
Article https://doi.org/10.1038/s41467-022-34355-w

Global and regional ecological boundaries
explain abrupt spatial discontinuities in
avian frugivory interactions

A list of authors and their affiliations appears at the end of the paper

Species interactions can propagate disturbances across space via direct and
indirect effects, potentially connecting species at a global scale. However,
ecological and biogeographic boundaries may mitigate this spread by
demarcating the limits of ecological networks. We tested whether large-scale
ecological boundaries (ecoregions and biomes) and human disturbance gra-
dients increase dissimilarity among plant-frugivore networks, while account-
ing for background spatial and elevational gradients and differences in
network sampling. We assessed network dissimilarity patterns over a broad
spatial scale, using 196 quantitative avian frugivory networks (encompassing
1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes,
and 6 continents. We show that dissimilarities in species and interaction
composition, but not network structure, are greater across ecoregion and
biome boundaries and along different levels of human disturbance. Our
findings indicate that biogeographic boundaries delineate the world’s biodi-
versity of interactions and likely contribute to mitigating the propagation of
disturbances at large spatial scales.

Abiotic gradients underlie the existence of a wide array of natural
ecosystems, which are the cornerstone of biological diversity on
Earth1,2. Ecoregions, defined as regional-scale terrestrial ecosystems1,
delineate regional discontinuities in the environment and in species
composition3,4, whereas biomesmark ecological boundaries at a global
scale, such that ecoregions are nestedwithinbiomes1,3 (Supplementary
Fig. 1). Accordingly, ecoregion and biomemaps have been widely used
for guiding conservation planning3,5, but it has only recently been
shown that distinct ecoregions truly represent sharp boundaries for
species composition across several taxa4.

There has been growing recognition that interactions among
species are critical for biodiversity and ecosystem functioning6 and
represent an important component of biodiversity themselves, such
that interactions may disappear well before the species involved7.
Species interactions also provide a pathway for the propagation of
disturbances via direct and indirect effects, such as secondary
extinctions and apparent competition8,9, with indirect effects of spe-
cies on others potentially being as important as direct effects10.

Moreover, adjacent habitats can sharemany interactions and function
as a single dynamic unit9,11, suggesting that the habitat boundaries
typically used by ecologists to delineate interaction networks may not
represent true boundaries11. Thus, both natural and human dis-
turbances in local communities of interacting species might reverbe-
rate and affect ecosystem functioning at multiple sites12,13, with
widespread interactions potentially connecting species at a global
scale12. However, the spread of disturbances may be hindered when
ecological interactions are arranged discontinuously into distinct
compartments14. Despite this importance, we are only beginning to
understand the connections among ecological networks at very large
scales12,13, and it remains unknown whether predictable, large-scale
discontinuities in interaction network composition (i.e., the identity of
interactions that comprisea local network) exist across ecoregions and
biomes. Such discontinuities would mark true network boundaries,
and could thus act as a barrier to the global spread of disturbances.

Because species tend to be replaced across ecosystems2,4 and
environmental conditions can favor some types of interactions over

Received: 10 March 2022

Accepted: 20 October 2022

Check for updates

e-mail: martinslucas.p@gmail.com; jason.tylianakis@canterbury.ac.nz

Nature Communications |         (2022) 13:6943 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34355-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34355-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34355-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34355-w&domain=pdf
mailto:martinslucas.p@gmail.com
mailto:jason.tylianakis@canterbury.ac.nz


others (e.g., by altering the quality and detectability of interaction
partners)15, we hypothesize that ecoregions and biomes delineate the
large-scale distribution of species interactions. Specifically, we expect
to find sharp differences in the composition of species interactions
when crossing ecoregion and biome boundaries, beyond what would
be expected from spatial processes alone—which are known to drive
gradual changes in species and interaction composition15. Indeed,
distance–decay relationships have been demonstrated across spatial
and elevational gradients not only for species16, but also for ecological
networks17–19, and likely result from dispersal limitation and increasing
environmental dissimilarity with increasing geographic distance15,16.
Alternatively, ecological boundariesmight be blurred by the processes
of species and interaction homogenization (i.e., increasing similarity
among biological communities), which accompany human dis-
turbances such as land-use change and biotic invasions12,20. Thus, an
alternative hypothesis would be that shared interactions and biotic
homogenization prevent any sharp discontinuities in interaction
composition. If this is true, we expect to find a gradual decrease in the
similarity of interactions with increasing spatial distance, but no
abrupt differences in the identity of interactions from networks loca-
ted at distinct ecoregions and biomes.

Here we evaluate whether significant changes in the composi-
tion of species, the composition of interactions, and the structure of
local networks of avian frugivory are explained by large-scale eco-
logical boundaries (ecoregions and biomes) and human disturbance
gradients, while accounting for background spatial and elevational
effects. Given known patterns of species turnover across environ-
mental gradients16, we hypothesize a similar pattern of turnover in
interaction composition (hereafter, interaction dissimilarity), which
could lead to changes in the whole structure of networks (i.e.,
changes in the arrangement of interactions among species), repre-
sented here by a metric combining several descriptors of network
architecture, which we call network structural dissimilarity (see
“Methods” for more details). Notably, environmental conditions may
also affect niche partitioning and interaction specialization, poten-
tially explaining further structural differences among ecological
networks from distinct habitats and biogeographical regions15,21,22.
We focused on avian frugivory networks, that is, local communities
of interacting bird and fruiting plant species, because of their
importance for seed dispersal23, promoting species diversity24 and
regenerating degraded ecosystems25. As such, mapping the global
distribution of plant-frugivore interactions will be crucial to ensure
ecosystem functioning and resilience in a context of increasing glo-
bal changes.

In this study, we show that both ecoregion and biome bound-
aries explain abrupt spatial discontinuities in the composition of
species and their interactions within plant-avian frugivore networks.
These effects are detectable on top of the effects of spatial and ele-
vational gradients and after accounting for differences in sampling
effort and methods. Similarly, we find evidence that human dis-
turbance gradients also promote large-scale shifts in species and
interaction composition. Interestingly, despite the large (often
complete) changes observed in the composition of species and
interactions, the structure of avian frugivory networks is relatively
consistent across large-scale environmental gradients. Our results
reveal that ecoregion and biome boundaries delineate the world’s
biodiversity of interactions and may therefore contribute to miti-
gating the spread of disturbances across the global network of avian
frugivory.

Results
Overview of the analysis
To test our hypotheses, we assembled a large-scale database com-
prising 196 quantitative local networks of avian frugivory (with 9819
links between 1496 plant and 1004 bird species) distributed across 67

ecoregions, 11 biomes, and 6 continents (Supplementary Figs. 1 and 2;
Supplementary Table 1). Local networks are composed of nodes—plant
and bird species, connected by links whenever two species interact
with each other. Each local network is represented by a matrix, with
plants and birds on rows and columns, respectively, and cell values
describing the weighted network links—the number of fruit-feeding
events (i.e., interaction frequency) between a plant and bird species.
To ensure that our results would not be driven by taxonomic uncer-
tainty, we standardized the taxonomy of plant and bird species in our
local networks. For this, we extracted the frugivore and plant species
lists from all networks and performed a series of filters to remove non-
existent species names (e.g., morphospecies labels) and standardize
synonymous names according to reference databases (steps and
examples are presented graphically in Supplementary Figs. 3–6). To
account for sampling differences between networks, we controlled
statistically for network sampling metrics (i.e., hours, months, years,
intensity and methods) in our analyses (see Network sampling dis-
similarity section in “Methods”; relationships among sampling vari-
ables and network metrics are presented in Supplementary Figs. 7 and
8; variables are described in Supplementary Tables 2 and 3).

We generated several distance matrices (N ×N, where N is the
number of local networks in our dataset) to be our variables in the
statisticalmodels. Specifically, we used ecoregion, biome, local human
disturbance (measured using the human footprint index26), spatial,
elevation and sampling-related distance matrices as predictor vari-
ables, and facets of network dissimilarity (i.e., species turnover, inter-
action dissimilarity, and network structural dissimilarity) as response
variables (see a summary of our methods in Fig. 1). By evaluating these
three different facets of network dissimilarity, we were able to assess
the extent to which changes in species composition are associated
with changes in both the identity of component interactions (inter-
action dissimilarity) and the architecture of local networks (network
structural dissimilarity, which may remain the same despite turnover
of species and interactions27,28). Together these facets contribute to
greater understanding of the scale at which one ecological network
ends and another begins, and how/why networks vary across large
spatial scales15,27. We tested the significance of our predictor variables
by employing a combination of Generalized Additive Models (GAMs,
to allow for non-linear relationships among variables)29 and Multiple
Regression on distance Matrices (MRM, to account for the non-
independence associated with pairwise comparisons of local
networks)30. Essentially, this analysis is equivalent to a GAM, but where
the predictor and response variables are distance matrices and the
non-independence of distances from each local network is accounted
for in the hypothesis testing by permuting the response matrix (see
more details in the Statistical analysis section in “Methods”). Finally, we
used deviance partitioning analyses to explore the unique and shared
contributions of our predictor variables to explaining the variance in
network dissimilarity.Wedid this by fitting reducedmodels (i.e., GAMs
where one or more predictor variables of interest were removed) and
comparing the explained deviance.

Species turnover across networks
Using a binary approach—in which two ecological networks located
within the same ecoregion/biomeweregiven a valueof zero, otherwise
a one—to generate our ecoregion and biome distance matrices, we
found that the turnover of plant and frugivorous-bird species com-
position was strongly affected by ecoregion (t = −38.093; P = 0.001)
and biome (t = −8.799; P =0.001) boundaries (SupplementaryTable 4).
Trends were qualitatively similar when we assessed the effect of these
ecological boundaries using a quantitative approach based on the
environmental dissimilarity between ecoregions and biomes (Supple-
mentary Table 5; Supplementary Figs. 9a-b). Similarly, there was an
overall trend of networks located at different positions along the
human disturbance gradient having different species composition
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(F = 28.504; P =0.001) (Supplementary Fig. 9c). As expected, spatial
and elevational gradients also promoted species turnover across net-
works (Supplementary Tables 4 and 5), with spatial distance alone
accounting for the greatest proportion of deviance explained in spe-
cies turnover (12.9%), followed by the shared contribution of spatial
distance and ecoregion boundaries (11.2%) (Supplementary Fig. 10).

Interaction dissimilarity
Plant-frugivore interaction dissimilarity increased significantly across
ecoregions (t = −36.401; P =0.001), biomes (t = −3.323; P = 0.044) and
different levels of human disturbance (F = 29.988; P =0.001), even

after accounting for the effects of spatial distance, elevational differ-
ences, and sampling-related metrics (Table 1). Similar results were
found when we performed the analyses using quantitative versions of
ecoregion and biome distance matrices (Supplementary Table 6).
These findings provide strong support to the hypothesis that large-
scale ecological boundaries mark spatially abrupt discontinuities in
plant-frugivore interactions (Figs. 2 and 3; Supplementary Fig. 11).
Importantly, a great proportion of the deviance explained by biomes
was shared with ecoregions (see the overlapping areas between ecor-
egions andbiomes in Fig. 4 and Supplementary Fig. 12),which suggests
that changes in interaction dissimilarity across biome boundaries

Fig. 1 | Our approach for evaluating the multiple predictors of network dis-
similarity at large spatial scales.We used several distancematrices (N ×N, where
N is the number of local networks in our dataset) as variables in the statistical
models. a, b Maps show examples of ecoregions and biomes (colors of shaded
areas) represented inour dataset. Points indicate the locations of four network sites
used to illustrate howwegeneratedour distancematrices (see Fig. 2 to visualize the
locations of all network sites in our dataset). Ecoregion and biome distance
matrices were generated using both a binary (shown in the figure) and a quanti-
tative approach (generated by measuring the environmental dissimilarity between
ecoregions/biomes; see “Methods”). Because ecoregions are nested within biomes,
network sites located within the same ecoregion are always within the same biome,
but the opposite is not necessarily true; see, for example, the comparison between
network site 1 and network site 3, which involves two ecoregions (Southwest
Amazonmoist forest and Araucaria moist forest) from the same biome (Tropical &
SubtropicalMoist Broadleaf Forests). cThehumandisturbancedistancematrixwas
generated by calculating the absolute difference between local-scale human

footprint values around each network site. d–f Spatial distance, elevational differ-
ence and sampling-related distance metrics (i.e., sampling methods, hours,
months, years, and intensity) were used as covariates in our models to control for
distance-decay effects and differences in network sampling. Note that even though
we only depict the sampling method distance matrix in f, all sampling-related
metricswere used as predictors in themodels. g–iWeused three different facets of
network dissimilarity (i.e., species turnover, interaction dissimilarity and network
structural dissimilarity) as response variables (see Network dissimilarity section in
“Methods”). jWe tested the significance of our predictor variables by employing a
combination of Generalized Additive Models (GAM) and Multiple Regression on
distanceMatrices (MRM). In this analysis, the non-independence of distances from
each local network is accounted for by performing 1000 permutations of the
responsematrix. Ecoregions andbiomeswere definedbasedon themapdeveloped
by Dinerstein et al.3 (available at https://ecoregions.appspot.com/ under a CC-BY
4.0 license). Bird and plant silhouettes were obtained from http://phylopic.org
under a Public Domain license.
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mostly reflect the variation occurring at a finer (ecoregion) scale.
Specifically, crossing an ecoregion boundary induced an average 7%
increase in interaction dissimilarity, while crossing a biome boundary
only induced an additional 0.2% change. As with species turnover, we
found a strong effect of human disturbance gradients on interaction
composition (F = 29.998; P =0.001), such that networks at opposite
ends of the human disturbance continuum usually exhibited very dif-
ferent interactions, even if they were located within the same ecor-
egion or biome (Fig. 5; Supplementary Fig. 13).

In addition to the importance of ecological boundaries and
human disturbance gradients for driving plant-frugivore interaction
dissimilarity, these effects were observed against a background of
increasing interaction dissimilarity through space. Indeed, interac-
tion dissimilarity increased sharply until a threshold distance of
around 2500 km between network sites, beyond which few net-
works shared any interactions and dissimilarity remained close to
its peak (Fig. 6; Supplementary Fig. 14). In the cases where spatially
distant networks shared interactions, these typically involved spe-
cies that had been introduced in at least one location. For instance,
the interaction between the Blackbird Turdus merula and the
Blackberry Rubus fruticosus was shared between networks located
more than 18,000 km apart: while both species are native in Europe,
they have been introduced by humans to Aotearoa New Zealand.
Similarly, networks from Asia were connected to Hawai’i mostly
through interactions involving introduced species in the latter, such
as the Red-whiskered Bulbul Pycnonotus jocosus and the Java Plum
Syzygium cumini (Fig. 2).

Deviance partitioning revealed that the shared effect of crossing
ecoregion boundaries and spatial distance explained the greatest
proportion of the variance in plant-frugivore interaction dissimilarity
(6.41%), followed by the unique contributions of each of these two
variables (ecoregion boundaries = 4.22%; spatial distance = 1.90%;
Fig. 4). This relatively high contribution of both ecoregion and spatial
distance indicates that gradual increases in interaction dissimilarity
over space are made significantly steeper when crossing ecoregion
boundaries.

Network structural dissimilarity
Despite significant turnover in species and interaction composition,
structural dissimilarity of frugivory networks did not change sig-
nificantly across large-scale ecological boundaries and human dis-
turbancegradients, being only affected by spatial distance (F = 20.408;
P =0.021) and differences in sampling intensity (F = 238.987;
P =0.002) (Supplementary Table 7). These findings held true when
evaluating both the binary and quantitative versions of ecoregion and
biome distance matrices (Supplementary Tables 7 and 8).

All our main results were robust to different processes of
assigning uniqueness to problematic species in local networks, that is,
species without a valid epithet that could not be considered as unique
species in our dataset (see Supplementary Methods and Supplemen-
tary Tables 9–32). Finally, tests of our key hypotheses were not affec-
ted by the removal of individual studies (Supplementary Figs. 15 and
16; Supplementary Tables 33 and 34) or small networks (i.e., up to
10 species) from the dataset (see Sensitivity analysis section in the
Supplementary Methods).

Discussion
Our results support the hypothesis that large-scale ecological bound-
aries drive abrupt differences in species and interaction composition
of avian frugivory networks. Specifically, on topof the gradual effect of
spatial distance on interaction dissimilarity (whereby net-
works >2500 km apart had very few interactions in common), transi-
tions across ecoregions and biomes promoted divergence in species
interactions. These results show that ecoregions and biomes, classi-
cally defined based on environmental conditions and species
occurrences1,3,4, also carry a signature within biotic interactions.
Indeed, because the large-scale distribution of both species and
interactions is punctuated by ecoregion and biome boundaries (Fig. 2
and Supplementary Fig. 17), our findings suggest that species bio-
geography ismatched by a higher-order biogeography of interactions.
In parallel, differences in human disturbance led sites to have sig-
nificantly different species and interaction composition, which might
be partly attributed to the filtering of sensitive species and their
interactions from disturbed sites17,31. In fact, while networks from nat-
ural ecosystems usually contain interactions between native species,
which better reflect natural biogeographic patterns12 and are more
susceptible to human disturbances31, interactions from high-
disturbance regions are generally performed by generalist and intro-
duced species17,31,32. Nevertheless, despite these differences in com-
position, we found that the structure of avian frugivory networks was
relatively consistent across large-scale environmental gradients. Simi-
lar results have been reported at smaller spatial scales32, indicating that
assembly rules may generate common structural patterns in plant-
frugivore networks33 despite the shifts in species and interaction
composition that usually accompany environmental changes15.

Because most of the variation in interaction dissimilarity across
biome borders can be explained by ecoregion boundaries, preserving
the distinctness of ecoregions3,4 will likely contribute to maintaining
the natural barriers that limit the spread of disturbances across the
global network of frugivory. Unfortunately, the unique species
assemblages that comprise ecoregions have been increasingly threa-
tened by global changes3,5. In fact, the global frugivory network is
connected not only through natural processes, such as bird
migration34, but also through human-related processes. Biotic homo-
genization, in particular, has contributed to blurring biogeographical
signatures12,20 and mitigating the effect of spatial processes on inter-
action dissimilarity12. This notion is reinforced by the fact that all long-
distance (>10,000 km) connections (shared interactions) between
local networks of frugivory involved at least one region where novel
interactions performed by introduced species have largely replaced
those performed by declining or already extinct native species, such as
Aotearoa New Zealand and Hawai’i32,35 (see, for example, the shared

Table 1 | Multiple predictors of plant-frugivore interaction
dissimilarity (βWN)

Parametric coefficients Estimate t P

Intercept 0.997 2964.191 0.001

Ecoregion (same) −0.070 −36.401 0.001

Biome (same) −0.002 −3.323 0.044

Smooth Terms EDF F P

s (human disturbance
distance)

8.534 29.988 0.001

s (spatial distance) 8.785 65.378 0.001

s (elevational difference) 6.168 47.707 0.001

s (hours distance) 1.558 5.449 0.290

s (months distance) 5.482 6.902 0.075

s (years distance) 7.208 11.848 0.019

s (sampling intensity
distance)

1.018 5.182 0.259

s (methods distance) 8.632 16.002 0.005

Here, we used the binary version of ecoregion and biome distance matrices. P values were
calculated using a two-tailed statistical test that combines Generalized Additive Models (GAM)
andMultiple Regression ondistanceMatrices (MRM). In this approach, the non-independence of
distances fromeach local network is accounted for in thehypothesis testingbyperforming 1000
permutations of the response matrix (see “Methods”). EDF represents the effective degrees of
freedom for each smooth term in the model. N pairs of networks = 19,110.
Bold P values indicate statistically significant results (P <0.05).
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interactions connecting networks from Europe and Aotearoa New
Zealand in Fig. 2). Interestingly, these long-distance connections tend
to occur more frequently within than across biomes, despite a greater
proportion of network comparisons being cross-biome (Supplemen-
tary Fig. 18). This indicates that biomes may represent meaningful
boundaries not only for species, but also for novel interactions
resulting from species introductions around the world12. Notably,
because species interactions provide the pathways across which direct
and indirect effects (such as dynamic impacts of population declines,
apparent competition and trophic cascades) may propagate, spatially-
separated networks that share interactions may have coupled
dynamics and respond similarly to disturbance9,36. In fact, findings that
ecological networks in adjacent habitats may function as a single
dynamic unit9 raises questions around the scale over which two net-
works can be considered truly distinct. As a step to answering this
question, we provide empirical evidence for the existence of large-
scale boundaries between ecological networks. Consequently, our
results suggest that disturbances in local frugivory networks aremuch
less likely to impact networks from distant sites or elevations, espe-
cially if they are located within distinct ecoregions and biomes.

Although species turnover and interaction dissimilarity
responded to similar ecological drivers, species might interact
differently across environmental gradients not only because of
changes in species composition, but also because of partner
switching associated with shifts in species abundance (i.e., the
probability of random encounters), foraging behavior and co-
evolutionary patterns15. Indeed, while interactions necessarily
differ when the species involved differ27, it is possible that shared

species interact differently across sites, potentially decoupling the
relationship between species turnover and interaction dissim-
ilarity. To evaluate whether interaction rewiring (i.e., the extent to
which shared species interact differently27) increases across large-
scale environmental gradients, we used data limited to pairs of
networks sharing plant and bird species (N pairs of networks =
1314) (see Rewiring analysis section in “Methods”). We found that
interaction rewiring increased significantly across human dis-
turbance, spatial, and elevational gradients (Supplementary
Table 35), partially explaining why interactions tend to turn over
faster than species at large spatial scales (Supplementary Figs. 9d
and 14c). In fact, networks shared considerably more species than
interactions (Fig. 2 and Supplementary Fig. 17), reinforcing pre-
vious findings that plant and bird species are flexible and tend to
switch among their potential partners, even when networks have
similar species composition32. Surprisingly, we did not find an
effect of ecoregion boundaries on interaction rewiring (Supple-
mentary Table 35). This effect only became significant when
ecoregion and biome distances were the only predictors in the
model (Supplementary Table 36), probably because of their colli-
nearity with our other predictor variables (Supplementary Fig. 19).

As with other large-scale studies of ecological networks12,37, our
data were not evenly spread across the globe, which likely affected the
observed patterns. For instance, around 59% of our networks were
located within a single biome—the Tropical & Subtropical Moist
Broadleaf Forests (Supplementary Fig. 2). Because ecoregions tend to
be more distinct in tropical than in temperate zones38, the greater
number of networks from tropical ecosystems (which also possess

Fig. 2 | Plant–frugivore interactions shared among local networks, ecoregions,
and biomes. a World map with points representing the 196 avian frugivory net-
works in our dataset. Colors of shaded areas represent the 67 ecoregions where
networks were located, with similar colors indicating ecoregions that belong to the
same biome. Lines represent the connections (shared interactions) plotted along
the great circle distance between networks, with most of these connections
occurring within (blue lines) rather than across (red lines) biomes. Stronger color
tones of lines indicate higher similarity of interactions (1-βWN) between networks.
Connections across continents weremostly attributed to introduced species in one

of these regions. Lines disappearing at the side edges of the world map are con-
nected to those fromtheopposite edge. Photos show someof the frugivorousbirds
present in our dataset. Inset maps depict three regions with many networks and
connections (especiallywithin biomes).b SouthAmerica.c Europe.dAotearoaNew
Zealand. Photo credits: R.Heleno (top left andbottom right); R. B.Missano (bottom
left); J. M. Costa (top right). Ecoregions and biomes were defined based on themap
developed byDinerstein et al.3 (available at https://ecoregions.appspot.com/ under
a CC-BY 4.0 license). Source data are provided as a Source Data file.
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most of the world’s ecoregions3) may have contributed to the strong
observed effect of ecoregion boundaries on interaction dissimilarity.
Nevertheless, both species richness and the proportion of frugivorous
birds reach their peaks in the Tropics39, suggesting that the distribu-
tion of networks in our dataset partially mirrors the global distribution
of avian frugivory. We also highlight that the ecoregions and biomes
represented in our dataset cover around 20% and 69%, respectively, of
the world’s ice-free land surface. As such, network sampling in data
deficient regions37, especially at the ecoregion scale, may contribute
greatly to our understanding of macroecological patterns in avian
frugivory networks. Importantly, the extent to which our results apply
for other frugivorous taxa (such as mammals and reptiles) and inter-
action types remains to be investigated. Previous findings, however,
indicate that less-mobile taxa tend to show a stronger adherence to
ecological boundaries38, a pattern that is likely to be reflected in spe-
cies interactions. This is corroborated here by the fact that networks
located at distinct ecoregions and biomes tended to share more bird
than plant species (Supplementary Fig. 17).

This work provides evidence that ecological boundaries and
human disturbance gradients delineate the large-scale spatial
distribution of species and their interactions. Nevertheless, net-
work structure remained relatively consistent across broad-scale
environmental gradients. This suggests that the processes
underlying the architecture of frugivory networks, such as eco-
logical specialization40 and species’ functional roles41, may be
reasonably independent of the identity of interacting species19.
By demonstrating the validity of the ecoregion-based approach1,3

for species interactions, our results have important implications
for maintaining the world’s biodiversity of interactions and the
myriad ecological functions they provide.

Methods
Dataset acquisition
Plant-frugivore network data were obtained through different online
sources and publications (Supplementary Table 1). Only networks that
met the following criteria were retrieved: (i) the network contains
quantitative data (ameasure of interaction frequency) from a location,
pooling through time if necessary; (ii) the network includes avian
frugivores. Importantly, we removed non-avian frugivores from our
analyses because only 28 out of 196 raw networks (before data clean-
ing) sampled non-avian frugivores, and not removing non-avian fru-
givores would generate spurious apparent turnover between networks
that did vs. did not sample those taxa. In addition, the removal of non-
avian frugivores did not strongly decrease the number of frugivores in
our dataset (Supplementary Fig. 20a)or the total number of links in the
global network of frugivory (Supplementary Fig. 20b). Furthermore,
non-avian frugivores, as well as their interactions, were not shared
across ecoregions and biomes (Supplementary Fig. 21), so their
inclusionwould only strengthen the results we found (though asnoted
above, we believe that this would be spurious because they are not as
well sampled); (iii) the network (after removal of non-avian frugivores)
contains greater than two species in each trophic level. Because this
size thresholdwas somewhat arbitrary, weused a sensitivity analysis to
assess the effect of our network size threshold on the reported pat-
terns (see Sensitivity analysis section in the Supplementary Methods
and Supplementary Figs. 22–24); and (iv) network sampling was not
taxonomically restricted, that is, sampling was not focused on a spe-
cific taxonomic group, such as a given plant or bird family. Note,
however, that authors often select focal plants or frugivorous birds to
be sampled, but this was not considered as a taxonomic restriction if
plants and birds were not selected based on their taxonomy (e.g., focal
plants were selected based on the availability of fruits at the time of
sampling, or focal birds were selected based on previous studies of
bird diet in the study site). The first source for network data was the
Web of Life database42, which contains 33 georeferenced plant-
frugivore networks from 28 published studies, of which 12 networks
met our criteria.

We also accessed the Scopus database on 04 May 2020 using the
following keyword combination: (“plant-frugivore*” OR “plant-bird*”
OR “frugivorous bird*” OR “avian frugivore*” OR “seed dispers*”) AND
(“network*”OR “web*”) to search for papers that include data on avian
frugivory networks. The search returned a total of 532 studies, from
which 62 networks that met the above criteria were retrieved. We also
contacted authors to obtain plant-frugivore networks that were not
publicly available, which provided us a further 110 networks. The
remaining networks (N = 12) were obtained by checking the database
from a recently published study12. In total, 196 quantitative avian fru-
givory networks were used in our analyses.

Generating the distance matrices to serve as predictor and
response variables
Ecoregion and biome distances. We used the most up-to-date (2017)
map of ecoregions and biomes3, which divides the globe into 846
terrestrial ecoregions nested within 14 biomes, to generate our ecor-
egion and biome distance matrices. Of these, 67 ecoregions and 11
biomes are represented in our dataset (Supplementary Figs. 1 and 2).
We constructed two alternative versions of both the ecoregion and
biome distance matrices. In the first, binary version, if two ecological
networks were from localities within the same ecoregion/biome, a
dissimilarity of zero was given to this pair of networks, whereas a
dissimilarity of one was given to a pair of networks from distinct
ecoregions/biomes (this is the same as calculating the Euclidean dis-
tance on a presence–absence matrix with networks in rows and ecor-
egion/biomes in columns).

In the second, quantitative version, we estimated the pairwise
environmental dissimilarity between our ecoregions and biomes using

Same
Distinct

Ecoregion

Same
Distinct

Biome

Fig. 3 | The effects of ecological boundaries on interaction dissimilarity (βWN).
Histograms and inset quantile-quantile (Q–Q) plots showing differences in the
distributions of interaction dissimilarity values between pairs of networks located
within (“same”) and across (“distinct”) ecoregions and biomes. The effects of
ecoregion and biome boundaries were significant, even after controlling for the
other predictor variables in the model (Table 1). We square root transformed the
x-axis scale to allow a better visualization of the distribution of data points (pairs of
networks) with interaction dissimilarity values <1. Source data are provided as a
Source Data file.
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six environmental variables recently demonstrated to be relevant in
predicting ecoregion distinctness, namely mean annual temperature,
temperature seasonality, mean annual rainfall, rainfall seasonality,
slope and human footprint38. We obtained climatic and elevation data
from WorldClim 2.143 at a spatial resolution of 1-km2. We transformed
the elevation raster into a slope raster using the terrain function from
the raster package44 in R45. As a measure of human disturbance, we
used human footprint—a metric that combines eight variables asso-
ciatedwith humandisturbances of the environment: the extent of built
environments, crop land, pasture land, human population density,
night-time lights, railways, roads and navigable waterways26. The
human footprint raster was downloaded at a 1-km2 resolution26.
Because human footprint data were not available for one of our
ecoregions (Galápagos Islands xeric scrub), we estimated human
footprint for this ecoregion by converting visually interpreted scores
into the human footprint index. We did this by analyzing satellite
images of the region and following a visual score criterion26. Given the
previously demonstrated strong agreement between visual score and
human footprint values26, we fitted a linear model using the visual
score and human footprint data from 676 validation plots located
within theDeserts and xeric shrublands biome - the biome inwhich the
Galápagos Islands xeric scrub ecoregion is located - and estimated the
human footprint values for our own visual scores using the predict
function in R45.

Weused 1-km2 resolution rasters and the extract function from the
raster package44 to calculate the mean value of each of our six envir-
onmental variables for each ecoregion in our dataset. Because biomes
are considerably larger than ecoregions (which makes obtaining
environmental data for biomes more computationally expensive) we
used a coarser spatial resolution of 5-km2 for calculating the mean
values of environmental variables for each biome. Since a 5-km2 reso-
lution raster was not available for human footprint, we transformed
the 1-km2 resolution raster into a 5-km2 raster using the resample
function from the same package.

To combine these six environmental variables into quantitative
matrices of ecoregion and biome environmental dissimilarity, we
ran a Principal Component Analysis (PCA) on our scaled multi-
variate data matrix (where rows are ecoregions or biomes and col-
umns are environmental variables). From this PCA, we selected the
scores of the four and three principal components, which

represented 89.6% and 88.7% of the variance for ecoregions and
biomes, respectively, and converted it into a distance matrix by
calculating the Euclidean distance between pairs of ecoregions/
biomes using the vegdist function from the vegan package46. Finally,
we transformed the ecoregion or biome distance matrix into a N ×N
matrix where N is the number of local networks. In this matrix, cell
values represent the pairwise environmental dissimilarity between
the ecoregions/biomes where the networks are located. The main
advantage of using this quantitative approach is that, instead of
simply evaluating whether avian frugivory networks located in dis-
tinct ecoregions or biomes are different from each other in terms of
network composition and structure (as in our binary approach), we
were also able to determine whether the extent of network dis-
similarity depended on how environmentally different the ecor-
egions or biomes are from one another.

Local-scale human disturbance distance. To generate our local
human disturbance distance matrix, we extracted human footprint
data at a 1-km2 spatial resolution26 and calculated the mean human
footprint values within a 5-km buffer zone around each network site.
For the networks located within the Galápagos Islands xeric scrub
ecoregion (N = 4), we estimated the human footprint index using the
same method described in the previous section for ecoregion- or
biome-scale human footprint. We then calculated the pairwise Eucli-
deandistancebetweenhuman footprint values fromour network sites.
Thus, low cell values in the local human disturbance distance matrix
indicate pairs of network sites with a similar level of human dis-
turbance, while high values represent pairs of network sites with very
different levels of human disturbance.

Spatial distance. The spatial distance matrix was generated using the
Haversine (i.e., great circle) distance between all pairwise combina-
tions of network coordinates. In this matrix, cell values represent the
geographical distance between network sites.

Elevational difference. We calculated the Euclidean distance between
pairwise elevation values (estimated as meters above sea level) of
network sites to generate our elevational difference matrix. Elevation
valueswereobtained from the original sourceswhen available or using
Google Earth47. In the elevational difference matrix, low cell values

a

0.038 0.892

1.898 4.217

0.019

0.092

0.285

0.313

6.41

0.0080.058

1.162 0.262

0.15

0.038 1.152

1.898 4.217

0.092

0.285 0.183

0.301

6.41

1.162 0.759

b

Disturbance

EcoregionSpace

Biome Biome
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Fig. 4 | Venn diagrams showing the relative contributions (%) of our main
predictor variables to explaining the variation in interaction dissimilarity
(βWN), calculated using deviance partitioning. Overlapping areas represent
deviance that is jointly explained by one ormore predictor variables. a The relative
contributions of ecoregion, biome, spatial and human disturbance (i.e., footprint)
distances. In b, we replace human disturbance distancewith elevational difference;

we show these two separate diagrams for visualization purposes, but Supplemen-
tary Fig. 12 shows the effect of all our main predictor variables together. Note that
we only plot our predictor variables of interest (i.e., not those used for controlling
sampling effects). Terms that reduce explanatory power are not shown. Source
data are provided as a Source Data file.
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represent pairs of network sites within similar elevations, whereas high
values represent pairs of network sites within very different elevations.

Network sampling dissimilarity. We used the metadata retrieved
from each of our 196 local networks to generate our network sampling
dissimilarity matrices, which aim to control statistically for differences
in network sampling. There are many ways in which sampling effort
could be quantified, so we began by calculating a variety of metrics,
then narrowed our options by assessing which of these was most
related to network metrics. We divided the sampling metrics into two
categories: time span-related metrics (i.e., sampling hours and
months) and empirical metrics of sampling completeness (i.e., sam-
pling completeness and sampling intensity), which aim to account for
how complete network sampling was in terms of species interactions
(Supplementary Table 2).

We selected the quantitative sampling metrics to be included in
our models based on (i) the fit of generalized linearmodels evaluating
the relationship between number of sampling hours and sampling
months of the study andnetwork-levelmetrics (i.e., bird richness, plant
richness and number of links), and (ii) how well time span-related

metrics, sampling completeness and sampling intensity predicted the
proportion of known interactions that were sampled in each local
network (hereafter, ratio of interactions) for a subset of the data. This
latter metric, defined as the ratio between the number of interactions
in the local network and the number of known possible interactions in
the region involving the species in the local network, captures raw
sampling completeness. Therefore, ratio of interactions estimates, for
a given set of species, the proportion of all their interactions known for
a region that are found to occur among those same species in the local
network. To calculate this metric, we needed high-resolution infor-
mation on the possible interactions, soweused a subset of 14 networks
sampled in Aotearoa New Zealand, since there is an extensive compi-
lation of frugivory events recorded for this country48. After this pro-
cess, we selected number of sampling hours, number of sampling
months and sampling intensity for inclusion in our statistical models
(Supplementary Figs. 7 and 8; Supplementary Table 2). We generated
the corresponding distance matrices by calculating the Euclidean
distance between metric values. Similarly, we generated a Euclidean
distance matrix for differences in sampling year between pairs of
networks, which aims to account for long-term changes in the envir-
onment, species composition and network sampling methods. We
obtained the sampling year of our local networks from the original
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Fig. 6 | Partial effects plot of the relationship between spatial distance and
interaction dissimilarity (βWN). Here, we show the fit (solid line) of a Generalized
AdditiveModel (GAM)with interactiondissimilarity as the response variable and all
our predictor variables included. Thus, this plot shows the effect of spatial distance
on interaction dissimilarity, while controlling for the effect of the other predictor
variables in the model. Partial residuals remain on the same scale as the original
data, but the sign of values indicates how they differ from what would be expected
(i.e., from thefittedvalues) basedon theotherpredictor variables in themodel. The
gray area represents two standard errors above and below the estimate of the
smooth being plotted. The histogram above the plot shows the distribution of data
points across the spatial gradient. Note the sharp increase in interaction dissim-
ilarity until a threshold distance of around 2500 km(dotted red line), beyondwhich
few networks shared interactions (a similar pattern can be seen in Supplementary
Fig. 14c). Source data are provided as a Source Data file.
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Fig. 5 | The effect of human disturbance gradients on interaction dissimilarity
(βWN). The relationship between human disturbance distance and interaction dis-
similarity, with a fitted line obtained fromaGeneralized AdditiveModel (GAM)with
human disturbance distance as the only predictor variable (Supplementary Fig. 13
shows the partial effects plot for the model including all predictors). Human dis-
turbance distance was calculated as the absolute difference in human footprint
values between a pair of network sites. Eachdata point (pair of networks) is colored
according to the mean of the human footprint values from the two networks. The
histogram above the plot shows the distribution of data points across the human
disturbance gradient. To explore whether disturbance distance and the mean
intensity of disturbance are related, we further divided our data into three equal
sized groups (top three histograms) based on their mean (of the site pair) footprint
values: “Less” disturbed (low mean footprint), ‘Mix’ (medium mean footprint) and
‘More’ disturbed (high mean footprint). Dashed lines mark the 90th percentile
position in each histogram. Note that data points from less disturbed site pairs are
skewed towards low values of human disturbance distance, whereas pairs of more
disturbed sites also had a larger average distance. Source data are provided as a
Source Data file.
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sources and calculated the mean sampling year value for those net-
works sampled across multiple years.

Because sampling methods, such as sampling design, focus (i.e.,
focal taxa, which determines whether a zoocentric or phytocentric
method was used), interaction frequency type (i.e., how interaction
frequency was measured) and coverage (total or partial) might also
affect the observed plant-frugivore interactions49, we combined these
variables into a single distance matrix to estimate the overall differ-
ences in sampling methods between networks. Because most of these
variables were categorical with multiple levels (Supplementary
Table 3), we generated our method’s dissimilarity matrix by using a
generalization of Gower’s distance method50, which allows the treat-
ment of different types of variables when calculating distances. For
this, we used the dist.ktab function from the ade4 package51. We ran a
Principal Coordinates Analysis (PCoA) on this distancematrix, selected
the first four axes, which explained 81.2% of the variation in method’s
dissimilarity, and calculated the Euclidean distance between pairs of
networks using the vegdist function from the vegan package46 in R45.

Network dissimilarity. We generated three network dissimilarity
matrices to be our response variables in the statistical models. In the
first, cell values represent the pairwise dissimilarity in species com-
position between networks (beta diversity of species;βS)

27. Second, we
measured interactiondissimilarity (beta diversity of interactions;βWN),
which represents the pairwise dissimilarity in the identity of interac-
tions between networks27. Importantly, we did not include interaction
rewiring (βOS) in our main analysis because this metric can only be
calculated for networks that share interaction partners (i.e., it esti-
mates whether shared species interact differently)27, which limited the
number and the spatial distribution of networks available for analysis
(but see the Rewiring analysis section for an analysis on the subset of
our dataset for which this was possible). Metrics were calculated using
the network_betadiversity function from the betalink package52 in R45.

Finally,wecalculated a thirddissimilaritymatrix to capture overall
differences in network structure. We recognize that there are many
potential metrics of network structure, and that many of these are
strongly correlated with one another53–56. We therefore chose a range
of metrics that captured the number of links, their relative weightings
(including across trophic levels), and their arrangement among spe-
cies, then combined these into a singledistancematrix. Specifically,we
quantified network structural dissimilarity using the followingmetrics:
weighted connectance, weighted nestedness, interaction evenness,
PDI and modularity.

Weighted connectance represents the number of links relative to
the number of possible links, weighted by the frequency of each
interaction55, and is therefore a measure of network-level specializa-
tion (higher values of weighted connectance indicate lower speciali-
zation). Importantly, it has been suggested that connectance affects
persistence inmutualistic systems54.Wemeasured nestedness (i.e., the
pattern in which specialist species interact with proper subsets of the
species that generalist species interact with) using the weighted ver-
sion of nestedness based on overlap and decreasing fill (wNODF)57.
Notably, nested structures have been commonly reported in plant-
frugivore networks33. Interaction evenness is Shannon’s evenness
index applied for species interactions and represents how evenly dis-
tributed the interactions are in the network21,58. This metric has been
previously demonstrated to decline with habitat modification as a
consequence of some interactions being favored over others in high-
disturbance environments21. PDI (PairedDifference Index) is ameasure
of species-level specialization on resources and a reliable indicator not
only of specialization, but also of absolute generalism59. Thus, this
metric contributes to understanding of the ecological processes that
drive the prevalence of specialists or generalists in ecological
networks59. In order to obtain a network-level PDI, we calculated the
weighted mean PDI for each local network. Finally, we calculated

modularity (i.e., the level of compartmentalization within networks)
using theDIRTPLAwb+ algorithm60. Modularity estimates the extent to
which species withinmodules interactmore with each other than with
species from other modules61, and it has been demonstrated to affect
the persistence and resilience of mutualistic networks54. All the selec-
ted network metrics are based on weighted (quantitative) interaction
data, as these have been suggested to be less biased by sampling
incompleteness62 and to better reflect environmental changes21. All
network metrics were calculated using the bipartite package63 in R45.

We ran a Principal Component Analysis (PCA) on our scaled
multivariate data matrix (N ×M where N is the number of local net-
works inour dataset andM is the number of networkmetrics), selected
the scores of the three principal components, which represented
89.9% of the variance in network metrics, and converted it into a
network structural dissimilarity matrix by calculating the Euclidean
distance between networks. In this distance matrix, cell values repre-
sent differences in the overall architecture of networks (over all the
network metrics calculated), and therefore provide a complementary
approach for evaluating how species interaction patterns vary across
large-scale environmental gradients.

Statistical analysis
We employed a two-tailed statistical test that combines Generalized
Additive Models (GAM)29 and Multiple Regression on distance Matri-
ces (MRM)30 to evaluate the effect of each of our predictor distance
matrices on our response matrix. With this approach, we were able to
fit GAMs where the predictor and responsible variables are distance
matrices, while accounting for the non-independence of distances
fromeach local networkbypermuting the responsematrix30. Themain
advantage of using GAMs is their flexibility in modeling non-linear
relationships through smooth functions, which are represented by a
sum of simpler, fixed basis functions that determine their
complexity29. Using GAM-based MRM models allowed us to obtain F
values for each of the smooth terms (i.e., smooth functions of the
predictor variables in ourmodel), and test statistical significance at the
level of individual variables. The binary versions of ecoregion and
biome distance matrices (with two levels, “same” or “distinct”) were
treated as categorical variables in the models, and t values were used
for determining statistical significance. We fitted GAMs with thin plate
regression splines64 using the gam function from the mgcv package29

in R45. Smoothing parameters were estimated using restricted max-
imum likelihood (REML)29. Our GAM-based MRM models were calcu-
lated using a modified version of the MRM function from the ecodist
package65, which allowed us to combine GAMs with the permutation
approach from the original MRM function (see Code availability). All
themodels were performed with 1000 permutations (i.e., shuffling) of
the response matrix.

We explored the unique and shared contributions of our pre-
dictor variables to network dissimilarity using deviance partitioning
analyses. These were performed by fitting reduced models (i.e., GAMs
whereoneormorepredictor variables of interest were removed) using
the same smoothing parameters as in the full model and comparing
the explained deviance. We fixed smoothing parameters for compar-
isons in this way because these parameters tend to vary substantially
(to compensate) if one of two correlated predictors is dropped
from a GAM.

Assessing the influence of individual studies on the reported
patterns
Because our dataset comprises 196 local frugivory networks obtained
from 93 different studies, and some of these studies contained mul-
tiple networks, we needed to evaluate whether our results were
strongly biased by individual studies. To do this, we followed the
approach from a previous study66 and tested whether F values of
smooth terms and t values of categorical variables (binary version of
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ecoregion and biome distances) changed significantly when jack-
knifing across studies. We did this by dropping one study from the
dataset and re-fitting themodels, and then repeating this sameprocess
for all the studies in our dataset.

We found a number of consistent patterns within different sub-
sets of the data (Supplementary Figs. 15 and 16); however, some of the
patterns we observed appear to be driven by individual studies with
multiple networks, and hence are less representative. For instance, the
study with the greatest number of networks in our dataset (study
ID = 76),whichcontains 35plant-frugivorenetworks sampled across an
elevation gradient in Mt. Kilimanjaro, Tanzania67, had an overall high
influence on the results when compared with the other studies. By re-
running our GAM-based MRMmodels after removing this study from
our dataset, we found that the effect of biome boundaries on inter-
action dissimilarity is no longer significant, whereas the effects of
ecoregion boundaries, human disturbance distance, spatial distance
and elevational differences remained consistent with those from the
full dataset (Supplementary Table 33). Nevertheless, all the results
were qualitatively similar to thoseobtained for the entire dataset when
using network structural dissimilarity as the response variable (Sup-
plementary Table 34).

Rewiring analysis
Interaction rewiring (βOS) estimates the extent to which shared species
interact differently27. Because this metric can only be calculated for
networks that share species from both trophic levels, we selected a
subset of network pairs that shared plants and frugivorous birds
(N = 1314) to test whether interaction rewiring increases across large-
scale environmental gradients. Importantly, since not all possible
combinations of network pairs contained values of interaction rewir-
ing (i.e., not all pairs of networks shared species), a pairwise distance
matrix could not be generated for this metric. Thus, we were not able
to use the same statistical approach used in ourmain analysis, which is
based on distance matrices (see Statistical analysis section). Instead,
we performed a Generalized Additive Mixed-effects Model (GAMM)
using ecoregion, biome, human disturbance, spatial, elevational, and
sampling-related distance metrics as fixed effects and network IDs as
random effects (to account for the non-independence of distances)
(Supplementary Table 35). We also performed a reduced model with
only ecoregion and biome distance metrics as predictor variables
(Supplementary Table 36). The binary version of ecoregion and biome
distance metrics (with two levels, “same” or “distinct”) were used as
categorical variables in both models. Interaction rewiring (βOS) was
calculated using the network_betadiversity function from the betalink
package52 in R45. Although it has been recently argued that this metric
may overestimate the importance of rewiring for network
dissimilarity68, our main focus was not the partitioning of network
dissimilarity into species turnover and rewiring components, but
rather simply detecting whether the sub-web of shared species inter-
acted differently. In this case, βOS (as developed by ref. 27) is an ade-
quate and useful metric68. We fitted our models using the gamm4
function from the gamm4 package69 in R45. Smoothing parameters
were estimated using restricted maximum likelihood (REML)29.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data necessary to reproduce the analyses of this manuscript have
been deposited in the Dryad database: https://doi.org/10.5061/dryad.
mcvdnck4d (ref. 70). Metadata of the plant-frugivore networks, and
predictor and response variables used in our analyses are provided
with this paper as SupplementaryData. The Ecoregions 2017©Resolve
map developed by ref. 3 is available at https://ecoregions.appspot.

com/ under a CC-BY 4.0 license. Human footprint data are publicly
available at https://doi.org/10.5061/dryad.052q5 (ref. 71). The World-
Clim 2.1 database43 is publicly available at https://www.worldclim.org/.
The following taxonomic databases were used for standardizing the
taxonomy of plant and bird species in our dataset: Global Names
Resolver (GNR) (available at https://resolver.globalnames.org/),
National Center for Biotechnology Information (NCBI) (available at
https://ncbi.nlm.nih.gov/), BirdLife International (available at http://
datazone.birdlife.org/species/taxonomy), Avibase (available at https://
avibase.bsc-eoc.org/), Integrated Taxonomic Information System
(ITIS) (available at https://itis.gov/), International Plant Names Index
(IPNI) (available at https://www.ipni.org/), Tropicos (available at
https://www.tropicos.org/), and the iPlant Taxonomic Name Resolu-
tion Service72 (available at https://tnrs.biendata.org/). Source data are
provided with this paper.

Code availability
R scripts for reproducing the analyses of this manuscript are available
at https://doi.org/10.5061/dryad.mcvdnck4d (ref. 70).
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