Abstract

In this paper, a methodology which quantifies the
dependence between features in a data set is de-
veloped, This methodology uses the Ameva dis-
gretization algorithm. In particular, it uses the
Ameva coefficient to quantify the dependence. Fur-
thermore, a new coefficient called entropy has been
proposed for cases where it is not possible to apply
the Ameva discretization algorithm. Thus, different
mitrices of inter-dependence are built providing a
grade of dependence between two features. Finally,
10 verify the qualities of this methodology, a simple
method to discard features based on it is applied
1 & well-known data set in a classification process
and promising results for the carried out system are
obtained.

1 Introduction

The problem of classification is one of the main problems in
lata analysis and pattern recognition that requires the con-
sfruetion of a classifier, that is, a function that assigns a class
Jabe) 10 instances described by a set of features. The induction
ol elawsifiers from data sets of classified instances is a central

toblem in machine learning. For that purpose, a large num-
ber of methodologies based on SVM [1], Naive Bayesian
[2], €5.0 13], etc. have been developed.

One of the most important preprocess in classification is
the discretization. This process establishes a relationship be-
{ween continuous variables and their discrete transformation
through functions. Therefore, it is possible to model quali-
litively a series of continnous values if a label is assigned to
them, Some studies [4] have shown that execute a prior pro-
venn to discretize continuous features is more efficient than
work directly with the continuous values. This process re-
tuces the computation time and memory usage in the appli-
eatlon of classification algorithms and it is used to manage
the set of values of a feature more effectively. Some relevant
dincretization methods are Ameva [5], Khiops [6], CAIM
{71 and others (8; 91.

The Ameva discretization method has been confirmed as
one of the most promising algorithms due to its reduced ex-
ecution time and the smaller number of intervals provided.
This behavior is outstanding when the data set has a large
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number of classes, although it has a slight reduction in the
capacity of identification [5; 10].

Another problem in the classification process is the ex-
istence of irrelevant features [11]. When data is obtained
experimentally, is not considered what features are rele-
vant for the studied system. Several techniques [12; 13;
14] have been developed to reduce the number of features
and to determine which are relevant for the system. Some of
these techniques are based on principals components analysis
[15] or factorial analysis [16].

The Ameva discretization algorithm [10] performs the dis-
cretization process effectively and quickly, so the set of values
of a feature is greatly reduced, but do not reduce the number
of features. Because Ameva uses the statistic x2 to determine
the relationship between features and classes, it is possible
to use this algorithm to determine the relationship between
features.

In this paper, a new methodology based on Ameva algo-
rithm is developed in order to reduce the number of features
of a data set. This method exploits the advantages of Ameva
in runtime and brings a different approach which was devel-
oped on.

The rest of this paper is organized as follows: first, the
definition of the problem is presented in Section 2 to estab-
lish the notation of the rest of the paper. Also, the Ameva
discretization algorithm and the Entropy coefficient are pre-
sented. Section 3 presents the new methodology to determine
the dependence between features using the Ameva algorithm
and the entropy coefficient. Section 4 reports the obtained re-
sults of applying the methodology in two datasets. The paper
is finally concluded with a summary of the most important
points and future works.

2 Discretization

Let X = {z1,x3,...,xn} be a data set of a continuous at-

tribute X’ of mixed-mode data such that each example x; be-

longs to only one of £ classes of the variable denoted by
C={C1,Cy,...,C¢}, €22 @

A continuous attribute discretization is a function D : X —
C which assigns a class C; € C to each value 2 € X in the
domain of the property that is being discretized.
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Let us consider a discretization D which discretizes X into
k discrete intervals:

Lk X;C) = {L1, Ly, - Lk}

where Ly is the interval [do,d1] and L; is the interval
(dj-1,d5], j = 2,3,... k. Thus, a discretization variable
is defined as L(k) = L(k; X;C) which verifies that, for
all z; € X, a unique L; exists such that z; € Lj for
t=12,... Nandj = 1,2,..., k. The discretization vari-
able £(k) of attribute X' and the class variable C are treated
from a descriptive point of view. Having two discrete at-
tributes, a two-dimensional frequency table (called contin-
gency table) as shown in the Table 1 can be built.

N

Table 1: Contingency table

In Table 1, n; j denotes the total number of continuous val-
ues belonging to the C; class that are within the interval L;.
n;. is the total number of instances belonging to the class Ci,
and n; is the total number of instances that belong to the in-
terval L, for i = 1,2,...¢and j = 1,2,... k. So that:

< ¢ Lk
n;. = E Nij, N = E N, N = § :2 :nij
J=1 i=1

i=1 j=1
2.1 The Ameva discretization
Given discrete attributes C and L(k), the contingency coeffi-
cient, denoted by v2(k) </ \2(£(k), C|X), defined as

[

vik)=N ~143°% %‘. @

is considered. It is straightforward to prove that

2(1. _ i .
X}?gc))cyc,\ (k) = N(min{¢, &} 1) 3)
Hence, the Ameva coefficient, Ameva(k) wf
Ameva(L(k),C|X), is defined as follows:
2
_ _X(k)
Ameva(k) = m “)

for k,£ > 2. The Ameva criterion has the following proper-
ties:

* The minimum value of Ameva(k) is 0 and when this
value is achieved then both discrete attributes C and
L(k) are statistically independent and viceversa,

* The maximum value of Ameva(k) indicates the best
correlation between class labels and discrete intervals.
If k > ( then, for all 2 ¢ C; a unique 7, exists such that
z € Ljo (remaining intervals (k — £) have no elements);
and if k < £ then, for all z ¢ L;, a unique i, exists such
that z € Cj (remaining classes have no elements) i.e.
the highest value of the Ameva coefficient is achieved
when all values within a particular interval belong to the
same associated class for each interval.

The aggregated value is divided by the number of inter-
vals k, hence the criterion favors discretization schemes
with the lowest number of intervals.

From (3), it is followed that AMeVa oz (k) &f
maxXx c(k),c Amefua(k) = %;_;11)2 if k < £ and % oth-
erwise. Hence, Ameva,,qz (k) is an increasing function
of kifk < ¢, and a decreasing function of k if k > ¢.
Therefore, maxy > AMeVanq, (k) = AMeva g, (£)
i.e. the maximum of the Ameva coefficient is achieved
in the optimal situation, it is to say, when all values of
C; are in a unique interval L; and viceversa.

Therefore, the aim of the Ameva method is to maximize
the dependence relationship between the class labels ¢ and
the continuous-values attribute L(k), and at the same time to
minimize the number of discrete intervals k.

2.2 The entropy

If £ = 1ork = 1 then it is not possible to use the Ameva
method. Let us see these two cases (see Table 2 and Table 3
Equation (2) can not be calculated using Table 2 because it

ng | N

Table 2: Contingency table at first case =1

Table 3: Contingency table at second case (k = 1)

is not possible to divide by 0. Nevertheless, all the instances
belong to the same class, therefore can be concluded that the
dependence is maximum. In this case, let us indicate that
A*(1) =1.

Regarding to Table 3, Ameva method can not be used be-
cause x%(k) = 0 and the Ameva coefficient does not give any
information about the dependence. However, the dependence
is not minimum and a new coefficient is necessary. By taking
into account that if all instances are distributed equally in all
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plisnen, the dependence is minimum, and if exists ¢ guch that
# = N, the dependence is maximum. Hence the following
wuefficient, called Entropy. is considered:

1 £ g
Aijesl 4 mzlnﬂ In (Wl)

I holds that 0 < A(1) < 1, and:

2 I A(1) =0, thenn; = % (minimum dependence).

*# If A(1) = 1, then a unique n;; exists that n;; = N
(maximum dependence).

Note 2.1 Let us indicate these pathologic cases do not hap-

W In a standard discretization, but it will be .necessar?' tak
1y Into account in the presented methodology in the next sec

fon

3 The methodology .
Cllven an attribute X; where i = 1, 22 s S the Amet:/a_dls(i
gretization algorithm is applied to this attribute so (')v.tfz‘u:ef
Intervals are considered as a new set of classes. This set o

¢lunnes is denoted as follows:

G =10, 5G] (5)

Alyo, a new matrix that contains the Ameva coefficients for
- | uttributes can be built. ‘
' 1 Let us consider XP C X as the data subset that belongs tﬁ
fhe class C, € C where p = 1,2,...,£. From (5.)" fgi'?ggd
uitribute X; with j = 1,2,...,s, a gijp value is obtaine
from C" as follows:

« If the XP data subset all belong to the same class C*,
then gijp = A*(l) = 1. ‘
« If the subset of data belongs to different classes, then:
— If values of the attribute X; are always in the same
interval, then g;;, = A(1). s i he
— If values of the attribute X; are not always in
same interval, then g;j, = Amevay (£;), where
= Amevay (¢;) is defined as follows:

’

A
Amevan (4;) = —N’;Ameva(&)

provide that N, is the number of instances of the

1 class X7 and £; is the number of intervals of the

2 attribute X; for which there is at least one value in
the data subset.

Note 3.1 This new Ameva coefficient is Choscfn in order m‘
obtain a normalized value 0 < Amevan (¢;) < 1 as same as
A(1). L
(I"l)xrthermore, it is straightforward to prove that if [7 = jfor
{=1,2,--,8 then giip = 1, forallp=1,2,-- L.

Giveni,j = 1,2, -, s, ag;; value can be obtained applz/—
ing this methodology for all class C, € C (p = 1,2,---, ),

and by considering one statistic, the arithmetic mean, g;; =

| ot -
/ >4,.=1 Jijp-

The main properties of the matrix G = (gi;), that is,

1 g1z -+ gis
g 1 - g2

G=1 ; g o4 "
gs1 gs2 1

are the following: i) it is square but non symmetric n;atrl.)%;

ii) the values of the main diagonal are 1; and iii) 0 < gij,
i< 1. o

gﬂTEe matrix described above does not indicate t}_le dedgree

of goodness of dependencies, so it'is necessary to mt[r\o uci

an adjustment factor. This factor is the normalized Amev

coefficient, so the above matrix is adjusted as follows:

gi2 ' i

g1 1 - g3
e
g1 92 1

) gijAmevan (X;)+gji Amevan (X;)
where gij = Amevan (Xi)+Amevan (X;)

in properties of the matrix G* =.§g;‘j) are the
folIl\(I)%:/’:’rlg:ei)n:?irsl gqugre and syrp}netn'c n:atrii(; 1,1) the values
of the main diagonal are 1; and 111? 0<95 95 ':.1. e de.
Finally, a threshold value, 4, is set for eAsLablls}?It exist:g
pendence between features for the twc? matrix. While e
gi; > 0, then X; or X; are dependents:

* If g; > g;, then g; is discarded.
« If g; < g, then g; is discarded.
o =5 . The reasoning
i = 1 gimand g; =32,y Gmj- ¢
i‘:};?eesime v%{ﬁ—glfj ’Ln,et us iilustrate it with examples in the
next section.

4 Experimentation

. . . )
Let us consider the Glass Identification Datqset and the;n:
age Segmentation Dataset? from UCI Repository. These data

i ir simplicity.
sets are considered due to their simp "
The first data set contains 9 attributes, 6 cla'sses and 214 in

stances. The second data set contains 19 attributes, 7 classes

and 210 instances. _
The results of applying this methodology. are shown in Fhe
following tables for a classification test with the following

characteristics:

* 10 loops.

« Cross Validation with 10 folders.

« K-Nearest Neighbor with k& = 3.

« Three cases of the datasets with § € [0, 1]:
— Original.
— Typified.
— Typified and discretized.

! Available at http://archive.ics.uci.edu/ml/datasets/ Glass+Identiﬁcati;
2 Available at http://archive.ics.uci.edu/ml/datasets/Image+Segmentaf
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Table 5: Accuracy percent of Image Segmentation Dataset

Da"g:c ttahlg ;)f the z;ccuracy percent of Glass Identification
ataset and Image Segmentation Dataset are shown i

n
Table 4 and 5, respectively. i the

This result shows that it is i i
¢ possible to determine the depen-
'denm? of attributes of a data set from the Ameva discretiz;;f:n
algo_nthm and the adjustments to resolve the inconsistencies
outlined above with the entropy.
The relationship of dependenc
‘ ( of de y between features can be
seen in the column “Typified and discretized” for the matrix
G in the Table 4. For threshold values of 0.1 to 0.5 the accu-
racy percentage is almost the sam,
b e and the number of features
The best accuracy percentage i i
. Fhieche ge is 70.93 and it has bee -
tained with a threshold value of 0.4, the matrix G, the typ:lif;):d
datziset and only with 7 features. The original dataset has a
69.72 accuracy percentage with 9 features,
Also, it can be seen in the same colu i
mn for the matrix G* i
gle Table 5. For threshold values of 0 to 0.2 and 0.6 and 0 :)n
1€ accuracy percentage is almost the s er
of features is different. o B
The best accuracy percentage i i
- _ ge is 87.33 and it has been ob-
tained with a threshold value of 0.9, the matrix G, the typified

dataset and only with 8 features. The origi
! original dataset h
76.19 accuracy percentage with 19 fcaturef. ket

5 Conclusions and future work

W‘? ha_ve §tudied a method of discretization, Ameva, whose
objective 1s to maximize the dependence between tl;e inter-
:Vegisc;hgg dl\tl;d]e the values of an attribute and the classes to
ey belong, providi i ini

o fyimerva%s'p oviding at the same time the minimum

After that, we have developed a methodology to reduce the
number of features of a data set based on the dependence be-
tween them. To the best of knowledge, there are not exist-
Ing researches that directly address the problem to reduce the
numb.er of features using a similar approach to ours.

) Thls_ deye]opment is based on taking advantage of Ameva
discretization algorithm. Thus, a new coefficient has been
developed to determine the dependence between features
Hence, we have reduced the number of values of features and
the number of features from a quantitative reasoning

.To test the development of the methodology, it has i)een ap-
ph_ed to two well-known data set for obtain the dependent rz-
lationship between their features. Nevertheless, we think that
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{his npproach can be satisfactorily apply in this area when the
qul sl has a lot of instances and features, and one of these
featuren determines the class which each instance belongs.

- Another data sets must fulfill these characteristics.

Finally, after applying the discrimination of features ob-

- tulned In the methodology. the modified data set has been car-

fed out for the classification tests to verify the effectiveness

ol the methodology.
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