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Abstract: A systematic analysis of the weak responses for charged-current quasielastic neutrino-
nucleus reactions is presented within the scheme of a fully relativistic microscopic model considering
momentum-dependent scalar and vector mean field potentials in both the initial and final nucleon
states. The responses obtained are compared with the ones corresponding to simpler approaches:
energy-independent potentials and the relativistic plane wave limit in the final state, i.e., no potentials
applied to the outgoing particle. The analysis is also extended to the scaling phenomenon, which
provides additional information regarding nuclear dynamics. Results for the scaling function are
shown for various nuclei and different values of the transferred momentum in order to analyze the
behavior of the relativistic scalar and vector mean field potentials.

Keywords: neutrino interactions; electroweak interactions; nuclear matter; scaling; relativistic
mean field

1. Introduction

The assessment of neutrino oscillation experiments [1–6], which are of great relevance
to measure the leptonic charge-parity (CP) violation phase, determine the neutrino mass
hierarchy, and strengthen the current picture of the oscillation mixing angles, requires an
accurate description of how neutrinos interact with complex nuclear systems, as they con-
stitute the main ingredients in the detectors. In recent years, different groups have devoted
great effort to this problem using alternative descriptions of the reaction mechanism and
nuclear modeling, also including different kinematical regions where reaction channels
from low to very high momentum transfer can play a significant role [7–20]. This makes a
crucial difference from electron scattering experiments, where the electron beam energy is
known with high accuracy. On the contrary, in the case of neutrino beams, their energy can
range from a region extended from tens of MeV to several GeV [1,2,21].

From the analysis of quasielastic (QE) electron scattering data, emerges the phe-
nomenon of scaling and superscaling, that is, at high enough values of the transfer momen-
tum, q, the differential cross section divided by an appropriate single-nucleon response
shows a tiny dependence with q, and is the same for all nuclear systems. This has been
explored at depth in several works [8,22–28], where not only scaling/superscaling is clearly
fulfilled, but also the scaling function extracted from the data shows a clear asymmetric
shape with a tail extended to high values of the transfer energy, ω [23,29]. Our group
has been involved in this problem for the last few years and has developed various theo-
retical descriptions based on the behavior of data [8,26,27] and incorporating relativistic
mean field (RMF) effects [30–32]. The RMF is one of the few microscopic approaches
able to reproduce the asymmetric shape of the phenomenological scaling functions, also
producing an enhancement in the transverse components, an effect due to the relativistic
dynamics incorporated in the lower components of the nucleon wave functions. Despite
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its undoubted success, not only for electrons but also when extended to neutrino pro-
cesses [26,30,31], the RMF model clearly fails at very high values of q due to the very strong
energy-independent scalar and vector potentials involved in the final states. This shortfall
was remedied with the SuSAv2 (SuperScaling Approach version 2) model [8,26], which
incorporates not only the RMF responses, but also results based on the relativistic plane
wave impulse approximation (RPWIA). The SuSAv2, originally restricted to the QE region,
has been extended by incorporating 2p-2h meson exchange currents (MEC) [27,33] and
effects related to the region of deep inelastic scattering (DIS) [34]. SuSAv2 is presently used
by most experimentalists in the analysis of neutrino scattering data [35–38] corresponding
to very different collaborations: MiniBooNE, MINERvA, MicroBooNE, T2K, DUNE, etc.

In this work, we do not intend to provide a precise description of the data. Our
interest is focused on the limits of the RMF and, in particular, its failure to behave properly
at high values of the transfer momentum, q. We then follow the same strategy as used
in our previous work devoted to electron scattering [39]. Here, we extend the study to
neutrino processes providing general expressions for the weak nuclear responses in several
approaches. Our analysis is entirely based on the use of the RMF applied to nuclear
matter. Clearly, this is an oversimplified description of the process with respect to more
sophisticated RMF approaches [30,31], but it allows us to test the specific role played
by the different ingredients of the model, with special emphasis on the scalar (S) and
vector (V) potentials used in the initial and final nucleon states. We show results for the
five weak responses corresponding to different options for the potentials; from the most
general case with S and V dependent on energy and different for initial and final states
(EDSV model), to some simplified cases where only the potentials enter in the initial state
(RPWIA approach), and S and V are constant and equal in the initial and final states (CtSV
model). Finally, we also investigate scaling/superscaling properties by evaluating the
scaling function at different kinematics (q-values) and for various nuclear systems (carbon,
oxygen, and calcium). This provides an answer on how scaling of the first and second kinds
works for each particular description of the relativistic potentials. It is worth remarking that
the nuclear targets employed in this analysis are of relevance for current and forthcoming
neutrino experiments, where carbon and oxygen are part of the T2K, MINERvA, SuperK,
and HyperK detectors and calcium is similar to argon, which is employed in MicroBooNE
or DUNE.

This manuscript is organized as follows: The theoretical scheme of the work is given
in Section 2, where the basic formalism and the general expressions related to the weak
charged current neutrino response functions within the context of the relativistic mean field
model applied to nuclear matterit is described. The scaling and superscaling properties of
these nuclear responses are also carefully analyzed. In Section 3, the outcomes for the weak
longitudinal and transverse response functions corresponding to very different kinematic
situations and nuclear targets are shown. A thourough discussion of the scaling functions
obtained within the previous schems is also carried out. Finally, in Section 4 we outline the
main conclusions of this research.

2. General Formalism

In this work we restrict ourselves to inclusive charged-current quasielastic (CCQE)
(anti)neutrino-nucleus scattering processes. In the laboratory frame and assuming the Born
approximation, i.e., one virtual charged boson exchanged and leptons described as free
particles, the differential cross section in terms of the transfer energy (ω) and the lepton
solid angle (Ω`) can be written in the general form:

dσ

dΩ`dω
= σ0F 2

χ , (1)
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where the index χ = +(−) refers to neutrino (antineutrino) processes and the σ0 term
depends on the leptonic variables and the weak couplings. Its general expression is given as:

σ0 =
G2

F cos θ2
C

2π2 k`E` cos2 θ̃

2
f−1
rec (2)

with θC the Cabibbo angle, GF the Fermi weak coupling constant, k` (E`) the momentum
(energy) of the final lepton, frec the recoil factor, and θ̃ a generalized scattering angle
defined as tan2(θ̃/2) ≡ |Q2|/v0 with v0 = 4EνE` − |Q2|. The terms Eν and Q2 represent
the incident (anti)neutrino energy and the four-momentum transferred in the proces.

The whole information on the nuclear structure is contained in F 2
χ, given in terms of

the weak response functions, RK:

F 2
χ = VLLRLL + VCCRCC + 2VCLRCL + VT RT + χVT′RT′ , (3)

where the kinematical factors, VK, depend only on the lepton variables, and their ex-
plicit expressions can be found in [21]. The notation C, L, T, and T′ refer to charged (0),
longitudinal (3), and transverse components (1, 2) with respect to the direction of the mo-
mentum transfer q (3rd component). This decomposition can be clearly observed in the
nuclear response functions.

These weak nuclear response functions, RK, are given from the corresponding compo-
nents of the polarization propagator Πµν (also named as the current-current correlation
function). Contrary to the case of electron scattering, where only the time component
enters in the longitudinal response due to current conservation, here one needs to evaluate
separately the time and longitudinal components:

RCC = −2N
πρ

Im
{

Π00
}

(4)

RLL = −2N
πρ

Im
{

Π33
}

(5)

RCL =
N
πρ

Im
{

Π03 + Π30
}

(6)

RT = −2N
πρ

Im
{

Π11 + Π22
}

(7)

RT′ =
iN
πρ

Im
{

Π12 −Π21
}

, (8)

where N represents the number of protons (neutrons) in the nuclear target contributing
to antineutrino (neutrino) scattering processes. We use a coordinate system with the
z(3)-axis in the direction of q. The T′ term corresponds to the vector-axial interference in
the polarization propagator, which is only present in weak interactions.

The weak nuclear responses (4)–(8) are calculated in a local density approximation
from nuclear matter, where the density is defined as ρ = 2k3

F/(3π2) and kF is the Fermi
momentum. Because closure can be applied to perform the sum over all final states,
the polarization propagator can be described in terms of the full propagator of the nuclear
many-body system:

Πµν(q, ω) = −i
∫ d4P

(4π)4 Tr[Ĝ(P + Q)Γ̃µĜ(P)Γ̃ν] , (9)

where Ĝ(P) represents the Green function for a nucleon propagator, as defined in [39],
and Γ̃µ is the weak vertex given by:

Γ̃µ = FV
1 γµ + FV

2
iσµνQν

2M
+ GAγµγ5 + FPQµγ5 . (10)
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While FV
1 and FV

2 are related to the vector components of the hadronic current, GA and FP
correspond to the axial terms. The axial form factor, GA, describes the axial-pseudovector
structure of the nucleon, while FP englobes its pseudoscalar contribution. Moreover, due
to isospin symmetry, the isovector form factors, FV

1 and FV
2 , can be simply related to the

electromagnetic Dirac, F1, and Pauli, F2, form factors for protons and/or neutrons. In this
paper, the electromagnetic proton and neutron form factors used correspond to the well-
known Galster parametrization [40]. The term M represents the mass of the nucleon.
The axial form factor, GA, is parametrized using a dipole form [41,42], with gA = −1.267 as
the axial-vector coupling constant and MA = 1.032 GeV as the nucleon axial mass. Finally,
the pseudoscalar form factor, GP, is connected with the axial one, making use of the PCAC
(partially conserved axial current) hypothesis [43].

The single-nucleon wave functions are described as solutions of the Dirac equation in
the presence of relativistic scalar, S, and vector, V, potentials that may include dependence
on the energy-momentum:

[α · p + β(M + S(p)) + V(p)]ψ(p) = Epψ(p) , (11)

where α and β are the Dirac matrices and Ep =
√

p2 + M2. As shown, while the vector
term is directly linked to the energy of the particle, the scalar one modifies its mass. In what
follows, we introduce the effective nucleon four-momentum. Notice that this applies to
both the initial and final nucleon states determined by their momenta, pi and p f . For clarity,
we simply use a generic notation p:

P∗µ = (p0 −V(p) , p) = (Ep −V(p) , p) = (E∗p , p) (12)

with the energy E∗p =
√

p2 + M∗p
2 expressed in terms of the effective mass M∗p, i.e., the

nucleon mass modified by the scalar potential, M∗p ≡ M + S(p). Analogously, an effective
transferred four-momentum can be introduced:

Q∗µ ≡
(

P∗µf − P∗µi

)
= (ω∗, q) (13)

with the effective energy transferred ω∗ = ω− ∆V, and ∆V ≡ V(p f )−V(pi). Note that
Q∗µ and Qµ only differ in the time component. For clarity in the notation that follows, we
introduce the term ∆Vµ ≡ Qµ −Q∗µ, where only the 0 (time) component is different from
zero, that is, ∆V0 ≡ ∆V = V(p f )−V(pi).

Finally, by performing the integral over p0, the imaginary part of the polarization
propagator turns out:

Im Πµν = −
∫ p2

i d|pi|d cos θ

4πE∗pi
E∗p f

Θ(|p f | − kF)Θ(kF − |pi|)δ(Ep f − Epi − q0)Tµν , (14)

where θ is the angle between pi and q. The single-nucleon tensor is given by:

Tµν =
(
6P∗f + M∗f

)
Γ̃µ( 6P∗i + M∗i )Γ̃

ν . (15)

In Appendix A, we present the final expression obtained for the tensor Tµν, where the
nucleon form factors have been redefined and a set of dimensionless variables have been
introduced to remain consistent with former publications [39].

2.1. Tensor Components Involved in the Weak Responses

Here we show the results obtained for the components of the single-nucleon tensor
involved in the polarization propagator needed for the weak response functions. We make
use of the dimensionless variables introduced in Appendix A.
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Charged-charged contribution

TCC = T00 =

(
M∗f + M∗i

)2

2

{
− κ̃∗

2

τ̃∗

[
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

)]

+
(
ε̃∗i + λ̃∗

)2
[

τ̃∗G̃∗
2

M + G̃∗
2

E(
1 + τ̃∗

) + G2
A

]
+

λ̃∗
2

τ̃∗

(
GA − τ̃∗G̃∗P

)2

+ 2

(
M∗f −M∗i

)(
M∗f + M∗i

)(λ̃∗
2
+ ε̃∗λ̃∗

)[ G̃∗M
(

G̃∗M − G̃∗E
)

(
1 + τ̃∗

) + GAG̃∗P

]

−
(

M∗f −M∗i
)2(

M∗f + M∗i
)2

[
G̃∗

2

M − λ̃∗
2
G̃∗

2

P

]

+∆Ṽ∗
[(

2

(
M∗f −M∗i

)
M∗f + M∗i

ε̃∗i − 4λ̃∗
M∗i

M∗f + M∗i

)
GAG̃∗P

+

(
2λ∗ + ∆Ṽ∗

)
G̃∗

2

P

((M∗f −M∗i
)2(

M∗f + M∗i
)2 + τ̃∗

)]}
. (16)

Longitudinal contribution

TLL = T33 =

(
M∗f + M∗i

)2

2

{
− λ̃∗

2

τ̃∗

[
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

)]

+
λ̃∗

2

κ̃∗2

[(
ε̃∗i + λ̃∗

)2
+

∆m̃∗
2

λ̃∗2

(
∆m̃∗

2 − 2λ̃∗
(
ε̃∗i + λ̃∗

))][ τ̃∗G∗
2

M + G̃∗
2

E(
1 + τ̃∗

) + G2
A

]

+
κ̃∗

2

τ̃∗

(
GA − τ̃∗G̃∗p

)2
+

(
M∗f −M∗i

)2(
M∗f + M∗i

)2

[
G̃∗

2

M + κ̃∗
2
G̃∗P

2
]

+ 2

(
M∗f −M∗i

)(
M∗f + M∗i

) [λ̃∗
(
ε̃∗i + λ̃∗

)
− ∆m̃∗

2

][
G̃∗M
(

G̃∗M − G̃∗E
)

(
1 + τ̃∗

) + GAG̃∗P

]

+∆Ṽ∗
[(

2ε̃∗
(

M∗f −M∗i
)(

M∗f + M∗i
) − 4λ̃∗

M∗i(
M∗f + M∗i

))[ G̃∗M
(

G̃∗M − G̃∗E
)

(
1 + τ̃∗

) ]

+
2λ̃∗

κ̃∗2

[
τ̃∗
(

ε̃∗i + λ̃∗
)2
− ∆m̃∗

2
(

∆m̃∗
2
+

(
τ̃∗ − λ̃∗

2)
λ̃∗

(
ε̃∗i + λ̃∗

))] (G̃∗M − G̃∗E
)2(

1 + τ̃∗
)2

+
∆Ṽ∗

κ̃∗2

[
τ̃∗
(

ε̃∗i + λ̃∗
)2
− κ̃∗

2 − ∆m̃∗
2
(

∆m̃∗
2 − 2λ̃∗

(
ε̃∗i + λ̃∗

))] (G̃∗M − G̃∗E
)2(

1 + τ̃∗
)2

]}
. (17)
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Interference charged-longitudinal contribution

TCL = −T03 + T30

2
= −

(
M∗f + M∗i

)2

2

{
− κ̃∗

2

τ̃∗

[
λ̃∗

κ̃∗

(
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

))]

+
λ̃∗

κ̃∗

[(
ε̃∗i + λ̃∗

)2 − ∆m̃∗
2

λ̃∗
(
ε̃∗i + λ̃∗

)][ τ̃∗G̃∗
2

M + G̃∗
2

E(
1 + τ̃∗

) + G2
A

]

+
λ̃∗κ̃∗

τ̃∗

(
GA − τ̃∗G̃∗P

)2
+

(
M∗f −M∗i

)2(
M∗f + M∗i

)2 λ̃∗κ̃∗G̃∗P
2

+

(
M∗f −M∗i

)(
M∗f + M∗i

) 1
κ̃∗

[(
ε̃∗i + λ̃∗

)(
κ̃∗

2
+ λ̃∗

2)− ∆m̃∗
2
λ̃∗
][ G̃∗M

(
G̃∗M − G̃∗E

)
(

1 + τ̃∗
) + GAG̃∗P

]

+
∆Ṽ∗

κ̃∗

[((
ε̃∗i + λ̃∗

)2
τ̃∗ + λ̃∗∆m̃∗

2(
ε̃∗i + λ̃∗

)) (G̃∗M − G̃∗E
)2(

1 + τ̃∗
)2

+ κ̃∗
2
[ (M∗f −M∗i

)2(
M∗f + M∗i

) + τ̃∗
]

G̃∗P
2

+

[ (
M∗f −M∗i

)(
M∗f + M∗i

)(λ̃∗ ε̃∗i − τ̃∗ − ∆m̃∗
2
)
−

2M∗i κ̃∗
2(

M∗f + M∗i
) ][ G̃∗M

(
G̃∗M − G̃∗E

)
(

1 + τ̃∗
) + GAG̃∗P

]]}
, (18)

Transverse contribution

TT = (T11 + T22) =

(
M∗f + M∗i

)2

2

{
2

[
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

)]

+
1

κ̃∗2

[
τ̃∗
(

ε̃∗i + λ̃∗
)2
− κ̃∗

2
(

τ̃∗ + m̃∗
2

i

)
− ∆m̃∗

2
(

∆m̃∗
2 − 2

(
λ̃∗ ε̃∗i − τ̃∗

))]
[

τ̃∗
(

G̃∗M
)2

+
(

G̃∗E
)2

(
1 + τ̃∗

) + G2
A

]
+ 2

(
M∗f −M∗i

)2

(
M∗f + M∗i

)2 G̃∗
2

M

}

−∆Ṽ∗
[

4(
M∗f + M∗i

)(2λ̃∗M∗i − ε̃∗i

(
M∗f −M∗i

))[ G̃∗M
(

G̃∗M − G̃∗E
)

(
1 + τ̃∗

) ]

−2∆̃V∗
[(

ε̃∗i + λ̃∗
)2
−
(

κ̃∗
2
+ 1
)] (G̃∗M − G̃∗E

)2(
1 + τ̃∗

)2 +
1

2κ̃∗2

(
2λ̃∗ + ∆Ṽ∗

)
[

τ̃∗
(

ε̃∗i + λ̃∗
)2
− κ̃∗

2
(

τ̃∗ + m̃∗
2

i

)
− ∆m̃∗

2
(

∆m̃∗
2 − 2

(
λ̃∗ ε̃∗i − τ̃∗

))] (G̃∗M − G̃∗E
)2(

1 + τ̃∗
)2

]}
. (19)
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Axial-vector transverse contribution

TT′ = −
i
2

(
T12 − T21

)

= −

(
M∗f + M∗i

)2

κ̃∗

[
τ̃∗
(

ε̃∗i + λ̃∗
)
+ λ̃∗∆m̃∗

2 − ∆Ṽ∗
(

λ̃∗ ε̃∗i − τ̃∗ − ∆m̃∗
2
)]

GAG̃∗M . (20)

In all the previous expressions, we have introduced ∆Ṽ∗ ≡ ∆V
M∗f +M∗i

, m̃∗i, f ≡
2M∗i, f

M∗i +M∗f
,

and ∆m̃∗
2 ≡ ∆m∗

2

(M∗i +M∗f )
2 .

2.2. Weak Nuclear Responses

Starting from the previous expressions, the different components of the polarization
tensor can be computed by performing the integrals numerically. The resulting response
functions will be shown in the next section. Here we consider the phenomenological
scalar and vector potentials, S(p), V(p), adjusted to polynomials in p. We use the same
expressions already considered for electron scattering (see [39]) and taken from [44,45],
that is:

S(p) = αS0

[
a0 + a1T(p) + a2T(p)2

]
V(p) = αV0

[
b0 + b1T(p) + b2T(p)2

]
with S0 = −0.431 GeV and V0 = 0.354 GeV for the constant scalar and vector potentials.
The term T(p) is the kinetic energy of the nucleon, and the parameters ai, bi are given
by: a0 = 0.97, a1 = −0.66, a2 = 0.28, b0 = 0.97, b1 = −0.97, and b2 = 0.33. The factor
α =

(
kF/k0

F
)3 represents an average over the nuclear volume, with k0

F = 0.257 GeV/c the
standard value of the Fermi momentum for nuclear matter.

Hereinafter we focus on some particular cases where the integrals can be solved
analytically, thus providing explicit expressions for the polarization tensor, and likewise
for the nuclear response functions. In the case of vector potentials to be almost equal in
the initial and final states, i.e., V(pi) ' V(p f ), the term ∆V tends to zero, and the effective
energy transfer, ω∗, corresponds to ω. Thus the tensor does not depend on V, and the only
dependence on the scalar potential, S, appears on the effective masses: M∗i, f . Moreover,
assuming equal scalar potentials in the initial and final states, i.e., M∗i = M∗f ≡ M∗,
the expression for the single-nucleon tensor reduces to:

Tµν = −2M∗
2

(
gµν − Q∗µQ∗ν

Q∗2

)[
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

)]

+

(
2P∗µi P∗νi + P∗µi Q∗ν + Q∗µP∗νi +

Q∗µQ∗ν

2

)[
τ̃∗G̃∗

2

M + G̃∗
2

E(
1 + τ̃∗

) + G2
A

]

+
Q∗µQ∗ν

2τ̃∗

(
GA − τ̃∗G̃∗P

)2

− 2iεµνβλP∗iβ
Q∗λGAG̃∗M . (21)
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The different contributions, CC, LL and CL, that enter in the longitudinal channel are
given by:

TCC = 2M∗
2

{
− κ̃∗2

τ̃∗

[
τ̃∗
(

G̃∗M
)2

+
(

GA

)2(
1 + τ̃∗

)]

+
(
ε̃∗i + λ̃∗

)2
[

τ̃∗
(

G̃∗M
)2

+
(

G̃∗E
)2

(
1 + τ̃∗

) +
(

GA

)2
]
+

λ̃∗2

τ̃∗

(
GA − τ̃∗G̃∗

)2}
, (22)

TCL = 2M∗
2

{
κ̃∗2

τ̃∗

[
λ̃∗

κ̃∗

(
τ̃∗
(

G̃∗M
)2

+
(

GA

)2(
1 + τ̃∗

))]

− λ̃∗

κ̃∗

[(
ε̃∗i + λ̃∗

)2 − ∆m̃∗2

λ̃∗
(
ε̃∗i + λ̃∗

)][ τ̃∗
(

G̃∗M
)2

+
(

G̃∗E
)2

(
1 + τ̃∗

) +
(

GA

)2
]

− λ̃∗κ̃∗

τ̃∗

(
GA − τ̃∗G̃∗P

)2
}

, (23)

TLL = 2M∗
2

{
− λ̃∗2

τ̃∗

[
τ̃∗
(

G̃∗M
)2

+
(

GA

)2(
1 + τ̃∗

)]

+
λ̃∗2

κ̃∗2

[(
ε̃∗i + λ̃∗

)2
[

τ̃∗
(

G∗M
)2

+
(

G̃∗E
)2

(
1 + τ̃∗

) +
(

GA

)2
]]

+
κ̃∗2

τ̃∗

(
GA − τ̃∗G̃∗p

)2
}

, (24)

while the transverse, T, and the axial-vector transverse, T′, contributions read:

TT = 2M∗
2

{
2
[

τ̃∗G̃∗
2

M + G2
A

(
1 + τ̃∗

)]

+
1

κ̃∗2

[
τ̃∗
(

ε̃∗i + λ̃∗
)2
− κ̃∗

2
(

τ̃∗ + m̃∗
2

i

)][ τ̃∗G̃∗
2

M + G̃∗
2

E(
1 + τ̃∗

) + G2
A

]}
, (25)

TT′ = −4M∗
2

[
τ̃∗

κ̃∗

(
ε̃∗i + λ̃∗

)
GAG̃∗M

]
. (26)

Finally, in the simple case of constant scalar and vector potentials (and equal for the initial
and final states), referred to as CtSV, the integrals in the polarization propagator can
be solved analytically, and explicit expressions for the weak nuclear response functions
emerge:

RCC
CtSV =

3N
4M∗κ̃∗η̃∗3F

Θ
(
ε̃∗F − Γ̃∗

)(
ε̃∗F − Γ̃∗

)
{

κ̃∗
2

τ̃∗

[(
G̃∗

2

E + ∆̃∗
τ̃∗G̃∗

2

M + G̃∗
2

E(
1 + τ̃∗

) )
+ ∆̃∗G2

A

]
+

λ̃∗
2

τ̃∗

(
GA − τ̃∗G̃∗P

)2
}

(27)
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RCL
CtSV =

3N
4M∗κ̃∗η̃∗3F

Θ
(
ε̃∗F − Γ̃∗

)(
ε̃∗F − Γ̃∗

)
{

λ̃∗

κ̃∗

[
κ̃∗

2

τ̃∗

(
G̃∗

2

E + ∆̃∗
τ̃∗G̃∗

2

M + G̃∗
2

E(
1 + τ̃∗

) )
+

κ̃∗
2

τ̃∗
∆̃∗G2

A

]
+

λ̃∗κ̃∗

τ̃∗

(
GA − τ̃∗G̃∗P

)2
}

(28)

RLL
CtSV =

3N
4M∗κ̃∗η̃∗3F

Θ
(
ε̃∗F − Γ̃∗

)(
ε̃∗F − Γ̃∗

)
{

λ̃∗
2

κ̃∗2

[
κ̃∗

2

τ̃∗

(
G̃∗

2

E + ∆̃∗
τ̃∗G̃∗

2

M + G̃∗
2

E(
1 + τ̃∗

) )
+

κ̃∗
2

τ̃∗
∆̃∗G2

A

]
+

κ̃∗
2

τ̃∗

(
GA − τ̃∗G̃∗P

)2
}

(29)

RT
CtSV =

3N
4M∗κ̃∗η̃∗3F

Θ
(
ε̃∗F − Γ̃∗

)(
ε̃∗F − Γ̃∗

)
{

2τ̃∗G̃∗
2

M + ∆̃∗

(
τ̃∗G̃∗

2

M + G̃∗
2

E

)
(
1 + τ̃∗

) +
(

2
(
1 + τ̃∗

)
+ ∆̃∗

)
G2

A

}
(30)

RT
′

CtSV =
3N

4M∗κ̃∗η̃∗3F
Θ
(
ε̃∗F − Γ̃∗

)(
ε̃∗F − Γ̃∗

){ τ̃∗

κ̃∗

[
1
2
(
ε̃∗F + Γ̃∗

)
+ λ̃∗

]
GAG̃∗M

}
, (31)

where the dimensionless Fermi energy, ε̃∗F, has been introduced by analogy with the
definitions given in Appendix A, but replacing the nucleon energy, E∗p, with the Fermi one:

E∗F =
√

k2
F + M∗2kF

with M∗kF
= M + S(kF). In the above expressions, we make use of the

usual terms [21,39]:

Γ̃∗ = Max

{
ε̃∗F − 2λ̃∗;−λ̃∗ρ̃∗ + κ̃

√
ρ̃∗2 +

m̃∗2

i
τ̃∗

}
, (32)

∆̃∗ =
τ̃∗

κ̃∗2

[
1
3

(
ε̃∗

2

F + ε̃∗Γ̃∗ + Γ̃∗
2
)
+ λ̃∗

(
ε̃∗ + Γ̃∗

)
+ λ̃∗

2

]
−
(

τ̃∗ + 1
)

. (33)

A detailed analysis of the general function, Γ, and its specific behavior at different kinemat-
ical situations is presented in [22]. In Equation (32), we have introduced the notation ρ̃∗ by

analogy with the expression for ρ∗ presented in Appendix A, that is, ρ̃∗ =

(
1 + ∆m̃∗

2

τ̃∗

)
.

The study of scaling and superscaling in inclusive quasielastic (QE) electron scattering
reactions has been presented in detail in previous works [8,22–27]. Its extension to inclusive
charged-current neutrino processes can be reviewed in [21]. From these studies, not only is
the scaling also fulfilled for neutrino reactions, that is, the independence of the momentum
transfer q (scaling of the first kind) and of the nuclear system (scaling of the second kind),
but also the scaling function is similar to the one obtained from electron scattering. In
this work, we provide a systematic analysis of the scaling/superscaling phenomenon
within the framework of the relativistic mean field approach in nuclear matter. Following
our previous work on electron scattering, here we extend our investigation to neutrino
processes, analyzing the effects introduced by the use of scalar and vector potentials
considering both momentum-independent and momentum-dependent potentials.

Our main interest is centered on the scaling behavior at high transferred momentum,
where Γ̃∗ is determined by the second choice in (32). The response functions in (27)–(31)
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can also be expressed by introducing a general dimensionless scaling variable, ψ̃∗, and the
superscaling function, f (ψ̃∗), that are given by (see [39] for details):

ψ̃∗ =
1√
ξ̃∗F

λ̃∗m̃∗i − τ̃∗ρ̃∗√
τ̃∗(λ̃∗ρ̃∗ + m̃∗i ) + κ̃∗

√
τ̃∗
(

τ̃∗ρ̃∗2 + m̃∗2
) , (34)

f (ψ̃∗) =
3
4

(
1− ψ̃∗

2
)

Θ
(

1− ψ̃∗
2
)

(35)

with ξ̃∗F =
(
ε̃∗F − m̃∗F

)
. Notice that, in the absence of scalar potentials, S = 0, the usual

expression for the scaling variable as given in previous references [24,25] is recovered.
For completeness, in this study we also consider the case of the Relativistic Plane

Wave Impulse Approximation (RPWIA), that is, no scalar vector potentials in the final state.
On the contrary, the initial nucleon states are described by Dirac wave function solutions
in the presence of S(pi) and V(pi). In the next section, we present a detailed study of the
weak nuclear responses and scaling functions corresponding to the different approaches
considered in this work.

3. Discussion of Results

In this section, we present the results obtained for the nuclear weak charged-current
responses and scaling functions corresponding to three nuclear systems 12C, 16O, and
40Ca, using the different approaches discussed in previous sections for the description of
the nuclear dynamics. We also show the pure RFG predictions as reference. The results
cover a kinematical region from low–intermediate momentum transferred, q = 0.5 GeV/c,
to moderate–high values, q = 1.5 GeV/c.

3.1. Nuclear Responses

In Figures 1 and 2, we present the response functions for 12C corresponding to the
longitudinal (CC, CL, and LL) and transverse (T and T′) channels, respectively. The value
of the Fermi momentum has been set to 228 MeV/c. The panels show the different nuclear
responses in terms of the energy transferred, ω, for fixed values of q: 0.5 GeV/c (top panels),
1 GeV/c (mid), and 1.5 GeV/c (bottom). In all the situations, we perform a comparison
between the predictions given by RFG (black solid line), RPWIA (green dot-dashed),
constant scalar and vector potentials in both the initial and final nucleon states, denoted as
CtSV (blue dotted), and energy-dependent scalar and vector potentials, defined as EDSV
(red dashed).

We start the discussion with the three responses involved in the longitudinal channel
(Figure 1). As observed, the scalar and vector potentials involved produce significant dif-
ferences between the various models that also depend on the particular response analyzed
and the kinematics selected. Regarding the EDSV and CtSV models, their predictions are
not remarkably different at q = 0.5 GeV/c, but they are shifted to larger ω values compared
to the RFG response, also getting higher values for the maximum and more asymmetry.
This is particularly true for the CL and LL responses, where the discrepancy with RFG can
differ by more than a factor of 2 (LL response). This behavior is clearly in contrast with the
results obtained for the pure electromagnetic longitudinal response [39], where the RFG
magnitude at the maximum was similar to the CtSV and EDSV predictions.

It is also worth mentioning that in the relativistic plane wave impulse approximation
(RPWIA), the minimum value of ω allowed by the kinematics is significantly higher than
the one for the other models. This is connected with the role that potentials play only in
the initial state. On the contrary, the maximum ω value allowed is located between the
pure RFG result and the CtSV/EDSV ones, where both initial and final-state potentials are
considered. Concerning the overall magnitude of the RPWIA response, it is closer to the
RFG one (although visible differences appear in the CL and LL channels) and significantly
smaller than the EDSV and CtSV predictions.
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Figure 1. 12C weak response functions for the CC (left panels), CL (mid), and LL (right) channels
versus the energy transfer, ω. Results are shown for different values of the momentum transfer, q,
and the models considered in the work (see text for details): RFG (black solid), EDSV (red dashed),
CtSV (blue dotted), and RPWIA (green dot-dashed).

For higher q-values (mid and bottom panels), the results that depart the most corre-
spond to the CtSV model (blue dotted line). This discrepancy gets larger as q increases,
and this is connected with the very strong energy-independent potentials involved in CtSV.
As the transfer momentum, q, increases, one expects the effects of final state interactions
(FSI) to be weaker. This is supported by the general accordance between RFG and RPWIA
results, where in the latter, only energy-dependent potentials are involved in the initial
state. In contrast, the more realistic EDSV calculation gives rise to larger (absolute values)
responses but is still far from the CtSV predictions. Note that as the final nucleon momenta
increase, the magnitude of the scalar and vector potentials diminishes. Summarizing, we
observe that as the value of q increases, the relative discrepancy between RPWIA and EDSV
predictions gets weaker, but the CtSV model produces much larger responses due to the
very strong scalar and vector potentials considered in the final state. This is in accord with
the general analysis presented for the pure electromagnetic responses [39], although with
significant relative discrepancies due to the axial term present in the weak sector.
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Figure 2. Same as Figure 1 but for the transverse and interference vector-axial transverse weak
response functions, T (left panels) and T’ (right panels), respectively.

The previous discussion also applies to the two transverse responses (Figure 2),
but with important singularities to be noted. First, the contribution of the longitudinal
response in (anti)neutrino processes is, in most kinematicial situations, negligible compared
with the transverse ones. Hence, the discrepancies observed in the T and T′ channels
between the predictions of the different models will emerge in the differential cross section.
As observed, the CtSV model departs the most as q becomes larger. On the contrary, EDSV
and RPWIA results get closer together, which is in accordance with the kinematics ana-
lyzed, where much larger values of the transferred energy and momentum (and also for
the ejected nucleon momentum/energy) are involved. This implies that the strength of the
potentials in the final state becomes weaker as q increases. Finally, compared to the RFG
prediction, the EDSV responses (likewise RPWIA) are significantly larger (particularly in
the T channel). This is in contrast to the results obtained for the pure electromagnetic trans-
verse response [39], where the discrepancy between RFG and EDSV/RPWIA was much
smaller. This can be connected with the axial–axial contribution in the weak responses that
is absent in the electromagnetic interaction.

In Figures 3 and 4, we present the weak responses obtained with the different mod-
els for 16O and 40Ca, respectively. The values considered for the Fermi momentum are
kF = 230 MeV/c (16O) and 241 MeV/c (40Ca). These, and the one for carbon, correspond to
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the values given in [24] that were determined from a careful analysis of quasielastic (e, e′)
data. Note that in the RFG model, the parameters that define the nuclear dependence are
mostly the Fermi momentum and the energy shift, which can be taken as an average of the
nucleon’s binding energy [24]. As can be noticed, the curves show a similar behavior to the
ones for 12C, apart from the magnitude of the responses.
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Figure 3. Same as Figs. 1 and 2 but considering 16O as nuclear target. Note that, for the longitudinal
response functions, only the CC one is included as the most representative case.
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Figure 3. Same as Figs. 1 and 2 but considering 16O as nuclear target. Note that, for the longitudinal
response functions, only the CC one is included as the most representative case.

Figure 3. Same as Figures 1 and 2 but considering 16O as nuclear target. Note that, for the longitudinal
response functions, only the CC one is included as the most representative case.

Here, for simplicity, we only show the pure charge–charge (CC) contribution to the
longitudinal channel (left panels). The main deviation at high q is associated with the
CtSV model because of the strong scalar and vector constant potentials considered in both
the initial and final states. Furthermore, whereas the various models clearly differ in the
CC channel, the EDSV and RPWIA predictions for the two transverse responses do not
differ too much, although their maxima clearly exceed the RFG response, particularly at
higher q. As already discussed, these discrepancies are remarkably smaller for the pure
electromagnetic responses (see [39]). Finally, it is worth noticing the behavior shown by the
RPWIA predictions for calcium at q = 0.5 GeV/c. As noted in [39], this is a consequence
of the assumptions implied by RPWIA that lead to the value of τ̃∗ becoming negative.
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Figure 4. Same as Figure 3 but for 40Ca as nuclear target.

3.2. Scaling Functions

The analysis of the scaling and superscaling behaviour in the weak responses is shown
in Figures 5–7, where we present the results for the different theoretical approaches, nuclear
targets, and q-values, as shown in the previous section. For simplicity, we restrict our
study to the transverse (T) and interference axial-vector transverse (T′) channels as the
longitudinal contribution in the weak sector is very small, almost negligible, in most
kinematical situations [46].

In Figure 5, we analyze the scaling of the first kind, i.e., independence of the scaling
function with the momentum transfer, q. We have selected the EDSV and RPWIA models
and show results only for 12C. In addition, for reference we present the RFG function (solid
black line), i.e., (3/4)(1− ψ2)Θ(1− ψ2). The left panels correspond to the EDSV approach,
that is, results obtained in the presence of energy-dependent scalar and vector potentials
in the initial and final states, while the right panels refer to RPWIA. We show separately
the T (top panels) and T′ (bottom panels) scaling functions comparing the predictions
corresponding to three different values of the momentum transfer: q = 0.5 GeV/c (brown
double-dotted dashed), 1 GeV/c (red dashed), and 1.5 GeV/c (blue dot-dashed).

As observed, the EDSV and the RPWIA scaling functions, compared to the RFG, are
shifted to larger values of the scaling variable, that is, larger transfer energy, ω. Furthermore,
the overall magnitude (value at the maximum) of both fT and fT′ for the EDSV model
is significantly larger than the RFG. A similar comment also applies to RPWIA in the T
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channel, whereas for the axial-vector transverse response, T′, the RPWIA predictions are
close to RFG, except for the shift in ψ.
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Figure 5. Analysis of 1st kind scaling for the transverse (top panels) and interference vector-axial
transverse (bottom) 12C scaling functions at different q values for the EDSV (left panels) and RPWIA
(right) models. The RFG scaling function is shown in all panels as reference.

The RPWIA results in Figure 5 show that scaling of the first kind is clearly fulfilled
for q ≥ 1 GeV/c. Only the case of q = 0.5 GeV/c differs from the others, shifted to
larger ψ-values. This coincides with the results for the RPWIA electromagnetic scaling
functions [39]. Concerning the EDSV model, its predictions for fT and fT′ exceed the RPWIA
ones, and are much larger than the RFG. This is particularly true for the T′ response, and it
clearly differs from the analysis in the pure electromagnetic transverse response [39], where
the EDSV scaling functions (maxima) were similar to RFG. Furthermore, within the EDSV
model, scaling of the first kind is better reproduced by fT′ , while it is clearly broken by
fT (note the significant discrepancy at q = 0.5 GeV/c). We conclude that scaling behavior
works better for RPWIA in the two transverse responses.

In Figure 6, we analyze the scaling of the second kind for the carbon, oxygen, and cal-
cium targets. We restrict our discussion to the EDSV (left panel) and RPWIA (right panel)
approaches. Each panel contains the separate transverse T (upper curves) and interfer-
ence axial-vector transverse T′ (lower curves) scaling functions. All results correspond to
q = 1 GeV/c. Notice that scaling of the second kind, i.e., independence of nuclear targets,
works rather well in all cases, namely, the results for different nuclei are located in a very
narrow scaling function. In RPWIA scaling of the second kind works extremely well for fT′ ,
with the maximum being slightly below 0.8. Notice that the results corresponding to the
three nuclear systems collapse into a unique curve. For the other cases, scaling is broken
at some level, mainly due to the contribution ascribed to calcium. In summary, scaling
of the second kind works better for RPWIA. By contrast, EDSV shows more uncertainty,
with fT and fT′ having their maxima significantly higher than the RFG value, 0.75. Notice
that fT reaches its maximum value close to 1. This makes an important difference with the
electromagnetic transverse response [39], and it is related to the role that potentials play in
the separate vector and axial contributions in the weak responses.
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Figure 6. Analysis of 2nd kind scaling in carbon, oxygen, and calcium for the transverse (dashed lines)
and interference vector-axial transverse (double-dot-dashed lines) scaling functions at q = 1 GeV/c
for the EDSV (left panel) and RPWIA (right panel) models.
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Figure 7. Comparison of the 12C scaling functions fT and fT′ for the EDSV (left panels) and RPWIA
(right panels) models and three different values of the momentum transfer. The RFG scaling function
is shown as reference.

For completeness, we compare in Figure 7 fT and fT′ for the two models considered,
EDSV and RPWIA, and three different values of the momentum transfer. The RFG predic-
tion is also shown as a reference. Apart from the general shift to larger ψ-values shown
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by EDSV and RPWIA, in what follows we restrict our attention to the basic differences
between the predictions of the two approaches. As observed, the relative discrepancy
between fT and fT′ is larger for RPWIA. In contrast, both scaling functions coincide for the
EDSV model at q = 0.5 GeV/c. Regarding the RFG, the EDSV and RPWIA scaling functions
achieve their maxima at significantly higher values. Only for RPWIA at q = 1.5 GeV/c
and fT′ (right-bottom panel) is the maximum in the scaling function consistent with RFG.
In all remaining cases, and particularly for the EDSV model, the fT and fT′ functions most
likely exceed the RFG result. This makes an important difference with the electromagnetic
fT function that is rather similar to the RFG one for the two EDSV and RPWIA models.
In both cases, the electromagnetic scaling functions reach their maxima at fT(ψ) ≈ 0.75,
while the weak transverse responses get close to 1 in some cases, that is, ∼ 25% higher. This
particular result, which is not observed with the RMF model applied to finite nuclei [26,30],
is probably connected with the assumptions of the RMF model applied to nuclear matter in
addition to the specific role played by the axial term in the weak transverse responses.

4. Conclusions

This paper closely follows the study already performed for the electromagnetic
quasielastic (e, e′) response functions presented in [39]. Here, we extend our investigation
to the case of charged-current quasielastic neutrino-nucleus scattering within the relativistic
mean field applied to nuclear matter. We analyze the five weak response functions that
enter in (ν`, `) reactions exploring the effects of the scalar and vector potentials introduced
in the initial and/or final nucleon states. Different options have been considered: from the
most general case with energy/momentum dependent potentials in both initial and final
states to more simple situations with fixed constant potentials equal in both nucleon states,
the plane wave limit, that is, no potentials in the final states, and the pure relativistic Fermi
gas model taken as reference.

The relativistic mean field model applied to finite nuclei has proved its capability to
successfully describe the electromagnetic and weak responses for a large variety of kine-
matical situations. However, it fails at very high values of the momentum transfer because
of the strong energy-independent potentials involved. Here, following the work carried
out in [39], we use a simpler, oversimplified description of the scattering processes, but it
provides analytical expressions from which the effects ascribed to the main ingredients in
the problem are significantly clarified, for instance, how the specific shape of the potentials
affects the weak responses. As expected, the results corresponding to energy-dependent
potentials in the initial and final states approach the ones in the plane wave limit. However,
very significant differences emerge in comparison with the electromagnetic responses.
In contrast to (e, e′), where the discrepancy in the maximum between the EDSV/RPWIA
and RFG predictions is not too large, for neutrinos the differences are much bigger. This is
more clearly illustrated when comparing the results for the various scaling functions and is
related to the role of the potentials in the axial sector.

From the study of scaling and supercaling one concludes that scaling of the first
kind works reasonably well in some kinematical situations, although the strength of the
functions (for the different models) departs significantly from the RFG prediction. This
makes a crucial difference with the electromagnetic responses. With regard to scaling of
the second kind, it works extremely well for the two weak transverse responses, but again
with values at the maxima much higher than the RFG one in most of the cases.

In summary, in this work we have extended to the weak sector our previous investiga-
tions on pure electromagnetic responses. Using a simple but fully relativistic approach, we
have explored in detail the behavior of the responses and scaling/superscaling functions
with emphasis in the role played by the relativistic scalar and vector potentials and their ef-
fects in the observables. Particular interest has been paid to the visible differences emerged
in both the pure electromagnetic and weak nuclear responses.
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Appendix A. Single-Nucleon Tensor Tµν

The general expression for the weak single-nucleon tensor in the most general case,
i.e., different scalar and vector relativistic potentials in the initial and final states, can be
written in the form:

Tµν = −
(M∗f + M∗i )

2

2

(
gµν − Q∗µQ∗ν

Q∗2

)[
τ̃∗G̃∗

2

M + G2
A

(
1 + τ̃∗

)]

+
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2P∗µi P∗νi + P∗µi Q∗ν + Q∗µi P∗νi +

Q∗µQ∗ν

2
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2
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+
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The single nucleon form factors in (A1) are defined as:

G̃∗M = F1 + F̃∗2 ; G̃∗E = F1 − τ̃∗ F̃∗2 ; G̃∗P =

(
M∗f + M∗i

)
2M

GP (A2)

with F̃∗2 ≡
(

M∗f +M∗i
)

2M F2, and the following set of dimensionless variables have been intro-
duced [24,25,47]:

κ ≡ q
2M

; λ ≡ ω

2M
; η ≡ p

M
; τ = κ2 − λ2

sm ≡
S(p)

M
; ∆v ≡ ∆V

2M
; λ∗ ≡ ω∗

2M
= λ− ∆v; τ∗ = κ2 − λ∗

2

ε∗ ≡
E∗p
M

=
√

η2 + (1 + sm)2; ∆m∗
2 ≡ 1

4

[(M∗f
M

)2
−
(M∗i

M

)2
]

; ρ∗ =
(

1 +
∆m∗

2

τ∗

)
κ̃∗ ≡ q

(M∗f + M∗i )
; λ̃∗ ≡ ω∗

(M∗f + M∗i )
; τ̃∗ = κ̃∗2 − λ̃∗2

η̃∗i, f ≡
pi, f

(M∗f + M∗i )/2
; ε̃∗i, f ≡

E∗i, f

(M∗f + M∗i )/2
. (A3)

References
1. Alvarez-Ruso, L.; Sajjad Athar, M.; Barbaro, M.B.; Cherdack, D.; Christy, M.E.; Coloma, P.; Donnelly, T.W.; Dytman, S.;

de Gouvea, A.; Hill, R.J.; et al. NuSTEC1 1Neutrino Scattering Theory Experiment Collaboration http://nustec.fnal.gov.
White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys. 2018, 100, 1–68. [CrossRef]

2. Katori, T.; Martini, M. Neutrino–nucleus cross sections for oscillation experiments. J. Phys. G 2018, 45, 013001.
3. Acero, M.A. et al. [NOvA Collaboration]. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos

by NOvA. Phys. Rev. Lett. 2019, 123, 151803. [CrossRef] [PubMed]
4. Abe, K. et al. [The T2K Collaboration]. Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations.

Nature 2020, 580, 339–344. [CrossRef]
5. Abe, K.; Aihara, H.; Andreopoulos, C.; Anghel, I.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Askins, M.; Back, J.J.; Ballett, P.; et al.

Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Prog.
Theor. Exp. Phys. 2015, 2015, 053C02.

6. Abed Abud, A. et al. [DUNE Collaboration]. Snowmass Neutrino Frontier: DUNE Physics Summary. arXiv 2022, arXiv:2203.06100.
7. Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Williamson, C.F. Meson-exchange currents and quasielastic neutrino

cross sections in the superscaling approximation model. Phys. Lett. B 2011, 696, 151–155. [CrossRef]
8. Megias, G.D.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Inclusive electron scattering within the SuSAv2

meson-exchange current approach. Phys. Rev. 2016, D94, 013012.
9. Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Amaro, J.E.; Donnelly, T.W.; Ruiz Simo, I.; Van Orden, J.W. Neutrino-Oxygen CC0π

scattering in the SuSAv2-MEC model. J. Phys. G 2019, 46, 015104.
10. Bodek, A.; Christy, M.E.; Coopersmith, B. Effective Spectral Function for Quasielastic Scattering on Nuclei. Nucl. Part. Phys. Proc.

2016, 273, 1705–1710. [CrossRef]
11. Bodek, A.; Christy, M.E.; Coopersmith, B. Effective spectral function for quasielastic scattering on nuclei from 2

1H to 208
82 Pb. AIP

Conf. Proc. 2015, 1680, 020003.
12. Bodek, A.; Christy, M.E.; Coopersmith, B. Effective Spectral Function for Quasielastic Scattering on Nuclei. Eur. Phys. J. 2014,

C74, 3091.
13. Kim, K.S.; Wright, L.E. y-scaling in Quasielastic Electron Scattering from Nuclei. Phys. Rev. 2007, C76, 044613. [CrossRef]
14. Kim, K.S.; Wright, L.E. Quasielastic electron scattering at high energy from C-12, Fe-56, and Au-197. Phys. Rev. 2003, C67, 054604.

[CrossRef]
15. Giusti, C.; Meucci, A. The Relativistic Green’s Function Model for Quasielastic Neutrino-Nucleus Scattering. Nucl. Theory 2013, 32, 50–60.
16. Meucci, A.; Vorabbi, M.; Giusti, C.; Pacati, F.D.; Finelli, P. Elastic and quasi-elastic electron scattering off nuclei with neutron

excess. Phys. Rev. 2013, C87, 054620.
17. Rocco, N.; Lovato, A.; Benhar, O. Unified description of electron-nucleus scattering within the spectral function formalism. Phys.

Rev. Lett. 2016, 116, 192501.
18. Benhar, O.; Lovato, A. Towards a unified description of the electroweak nuclear response. Int. J. Mod. Phys. 2015, E24, 1530006.

[CrossRef]
19. Benhar, O.; Coletti, P.; Meloni, D. Electroweak Nuclear Response in the Quasielastic Regime. Phys. Rev. Lett. 2010, 105, 132301.

[CrossRef]
20. Mosel, U.; Gallmeister, K. Cross sections for A(e,e′)X reactions. Phys. Rev. 2019, C99, 064605. [CrossRef]

http://nustec.fnal.gov
http://doi.org/10.1016/j.ppnp.2018.01.006
http://dx.doi.org/10.1103/PhysRevLett.123.151803
http://www.ncbi.nlm.nih.gov/pubmed/31702305
http://dx.doi.org/10.1038/s41586-020-2177-0
http://dx.doi.org/10.1016/j.physletb.2010.12.007
http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.275
http://dx.doi.org/10.1103/PhysRevC.76.044613
http://dx.doi.org/10.1103/PhysRevC.67.054604
http://dx.doi.org/10.1142/S0218301315300064
http://dx.doi.org/10.1103/PhysRevLett.105.132301
http://dx.doi.org/10.1103/PhysRevC.99.064605


Universe 2023, 9, 240 21 of 21

21. Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; González-Jiménez, R.; Megias, G.D.; Simo, I.R. Electron- versus neutrino-nucleus
scattering. J. Phys. G Nucl. Part Phys. 2020, 47, 124001.

22. Alberico, W.M.; Molinari, A.; Donnelly, T.W.; Kronenberg, E.L.; Van Orden, J.W. Scaling in electron scattering from a relativistic
Fermi gas. Phys. Rev. 1988, C38, 1801–1810. [CrossRef] [PubMed]

23. Donnelly, T.W.; Sick, I. Superscaling in inclusive electron—Nucleus scattering. Phys. Rev. Lett. 1999, 82, 3212–3215.
24. Maieron, C.; Donnelly, T.W.; Sick, I. Extended superscaling of electron scattering from nuclei. Phys. Rev. 2002, C65, 025502.

[CrossRef]
25. Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Molinari, A.; Sick, I. Using electron scattering superscaling to predict

charge-changing neutrino cross sections in nuclei. Phys. Rev. 2005, C71, 015501. [CrossRef]
26. González-Jiménez, R.; Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Extensions of Superscaling from Relativistic

Mean Field Theory: The SuSAv2 Model. Phys. Rev. 2014, C90, 035501.
27. Megias, G.; Amaro, J.; Barbaro, M.; Caballero, J.; Donnelly, T.; Ruiz Simo, I. Charged-current neutrino-nucleus reactions within

the superscaling meson-exchange current approach. Phys. Rev. 2016, D94, 093004.
28. Barbaro, M.B.; Caballero, J.A.; De Pace, A.; Donnelly, T.W.; González-Jiménez, R.; Megias, G.D. Mean-field and two-body nuclear

effects in inclusive electron scattering on argon, carbon, and titanium: The superscaling approach. Phys. Rev. C 2019, 99, 042501.
[CrossRef]

29. Donnelly, T.W.; Sick, I. Superscaling of inclusive electron scattering from nuclei. Phys. Rev. C 1999, 60, 065502. [CrossRef]
30. Caballero, J.A.; Amaro, J.E.; Barbaro, M.B.; Donnelly, T.W.; Udias, J.M. Scaling and isospin effects in quasielastic lepton-nucleus

scattering in the Relativistic Mean Field Approach. Phys. Lett. 2007, B653, 366–372. [CrossRef]
31. González-Jiménez, R.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Jachowicz, N.; Megias, G.D.; Niewczas, K.;

Nikolakopoulos, A.; Udías, J.M. Constraints in modeling the quasielastic response in inclusive lepton-nucleus scattering. Phys.
Rev. C 2020, 101, 015503.

32. Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; González-Jiménez, R.; Megias, G.D.; Ruiz Simo, I. Neutrino-nucleus
scattering in the SuSA model. Eur. Phys. J. Spec. Top. 2021, 230, 4321–4338. [CrossRef]

33. Megias, G.D.; Donnelly, T.W.; Moreno, O.; Williamson, C.F.; Caballero, J.A.; González-Jiménez, R.; De Pace, A.; Barbaro, M.B.;
Alberico, W.M.; Nardi, M.; et al. Meson-exchange currents and quasielastic predictions for charged-current neutrino-12C scattering
in the superscaling approach. Phys. Rev. D 2015, 91, 073004.

34. Gonzalez-Rosa, J.; Megias, G.; Caballero, J.; Barbaro, M. SuSAv2 model for inelastic neutrino-nucleus scattering. Phys. Rev. D
2022, 105, 093009. [CrossRef]

35. Dolan, S.; Megias, G.D.; Bolognesi, S. Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE
and analysis of nuclear effects in T2K measurements. Phys. Rev. D 2020, 101, 033003. [CrossRef]

36. Megias, G.; Barbaro, M.; Caballero, J.; Dolan, S. Analysis of the MINERvA antineutrino double-differential cross sections within
the SuSAv2 model including meson-exchange currents. Phys. Rev. D 2019, 99, 113002.

37. Papadopoulou, A. et al. [e4υ Collaboration]. Inclusive Electron Scattering And The GENIE Neutrino Event Generator. Phys. Rev.
D 2021, 103, 113003.

38. Khachatryan, M. et al. [CLAS Collaboration & e4υ Collaboration]. Electron-beam energy reconstruction for neutrino oscillation
measurements. Nature 2021, 599, 565–570. [CrossRef]

39. Cruz-Barrios, S.; Caballero, J.A. Analysis of quasielastic (e, e′) electromagnetic responses and scaling for nuclear matter in the
relativistic mean field model. Nucl. Phys. A 2020, 994, 121667.

40. Galster, S.; Klein, H.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Bleckwenn, J. Elastic electron-deuteron scattering and the electric
neutron form factor at four-momentum transfers 5fm−2 < q2 < 14fm−2. Nucl. Phys. 1971, B32, 221–237. [CrossRef]

41. Meyer, A.S.; Betancourt, M.; Gran, R.; Hill, R.J. Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D
2016, 93, 113015.

42. Gonzalez-Jimenez, R.; Caballero, J.A.; Donnelly, T.W. Parity Violation in Elastic Electron-Nucleon Scattering: Strangeness Content
in the Nucleon. Phys. Rept. 2013, 524, 1–35.

43. Thomas, A.W.; Weise, W. The Structure of the Nucleon; Wiley-VCH Verlag GmbH: Berlin, Germany, 2001.
44. Horowitz, C.J.; Piekarewicz, J. Relativistic and nuclear structure effects in parity violating quasielastic electron scattering. Phys.

Rev. 1993, C47, 2924–2936.
45. Kim, H.; Horowitz, C.J.; Frank, M.R. Relativistic models for quasielastic (e, e′) at large momentum transfers. Phys. Rev. 1995,

C51, 792–796. [CrossRef]
46. Megias, G.D.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Neutrino and antineutrino CCQE scattering in the

SuperScaling Approximation from MiniBooNE to NOMAD energies. Phys. Lett. B 2013, 725, 170–174.
47. Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Molinari, A. Gauge and Lorentz invariant one pion exchange currents

in electron scattering from a relativistic Fermi gas. Phys. Rept. 2002, 368, 317–407.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevC.38.1801
http://www.ncbi.nlm.nih.gov/pubmed/9954990
http://dx.doi.org/10.1103/PhysRevC.65.025502
http://dx.doi.org/10.1103/PhysRevC.71.015501
http://dx.doi.org/10.1103/PhysRevC.99.042501
http://dx.doi.org/10.1103/PhysRevC.60.065502
http://dx.doi.org/10.1016/j.physletb.2007.08.018
http://dx.doi.org/10.1140/epjs/s11734-021-00289-5
http://dx.doi.org/10.1103/PhysRevD.105.093009
http://dx.doi.org/10.1103/PhysRevD.101.033003
http://dx.doi.org/10.1038/s41586-021-04046-5
http://dx.doi.org/10.1016/0550-3213(71)90068-X
http://dx.doi.org/10.1103/PhysRevC.51.792

	Introduction
	General Formalism 
	Tensor Components Involved in the Weak Responses
	Weak Nuclear Responses

	Discussion of Results 
	Nuclear Responses
	Scaling Functions

	Conclusions 
	Appendix A
	References

