, and

locomotor dysfunction (Briese et al., 2009).

In Drosophila, Smn deficit also produces high

larval lethality, alterations in late stages of develop-

ment and motor behavior defects. Drosophila end-

plate electrophysiological recordings show that post-

synaptic currents are reduced at the neuromuscular

junction (NMJ) of SMA mutants [Fig. 1(B, a)]. The

coexistence of this functional defect with synaptic

motor neuron bouton disorganization [Fig. 1(B, b)]

led to the suggestion, for the first time, of a primary

defect at the SMA end-plates (Chan et al., 2003).

Additionally, fly motor neurons display pronounced

axon routing and arborization deficits (Rajendra et

al., 2007) that suggest, in addition, a possible defect

in axonogenesis.

In Xenopus, Smn deficit also induces alterations

ranging from developmental arrest at gastrulation

(Winkler et al., 2005) to motor neuron defects charac-

terized by reduced axonal outgrowth and abnormal

formation of branching extensions (Ymlahi-Ouazzani

et al., 2010).

Similarly, in a zebrafish embryo Smn-deficient

model, motor axons show abnormal growth along the

body muscles. Frequently, mutant axons are short,

display truncations, and excessive branching [Fig.

1(C)], and do not succeed in finding their most distal

targets (McWhorter et al., 2003; Carrel et al., 2006;

Oprea et al., 2008; Hao et al., 2011).

In mice, both in vitro and in vivo SMA models

have been used for studying the pathophysiology of

the disease. Embryonic SMN-deficient spinal motor

neurons in culture exhibit reduced axon elongation

and growth cone size (Rossoll et al., 2003; Zhang et

al., 2003; Garcera et al., 2011), similar to what has

been reported in fly, frog, and zebrafish SMA models.

In addition, Smn-deficient motoneurons exhibit

severe defects in clustering Cav2.2 channels in axo-

nal growth cones and reduced frequency of local

Ca2+ transients (Jablonka et al., 2007).

Despite the axonogenesis defect observed in

SMN-deficient motor neurons in vitro, in acute neuro-
muscular preparations from the same SMA mouse

model, this defect is not observed. Furthermore, in

the SMA mouse models, no defect in axonal forma-

tion at any stage of development is found (McGovern

et al., 2008). In ex vivo preparations, the number of

axonal branches innervating single muscle fibers is

not different from wild-type littermates (Kariya et al.,

2008). Moreover, during the early postnatal age of

SMND7 SMA mice (a widely used SMA mouse

model) muscle fibers are multi-innervated (Murray

et al., 2008), and the multiple motor nerve inputs con-

tacting a single muscle fiber are functional (Ruiz

et al., 2010). Therefore, the reduction of SMN levels

in mice does not interfere with the correct formation

of synapses in vivo. This suggests the existence of

compensatory mechanisms during axonogenesis,
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which could be related to the complex environment

in which mammalian motor axons normally develop.

Electrophysiological recordings of the synaptic ac-

tivity at mouse NMJs from different SMA models

have shown a number of abnormalities (Table 1). The

most relevant finding is the decrease in the amount of

neurotransmitter released per action potential (quan-

tum content, QC). In SMND7 mice, the most func-

tionally affected muscle is transversus abdominis

(TVA; a proximal slow-twitch muscle) with *50%

reduction in QC [Fig. 1(D, a)], followed by distal and

faster muscles such as tibialis anterior (TA;*40%

reduction) and extensor digitorum longus (EDL;

*25% reduction) (Table 1). In addition, levator auris

longus (LAL), a uniformly fast muscle shows a spe-

cial gradient of alteration, with the caudal division

degenerating before rostral division (Murray et al.,

2008; Ruiz et al., 2010).

The amount of neurotransmitter released per fused

synaptic vesicle (quantal size) seems not to be altered

in motor SMA terminals, as shown by the similar size

of the miniature end-plate currents in control and mu-

tant mouse terminals (Table 1). Therefore, the reduc-

tion in QC (Kong et al., 2009; Ling et al., 2010; Ruiz

et al., 2010) could be due to a decrease in release

probability and/or in the number of docked vesicles.

The vesicle release probability has been shown to be

decreased in several SMA muscles (Table 1). In addi-

tion, a decrease in total and docked vesicles has been

found using electron microscopy (Kong et al., 2009).

The diameter and morphology of the vesicles seem to

be not altered (Kong et al., 2009), whereas the vesicle

distribution is not normal in comparison with WT

because the vesicles, in SMA mouse model, are pref-

erentially located in the periphery of the presynaptic

terminal (Kariya et al., 2008). These data are indica-

tive of synaptic pathology and suggest that the pre-

synaptic motor compartment is especially vulnerable

to the decrease of SMN levels.

Figure 1 Schematic representation of neuromuscular defects in different animal models. A.

C. elegans knockdown smn-1 shows growth arrest and locomotor dysfunction in 4 day larvae. B.

Zebrafish 48 h embryos with reduced levels of smn display truncated and excessively branched

motor nerves. Scale bar: 50 mm. C. NMJ features in smn Drosophila model. (a) End-plate

postsynaptic currents (EPCs) are reduced in third instar smn mutant larvae. (b) NMJ representing

postynaptic receptors (red) and synaptic vesicles (green). The mutant shows disorganized boutons

compared with the WT. D. NMJ features in SMND7 mouse model. (a) Representative end-plate

potential (EPP) traces from TVA at postnatal day 7 (P7). The mean size of the EPP in the mutant is

significantly decreased. (b) Immunostaining of postsynaptic receptors (red) and neurofilaments

(green). Mutant NMJs exhibit reduced postsynaptic size and massive NF accumulation in presynap-

tic terminals. Scale bar: 10 micrometers.
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In the SMND7 SMA mouse model, it has been

reported that presynaptic mitochondria in the dia-

phragm are smaller than in wild-type littermates (Ta-

ble 1), whereas no differences were found at the post-

synaptic sites (Kariya et al., 2008). However, in the

TA muscle from the same mouse model, a decrease

in the number of mitochondria in the presynaptic ter-

minals has been reported (Kong et al., 2009). In a

neuronal cell model of SMA, decreased ATP levels

and increased free radicals have been reported and

attributed to mitochondrial dysfunction (Acsadi et al.,

2009). Therefore, it is predictable that an impairment

of mitochondrial function would increase the cyto-

solic Ca2+ load during intense stimulation in nerve

terminals (Friel and Tsien, 1994). Although there is

not direct proof of this in SMN-deficient terminals, in

a particularly affected proximal muscle TVA an

abnormal increase in the amount of Ca2+-dependent

asynchronous release during prolonged stimulation

has been found, supporting the hypothesis of an

altered intraterminal bulk Ca2+ concentration in

highly altered synapses. Mitochondrial dysfunction

has been proven in distinct motor neuron diseases,

including ALS (Hervias et al., 2006; Nguyen et al.,

2006), and Spinal and Bulbar Muscular Atrophy

(Ranganathan et al., 2009). However, no studies of

mitochondrial function in presynaptic terminals of

SMA patients have been reported.

At the level of the postsynaptic site different mor-

phological defects in the SMA mouse model have

been demonstrated (Table 1). Although in wild-type

mice the structure of neuromuscular synapses

becomes more complex during postnatal develop-

ment—ovoid AChR plaques are transformed into

complex, pretzel-like shapes, characteristic of adult

synapses (Sanes and Lichtman, 1999)—in SMA mu-

tant mice the postsynaptic plaques do not fully pro-

gress to the mature form but remain small and oval-

shaped with almost no gutters or perforations [Fig.

1(D, b)] (Kariya et al., 2008; Murray et al., 2008;

Kong et al., 2009; Ruiz et al., 2010). Postsynaptic

receptors remain in patches and postsynaptic mem-

brane folds fail to form. In addition, the kinetics of

postsynaptic responses remains slow in SMA mutant

mice (Kong et al., 2009; Ruiz et al., 2010), while in

the wild-type littermates it becomes faster probably

following reorganization of pre- and postsynaptic ele-

ments towards a more efficient coupling. The molec-

ular mechanisms underlying the maturation defects of

the NMJ in SMA are, however, unknown.

Although in SMA mouse models no defect in axo-

nal formation has been described, neurofilament

accumulation in a high percent of terminal axons

[Fig. 1(D, b)] has been found in almost all muscles

affected by the disease (Table 1) (Cifuentes-Diaz et

al., 2002; Kariya et al., 2008; Murray et al., 2008;

Kong et al., 2009; Ruiz et al., 2010). It can be

inferred that large neurofilament accumulation may

participate in the motor neuron dysfunction and cause

axonal degeneration by slowing down the transport of

components required for axonal and synapse matura-

tion and maintenance.

Molecular Mechanisms

SMN has been shown to form a complex with other

proteins and transport mRNA for b-actin and differ-

ent protein cargos along the axon (Rossoll et al.,

2003; Glinka et al., 2010; Peter et al., 2011). Filamen-

tous actin (F-actin) is an important cytoskeletal ele-

ment in nerve terminals, which interact with different

organelles and is crucial for localization of those at

its site of action. For example, F-actin plays impor-

tant roles in SV recycling (Shupliakov et al., 2002;

Bloom et al., 2003). In addition, mitochondrial sub-

cellular localization is achieved by stabilization of

actin filaments through the RhoA/formins pathway

(Minin et al., 2006).

Low levels of SMN may, consequently, disturb

local translation of beta actin resulting in low levels

of this protein in the terminal. In addition, as F-actin

levels have been shown to be important in axonogen-

esis (growth, pathfinding, and branching), low levels

of actin may explain the defective neurite length

observed in SMN deficient motor neurons in culture.

Supporting the earlier hypothesis, recently, it has

been reported that the overexpression of plastin 3, a

protein that binds and bundles actin filaments and

increases F-actin levels, counteracts the axonal growth

defect in Smn-deficient mouse motor neurons in cul-

ture and in zebrafish (Oprea et al., 2008). Furthermore,

in humans, unaffected SMN1-deleted females exhibit

significantly higher expression of plastin 3 (Oprea

et al., 2008). On the other hand, low levels of SMN in

SMA mutant mice are accompanied by a decrease in

plastin 3 (Bowerman et al., 2009). Based on all these

results, it has been proposed that the gene that encodes

plastin 3, PLS3, is a protective modifier for SMN defi-

ciency. In addition, profilin IIa, another actin binding

protein—but one that negatively regulates neurite

sprouting by increasing actin stability (Da Silva et al.,

2003)—is elevated in SMA models (Bowerman et al.,

2007). The effect of profilin, together with other pro-

teins such as cofilins, on actin is mediated by RhoA, a

small GTPase, and by its kinase (ROCK), which phos-

phorylates actin (Da Silva et al., 2003). In SMA mod-

els, the RhoA/ROCK pathway is over-activated.

130 Torres-Benito et al.
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Summary and Future Questions

SMA is a severe neurodegenerative disease and the

most common genetic cause of infant mortality. The

disease is caused by the mutation of the SMN1 gene

in humans. Despite the need of SMN in all tissues,

SMN is predominantly important for the neurodevel-

opment of the motor system, particularly in inverte-

brates and lower vertebrates SMA model organisms

and for the maturation and maintenance of motor

neuron terminals in higher vertebrates. Low levels of

SMN in SMA mouse models cause abnormal synaptic

organization and defective synaptic neurotransmis-

sion that lead to early neurodegeneration.

Although much has been discovered about SMA

recently, many aspects regarding the regulation and

function of SMN remain unknown. For example, at

the molecular level, it would be enormously useful to

identify all the modifier genes of SMN, to learn how

the splicing of SMN1 and SMN2 can be regulated by

different molecules, and to discern the precise inter-

actions of SMN with other molecules in the spliceo-

some. Regarding the pathogenesis of the disease, still

open questions are the special vulnerability of proxi-

mal lower motor neurons, the functional importance

of SMN in axonal transport of different mRNAs and

proteins implicated in synaptic organization and func-

tion, the role of SMN in synaptic maturation and

maintenance, and the function of SMN in neurons

other than motor neurons. Further biochemical,

genetic, and functional studies are crucial to answer

these basic questions, and will be of enormous value

for designing new therapeutic approaches.
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