A CONTEXT-ORIENTED SYSTEM FOR MOBILE DEVICES

Ismael Cuadrado Cordero', Luis Miguel Soria Morillo', Juan Antonio Ortega Ramirez' and Luis Gonzalez-Abril®

1: Dept. of Computer Languages and Systems of University of Seville, 2: Dept. of Applied Economic I of University of

ABSTRACT

Our work provides developers of context-based
application for mobile devices a framework for
developing comprehensive and adaptable solutions that
can interacts each other through a set of functionalities
and  interaction  methods for  building secure
applications easily. On the other hand, our work
provides a platform to reduce the energy consumption
of the devices; due to the reuse of functionalities. To do
this, we have designeda layered architecture that
allows interaction between applications and context-
oriented services transparently to users. The main layer
of our architecture (Core layer) provides a tool that
allows communication between adjacent layers.
Moreover, using our architecture, developers can
design context-based applications in a simpler way, a
very important goal in order to increasing number and
functionalities of this kind of applications on mobile
devices. Furthermore, our architecture allows the reuse
of knowledge between developers. During our work,
OSGi technology has been used in mobile phones,
cutting-edge research in the field.

I. INTRODUCCION

Everyday, we see that the development of mobile
device technology has been increased with the aim of
improving the user experience. Thus, all progress of
these technologies is focused on offering more and
more features that are, in most cases, underused. This
is because most users do not have the experience and
skills necessary to improve the use of the system. For
this reason, there is a large segment of population
without access to these new technologies. Is in that
point when software should offer users the ability to
improve the use of those advances. The goal of
software technologies for mobile devices must be not
interactive - highly functional systems, so user obtains
more functionalities with little interaction as possible.

Today's users are looking for a system that can be
used in their daily lives without an active
control. That's the main reason for the emergence of
context-oriented applications. This kind of application
is booming and there are a lot of developers specialize
in these. The disadvantage of these applications lies
that their development is too complex for the average
developer. That means that only a small set of
applications makes good use of resources. In addition,
a user wishing to wuse several context-based
applications should install all these ditferent
applications on the same device. That affects the user
experience, which should set different front-ends for
difTerent applications.

Our architecture is designed with the goal of

Seville

solving these problems.It can improve system
performance and simplifies development. Furthermore,
the use of architecture offers great potential for future
applications. This is because an application developer
can reuse the code generated by another developer,
with its layered architecture. For these reasons, we
believe that our architecture is important for research in
the field of context-orientes systems on mobile devices.

II.  RELATED WORK

There are context-oriented systems that use property
hardware ([1], [2] and [5]) and those that use general
purpose hardware ([3], [4] and [6]). We will focus on
the second kind of devices, due to its versatility and
price. In the other hand, general purpose systems have
the handicap of limitations on data recovery. Our
software must wrestle with this handicap.

History of the context-oriented systems begins at year
1991. On this year, Mark Weisser used on the first time
the word ‘pervasive', meaning the integration of a
device in the daily life of users. Following the above
definition, Want, Hopper et Al, describe context-
oriented systems like “a strong part into 'pervasive'
systems”. At the same time, they present their
application for location ‘Active Badge Location
System’ [18]. This is considered the first context-
oriented application. Middle in the '90s, operating the
boom of context-oriented systems, thanks to
applications like [12], [16] and [17].

The most extended classification of these systems is
what Chen [7] made:

4 Direct Access to Sensors.

4  Middleware based: Layered architecture.
Generally, this typology only handles a kind of
context.

A  Context server: Can handle more than a
context, reusing generated data and code.

Independent of the architecture, it is necessary to
define an ontology. This is important for applications
can access to data context. According to Korpipad and
Mintyjdrvi [20], most important goals on an ontology
definition must follow four dictates: simplicity,
flexibility and extensibility, generic and expressive.
Most used ontologies are RFD (used in [8], [9] and
[10]) and OWL (used in [11], [13], [14] and [15]).

L. OSGI

Layers communication is possible thanks to OSGi
technology. This technology is far used in lots of
different fields. However, OSGi has not been regularly

umgd In mobile devices. Integration of this technology
4 thiy field is a bet on modernity and future.

Ihg flrst problem of this technology on mobile
Ugvigen is because the architecture of these devices is
tudigully different to PCs. Java virtual machine in PCs
In common to all applications, thatis, there is only one
yltunl  machine. However, smartphones virtual
myrhine behavior is not the same. In this case, each
ahpligation is running on a different virtual machine, so
eulled Dalvik for Android operating system. Thus, due
ty (OS(;i communication protocol needs to share
Mgiigges between applications, is required that all
upplication run in the same environment. To solve this
thawback, there are three alternatives:

¥ OSGi Alliance standard. In this case, we must
solve the communication problem by using
logs file interconnection.

»  ()SGi alternative protocols. There are several
parallel protocols to the original created by
OSGi  Alliance. The problem of these
protocols is that haven't a common
architecture and functionality.

» OSGi proprietary implementations. Some
enterprises have developed OSGi
implementations,  creating its  specific
environments. The main problem of these
solutions is that applications must be run over
a proprietary platform and not directly over
the [VM.

We was choice Apache Feliv, an OSGi
Implementation that can be modified for its use on
mobile devices.

IV.  ARCHITECTURE

We have defined a layered architecture based in a
context server. The mainly purpose of the architecture
ly to reuse data provide by embedded sensors in
wmartphones, and avoid the computational cost derived
from the processing of these data. It means that
dgvelopers can build applications more complex in an
cusicr way ®od, of course, reduce the computational
¢ost and hence, the energy expenditure associated.
Using this architecture we expect that more
upplications can use the device, improving its behavior,
by using all its resources. On this way, we have defined
the following layered architecture:

Figure 1: General architecture structurc
V.  CONTEXT PROVIDER

The context providers' laver is designed to store all
objects which goal is to recover all context data
provides by the device. When a developer wants to
determine a context, firstly it must install a 'context
provider' which will recover all context information
data. When a 'context provider' determines a new
context, it will send to the next layer. This
communication between layers is established using an
Ontology defined for the purpose.

An example for a context provider is an object that
sniffs the location sensors looking for the current
location. This can be the definition of a location
context. This hypothetical object is developed to
compute proximity to a specific location and
determines a context based in the distance to the
location (High, medium or low).

The development of context providers must follow an
established structure. This structure is defined in order
to improving the operation of the system.

VI.  CORE

On this architecture, the harder computing is
processed in the core layer. This layer is in charge of
data processing and store. When a context provider
sends new data to the core layer, it applies a set of
preprocessing steps. Then, it stores those data. At the
end, it processes all data and sends a message to the
application layer if necessary.



Figure 2: Extended definition of Core layer architecture

OI:l this way, the core layer is divided into four
sections.

A Context Section: It provides to the system all the
functionality directly related to the context. It
will store and process context information. It
also provides access to the context information
for the application layer.

Data Section: This section provides the system
usability for data objects. A data object is an
object that follows a defined structure. It stores
data objects and makes them accessible for the
next layer.

Event Section: In this section are stored objects
called 'events'. These objects are designed to
store simple context information. The goal of
‘event' objects is to define the condition when a
context is important for the user. An event is
defined in a vector with three components:
Context, Condition and Value. An example for a
valid event is (Speed, >, 120).

Aggregation Section: An aggregate is a set of
events. This object is designed to reuse the
events stored in the system. An aggregate is
active when all its events are active. This is

because there are so many applications that use
the same event.

VI.1 CONTEXT SECTION

) The cqntext section is designed to manage context
information. When a Context provider detects a new
com.ext, it will be send to context section. The context
section picks the new context across the 'context
update' component. This component is in charge to

c}]eck if a context provider is registered in the system.
If a context provider is registered in the system, it will
be added to the 'context repository' component. This is
bec.ause of the security, and the component in charge of
registry is 'context subscription'.

The 'Application repository' is the component in
charge to store the relation between applications and
context. This is also because of the security of the
system. At last, there is the 'context discover'
component, which acts like an access point for the
application layer to this section.

VI.2 DATA SECTION

The. two main components in data section are 'Data
rcposgtory‘ and 'Data query'. The first component is a
repository, used for the storage of historical data. The
second component acts like an access point. This
component allows applications to access the context
providers’ generated data.

V1.3 EVENT SECTION

Qsing this section, core layer can manage all events
reglstpred at the system. Like all sections, it has a
repository used for storage. This repository is the
component 'Event repository'. At this layer, it can be
found all the registered events. The relation between
events and applications is stored at the component 'App
X'. This component is used for optimization and
security of the layer. At the end, there are two
components used for the interaction between
applications and core.

V1.4 AGGREGATION SECTION

This section is designed for reuse of the stored
events. It is composed of two components. The first

component is called Aggregate Repository, which
alores ngpregates information, for instance, events that
I composed by, logical functions that relate these
events and last value of aggregate evaluation. The
wecond component is  Context Aggregate. This
component stores all the related logic for the aggregate.
With this component it can be made sniffing of new
data and detect new changes on stored aggregates.

VII,  APPLICATIONS

The upplication layer is the layer in charge of giving
funetionality to the system. On this layer there are
stored all objects designed to give the user a service.
These applications must follow a predefined structure.
Applieations do not need to know anything about
gontext providers (use, name, etc.). An application just
l\4s 1o registry under the system looking for a service.
Then, the core layer will search for the appropriate
context provider. If this context provider “dead”, the
core layer will look for another context provider that
can make the same work.

Development of applications is so casier now.
Developers just have to design user functionality and
registry at the system.

Vill, CONCLUSION

‘I'he main problems of context-oriented applications
ure complexity of development and reutilization of
pesources. On one hand, our architecture improves the
usabllity of device. This is because of reuse of
generated data made at core layer. Using this middle
layer, different applications can use same data on
different purposes. Due to this improvement, we can
remove need of different applications using same
resource. So, we can optimize use of the device.

On the other hand, our architecture simplifies
development of applications. This is because of
separation between context providers and applications.
This means lots of new developers making
npplications. Thanks to this new population, use of the
device will be increased. Our expectations with this
urchitecture are to provide the developers population a
new tool that increased use of context-oriented
applications.

Al last, using OSGi technology in a mobile device
Increased functionality and optimize messaging. Use of
this technology allows system dynamically install new
applications or context providers. This increased
functionality of system and make it more attractive for
final users. Users will see a dynamic system which
does not need to reboot when actualizing.

REFERENCES

[1] Bill N. Schilit and Marvin M. Theimer.
Disseminating Active Map Information to Mobile
Hosts. IEEE Network, &(5). 1994

[2] Nick Ryan, Jason Pascoe and David Morse.
Inhanced reality fieldwork: the contextaware
archacological assistant. Gaffney, V., van Leusen, M.,
Exxon, S. (eds) Computer Applications in Archaeology
1997

[3] Anind K. Dey. Context-aware computing: The
CyberDesk project. Proceedings of the AAAT 1998
Spring Symposium on Intelligent Environments. Menlo
Park, CA: AAAI Press.

[4] Richard Hull, Philip Neaves, James Bedford-
Roberts. Towards situated computing. In Proceedings
of International Symposium on Wearable Computers
1997

[5] Thomas Hofer, Wieland Schwinger, Mario Pichler,
Gerhard Leonhartsberger, Josef Altmann. Context-
Awareness on Mobile Devices — the Hydrogen
Approach. 2002

[6] Jay Budzik, Kristian J. Hammond. User interactions
with everyday applications as context for just-in-time
information access. Proceedings of Intelligent User
Interfaces 2000. ACM Press, 2000

[7] Harry Chen. An Intelligent Broker Architecture for
Context-Aware Systems. PhD. Dissertation proposal.
2003

[8] Panu Korpip#d, Jani Méntyjérvi, Juha Kela, Heikki
Kerdnen, FEsko-Juhani Malm. Managing Context
Information in Mobile Devices. IEEE Pervasive
Computing. 2003

[9] Panu Korpipad, Jani Mintyjérvi. An Ontology for
Mobile Device Sensor-Based Context Awareness. Proc.
Context *03, LNAI no. 2680, 2003

[10] Resource Description Framework (RDF).
www.w3.org/RDF/

[11] OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/

[12] Gregory D. Abowd, Christopher G. Atkeson,
Jason Hong, Sue Long, Rob Kooper, Mike Pinkerton.
Cyberguide: A mobile context-aware tour guide.
Wireless Networks, 3(5). 1997

[13] Tao Gu, Xiao Hang Wang, Hung Keng Pung, Da
Qing Zhang. A Middleware for Context-Aware Mobile
Services. IEEE Vehicular Technology Conference.
Milan, Italy, 2004

[14] Harry Chen, Tim Finin, Anupam Joshi. Using
OWL in a Pervasive Computing Broker. Workshop on
Ontologies in Agent Systems, AAMAS 2003

[15] Harry Chen, Tim Finin, Anupam Joshi. An
Ontology for Context-Aware Pervasive Computing
Environments. Special Issue on Ontologies for
Distributed Systems, Knowledge Engineering Review.
2004

[16] Sidney Fels, Yasuyuki Sumi, Tameyuki Etani,
Nicolas Simonet, Kaoru Kobayashi, Kenji Mase.
Building a context-aware mobile assistant for
exhibition tours. The First Kyoto Meeting on Social
Interaction and Communityware. 1998

[17] Nigel Davies, Keith Cheverst, Keith Mitchell,
Alon Efrat. Developing a context sensitive tour guide.
Proceedings of First Workshop on Human-Computer
Interaction for Mobile Devices, Glasgow, UK. 1998

15



(18] Roy Want, Andy Hopper, Veronica Falcio,
Jonathan Gibbons. The Active Badge Location System.
ACM Transactions on Information Systems, 10(1),
1992

1R





