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Optimizing efficiency in the operation of the HVAC system of existing buildings requires the construction of 
a thermal dynamic model of the building, which may be challenging because architectural metadata may be 
missing or obsolete. Based on a suitable set of measured data, this paper presents a novel practical methodology 
to create and automatically derive thermal models of existing buildings in high-fidelity simulators for energy 
management. To this end, the philosophy of grey-box strategies is followed to simplify the modeling and avoid 
the requirement of architectural metadata, facilitating and expediting the process. First, a building model with 
a highly reduced number of parameters is constructed by exploiting the existing similarities in the materials of 
the buildings and simplifying their elements to a simple one-layer parameterization. Then, the parameters of 
the derived model are iteratively updated while minimizing the error between the real temperature evolution 
and that generated by the model being identified. For this purpose, data of the room air temperature, estimated 
occupancy, weather conditions, and variables of the HVAC system are assumed to be available in suitable zones of 
the building to apply the creation and identification processes of the model, allowing that a whole digital twin of 
the building is constructed. The methodology is presented by its application to a real case study: the Nimbus 
Research Centre building at Munster Technological University, located in Cork (Ireland). The high-fidelity 
simulator software TRNSYS is used for the modeling task, together with the GenOpt optimization program. 
The results demonstrate that the proposed methodology yields a highly accurate model of the building, capable 
of representing reality with RMSE values consistently below 0.6 ◦C during open-loop validation periods of up to 
four days. The findings suggest that this methodology may outperform other modeling techniques reported in 
the literature. Importantly, the proposed technique is less complex and time-consuming to implement than many 
of the alternatives.
1. Introduction

The energy consumed in buildings represents up to 40% of the total 
energy consumption in developed countries, of which HVAC (Heating, 
Ventilation and Air Conditioning) systems comprise about 50% [1,2]. 
Furthermore, buildings contribute to 36% of energy-related greenhouse 
gas emissions [3]. This has motivated international policies to improve 
and specifically in heating and cooling systems.1

* Corresponding author.
E-mail addresses: jaborja@us.es (J.A. Borja-Conde), kritchai.witheephanich@mtu.ie (K. Witheephanich), jfc@us.es (J.F. Coronel), dlm@us.es (D. Limon).

1 For instance, the European Union has included the need to increase energy efficiency in buildings to reduce energy use in recent plans for the EU’s climate 

To improve the energy efficiency of buildings, different tasks can be 
performed, such as improving the thermal insulation of buildings [6]
or installing solar panels to produce clean energy for self-consumption, 
among others. However, these tasks require a significant investment 
and time. On the other hand, a feasible solution would be to apply ad-
vanced methodologies to operate HVAC systems, which may not require 
new equipment or a large investment and thus it is appropriate for ex-
isting buildings: In [7], the great potential of implementing advanced 
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transition [4], where heating and cooling are presented as one of the key factors [5]
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management methodologies in existing buildings is highlighted, as ex-
isting buildings represent the vast majority of the entire building stock. 
In particular, it has been reported that profiting from new technologi-
cal advances in energy management can reduce energy use in buildings 
from 13% to 28% on average [8]. Therefore, applying these techniques 
only to old buildings would lead to a great deal of energy savings that 
could be achieved in the short term.

However, the implementation of these advanced strategies is closely 
linked to the availability of an energy model of the building to take pre-
dictions into account, to check the viability of the management policies, 
etc.

In addition, the model could be used as a Digital Twin of the building 
if it has the capability not only to represent the real system, contin-
uously updated with real-time system data, but also to allow faithful 
prediction of how the system will evolve [9], as long as high accuracy 
of the model is provided. Furthermore, it could also be used for other 
tasks, such as anomaly and fault detection, testing and training control 
systems before application in the real system, even dimensioning of a 
new HVAC system prior to installation if it had to be updated, etc. [8].

1.1. Literature review

For the aforementioned purpose, white-box (WB) models are one of 
the suitable popular options—as long as a good parametrization of the 
building is developed [10]. There are mature white-box modeling and 
simulation tools, highlighted by their high fidelity, such as EnergyPlus 
[11], Modelica [12], IDA ICE [13], eQUEST [14], or TRNSYS [15]. They 
have been widely used to model the thermal and energetic evolution of 
buildings [16–19].

These tools require a detailed description of the building and its 
construction techniques, needing the specification of a large set of archi-
tectural metadata parameters, such as layers, thickness, conductivity, 
capacity, density or convective coefficient of materials in walls, win-
dows, etc. Therefore, they will provide high fidelity as long as the 
parameter values are close to reality. According to [20], there is ev-
idence that a more detailed and complex model does not necessarily 
translate into a more accurate model of the real building as a result of 
increasing the quantity and accuracy of the required set of architectural 
design parameters. This is because design parameters are not real pa-
rameters due to the enormous range of particularities that exist in the 
manufacturing of materials, the construction of the building, its sur-
rounding conditions, unexpected energy losses, etc. [10,21]. Therefore, 
it has been shown that, in order to enhance the model performance, it is 
not necessary to add more specific and particular architectural details, 
but to calibrate a suitable subset of parameters [22].

Because of this, there are several works in the literature that couple 
white-box modeling in high-fidelity (HF) simulators with a calibration 
process.

Some studies implement a calibration of energy exchanges due to 
air infiltration. In [23], a domestic building is modeled using TRNSYS, 
and the air infiltration change rate is calibrated, resulting in an im-
proved simulation-based energy assessment. In [24], the authors have 
used TRNSYS to model a school center based on complete architectural 
metadata. They had the added difficulty that the buildings had defective 
window insulation, increasing energy losses due to infiltration. Then, 
they applied a deterministic calibration approach of the parameters cor-
responding to the infiltration, yielding a significant reduction of the 
thermal model error. In [25], an extensive work is carried out to model 
a public library in TRNSYS. The construction properties are set by the 
architectural metadata, while only infiltration values are used to cali-
brate the thermal model of the building. This study is notably extended 
in [26], where the calibration parameters of the building thermal model 
are not only the infiltration, but also the capacitance of each thermal 
zone.

Other studies focus on the calibration of the construction material 
2

properties, but constrain the possible results to an interval around the 
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values provided by the manufacturers. In [27], a two-story test building 
is modeled in EnergyPlus in compliance with detailed architectural doc-
umentation. They set several calibration parameters related to internal 
gains, infiltration, construction materials, such as thickness or conduc-
tivity, etc., which are constrained to a maximum first design error of 
around 25%. A similar case study is developed in [28], where the build-
ing is modeled in IDA ICE. Similarly, in [22], an automated procedure 
for calibration is proposed starting from an initial detailed model, which 
is focused on power consumption. In [29], a historical building mod-
eled in EnergyPlus is calibrated by comparing two different methods. 
The calibration parameters chosen in the study are conductivity, ther-
mal and solar absorption, and specific heat of the walls. One method 
calibrates from air temperature measurements and the other method 
estimates using air as well as surface temperature measurements. Cali-
bration leads to a significant reduction in model error for both methods, 
although the development of good initial models is mentioned as one of 
the key factors.

The works mentioned above require detailed and complete technical 
information extracted from architectural plans and metadata to set a 
starting point in the modeling and calibration process. Although this 
information is very useful, obtaining it is a tedious task, which limits the 
application of the methodology to other buildings [30]. Furthermore, 
problems become particularly challenging in relatively old buildings, 
where architectural metadata may not be available or not reliable.

To avoid this issue, another popular option is the use of black-box 
(BB) models instead. These are generated using input–output data in 
pure data-driven methods, disregarding physical relations or architec-
tural metadata, and require a limited number of parameters and com-
plexity [10,31]. To this end, there are a wide range of model structures 
suitable, such as linear regression (LR), neural networks (NN), support 
vector machine (SVM), etc., as reviewed in [10,32–34]. However, black-
box techniques have clear disadvantages. For instance, the parameters 
do not usually have physical meaning—so they are not interpretable for 
building operators. Furthermore, they require long training and valida-
tion periods and are limited to building operation conditions covered 
during the training period [10], so that good accuracy will be obtained 
whenever a wide range of different operating scenarios are forced on 
the real system over long periods of time, which is not usually desirable 
or even possible.

In order to unify the advantages of both white-box and black-box 
models, grey-box (GB) modeling techniques are used, where the model 
structure is established from physical laws, while model parameters are 
identified from input-output data [31]. Traditionally, these methods are 
based on simple resistance-capacitance (RC) model structures, as re-
viewed in [32]. Often, the simplification of the modeling is one of their 
focus [35]. In comparison with black-box models, RC models have the 
advantages of being physically more interpretable and not requiring 
such a wide range of different operating scenarios. However, non-linear 
dynamics are not well modeled, and there is no consensus on the op-
timal model complexity, since lower-order models may not be able to 
catch the thermal dynamics, but in the same time, higher-order models 
may lead to be over-fitted to training data [36]. On the other hand, in 
comparison with white-box models, RC models are less arduous to de-
velop and have fewer parameters, at the expense of lower accuracy and 
less representativeness of nonlinear dynamics.

More recently, in order to enhance the traditional grey-box model, 
a further and deeper rapprochement between grey-box and black-box 
modeling methods has been proposed. To this end, researchers intro-
duce prior physical knowledge in more sophisticated model structures—
typically used in black-box techniques—than RC ones. For example, in 
[37], a physics-informed linear regression model (PILR) is compared 
to machine learning methods, and the physics-informed model is con-
cluded to be superior to the others. In [38], physically consistent neural 
networks (PCNN) were proposed, concluding that the proposed model 
clearly outperformed RC models. However, they presented it as a limi-

tation that are only physically consistent with respect to control inputs 
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Table 1

Compilation of advantages and disadvantages of the different types of modeling and their corresponding structure model.

White-Box Black-Box Grey-Box

Feature HF Sim. NN, LR, SVM, etc. RC PCNN/PILR HF Sim.

∙ Easy and quick modeling ✗ ✓ ✓ ✓ ✓

∙ Physically consistent ✓ ✗ ✓ ✓ ✓

∙ Reduced number of parameters ✗ ∼∼∼∼∼∼∼∼∼ ∼∼∼∼∼∼∼∼∼ ∼∼∼∼∼∼∼∼∼ ✓

∙ Catch non-linear dynamics ✓ ✓ ✗ ✓ ✓

∙ Small number of scenarios for training ✓ ✗ ✓ ✗ ✓

∙ Good trade-off between complexity and accuracy ✗ ✗ ✗ ∼∼∼∼∼∼∼∼∼ ✓

✓ It presents advantages in this regard. ✗ It presents disadvantages in this regard. ∼∼∼∼∼∼∼∼∼ It depends on other aspects.
and exogenous temperatures; otherwise, they cannot guarantee the ro-
bustness of the model anymore [39]. Also, some exogenous factors and 
non-linear dynamics, such as catching the disturbances of solar gains 
through the windows or of the occupancy, are also presented as a diffi-
culty. Lastly, similarly to [40], the quality of the solution can vary sig-
nificantly should an initialization with unrealistic values be developed; 
that is, PCNNs do not always recover physically consistent parameters 
from data. Thus, some level of engineering insight is required to prop-
erly use the presented methodologies.

Other recently popular field of research to identify building ther-
mal models automatically is symbolic regression, with promising re-
sults [41–43]. At its core, symbolic regression could be considered a 
black-box approach. However, it differs from other black-box methods 
because it is focused on discovering mathematical models and equa-
tions from data, which can provide interpretability by offering insights 
into the relationship between input and output variables. Nonetheless, 
symbolic regression is a relatively new technique in machine learning, 
and while it has shown promise in various fields, it is still under study 
and there are still some challenges to overcome, such as scalability to 
large datasets, overcoming overfitting, modeling non-linear dynamics, 
etc. [41].

Recapping the conclusions presented throughout this section and 
based particularly on [10,32,33,36,38,39,41], a compilation of the ad-
vantages and disadvantages of each type of modeling is shown in Ta-
ble 1.

1.2. Contribution

In this paper a methodology to derive structured Grey-Box models 
in High-Fidelity Simulator (denoted as GB-HF Sim. in the rightmost col-
umn in Table 1) is presented. The model structure is constructed in 
high-fidelity simulators, such as TRNSYS or EnergyPlus (typically used 
for white-box modeling) but—motivated by the philosophy of grey-box 
strategies—simplifying the model and avoiding the requirement of ar-
chitectural metadata. Notice that PCNN and PILR models, presented 
above, are aimed to get grey-box models from black-box model tools, 
while the proposed method in this work is also aimed to get a grey-box 
model, but from the White-Box model tools (i.e. high-fidelity simula-
tors).

Grey-box RC models are also aimed at obtaining grey-box mod-
els but using simple resistance-capacitance structures of the building, 
which cannot describe the inherent non-linear dynamics. In contrast, 
the grey-box models using high-fidelity simulator, proposed in this pa-
per, cope with this issue, thanks to the use of high-fidelity simulation 
tools. This, together with the proposed simplified modeling, allows one 
to achieve a very good trade-off between complexity of the model and 
accuracy, as it is demonstrated in the real case study.

Furthermore, thanks to the very nature of such simulators, a small 
number of operation scenarios for the training process is sufficient, 
contrary to the PCNN/PILR methods. This, together with the model 
simplifications considered in this paper, helps to avoid over-fitting prob-
3

lems.
Fig. 1. Nimbus Research Centre building.

In the proposed method, the model of the building is simplified 
by minimizing the number of parameters, thanks to a strategy that 
exploits the topology of the building, e.g., taking advantage of the 
similarities between rooms and seeking equivalent one-layer walls that 
represent the multi-layer ones. This strategy is comparable to that of the 
lumped parameter models [35,44] and the technique of clustering zones 
[45,46]. In addition, on the basis of this simplified building model, an 
automated parameter identification process2 is performed using histor-
ical operation data, as does grey-box modeling, thus, without resorting 
to architectural metadata, unlike white-box methods. The only real pa-
rameters that are supposed to be known are primary information such 
as the main dimensions of the rooms and windows (height, width, and 
depth), location, orientation, etc.3

The proposed method is applied to a real case study: the Nimbus Re-
search Centre building at Munster Technological University, located in 
Cork (Ireland), shown in Fig. 1. The building is modeled in the TRNSYS 
simulation program [15]. The validation results obtained show high fi-
delity of the model.

To the best knowledge of the author, this is the first combined use of 
these simulators with grey-box modeling methods, in addition to being 
applied to a real building.

The rest of the paper is organized as follows; First, the case study 
is presented in Section 2, which includes a description of its zones and 
layout, available data collected based on IoT technologies [47], and a 
proposed classification of zones for modeling. In Section 3, the setup of 
the model and the main objectives are presented. Then, in Section 4, 
the modeling and identification strategy is explained. A zone-level oc-
cupancy estimator is proposed in Section 5. Finally, the paper ends with 

2 Note that the term “calibration of parameters”—used in the mentioned 
works that couple detailed white-box models with a calibration process—is 
henceforth avoided, using “identification of parameters” instead, since, unlike 
the articles cited above, the initial values of the model are completely unknown.

3 Note that this assumption would not be a drawback in comparison with 
typical grey-box modeling, as most of them also need this primary information, 

which is not counted as using architectural metadata [33].
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Fig. 2. Second floor building layout regarding zones types. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. First floor building layout regarding zones types.

the presentation of the application in a real case study and the discus-
sion of the corresponding final results in Section 6, followed by some 
conclusions in Section 7.

2. Case study description

The method proposed in this paper will be introduced by means 
of a real case study: the Nimbus Research Centre building at Munster 
Technological University, located in Cork (Ireland), shown in Fig. 1

2.1. Description of building zones and layout

The case study is a two-story building where there are several rooms 
for different uses, such as offices, meetings, seminars, etc. The building 
has been used as a test bed case study in several projects [48,49]. In it, 
a set of wireless sensor networks have been deployed to measure energy 
and thermal variables, which are suitable for modeling and control.

In Figs. 2 and 3 the layouts of the first and second floors, respec-
tively, are shown. These are divided into zones, which are classified 
according to the set of measurements available for each one and with 
associated radiator control valve (RCV, allows for automated control) 
and thermostatic radiator valves (TRV, allows for manual control). The 
ones with more sensors are shown in color in the layout and are de-
scribed in Section 2.3.

• Zone 1 (in red) is a kitchen.
• Zone 2 (in green) is a room where there are approximately thirty 

computer workstations.
• Zone 3 (in yellow) is an office for three or four people.
• Zone 4 (in blue) is an office for six or seven people.

The zones shown in white and gray are described in Section 2.3.

2.2. Installed sensors and available data

Some of the building zones have been equipped with sensors to ob-
4

tain suitable measurements, based on IoT technologies [47], for energy 
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monitoring and management. The types of sensors used are listed be-
low.

• Zone air temperature sensor: Measures the dry bulb temperature in 
the zone where it is installed.

• Estimated occupancy: The number of people in a room is estimated 
by presence sensors together with CO2 balances. Occupancy may be 
used to set other internal gains, such as computers and lighting.

• Heating system exchanges: Heat transferred from the HVAC system 
to the room is estimated by combining measurements of water flow 
and inlet and outlet temperatures in the fan coil.

Additionally, the following variables that affect the whole building 
are also measured:

• Outside air temperature sensor: Measures the temperature of the 
dry bulb in the outside air.

• Beam solar radiation: Direct radiation from the Sun on a horizontal 
surface is measured using a pyranometer.

• Diffuse solar radiation: Diffuse radiation from the Sun on a horizon-
tal surface is measured using a pyranometer.

Radiation measurements must be combined with solar azimuth and 
zenith angles, using timestamp, location, and building orientation.

2.3. Zones classification in modeling

According to the availability of the variables measured in each zone, 
these are classified into four different groups of zones in terms of mod-
eling:

• Full-Sensorized Zones (FS Zones): These are the zones where all 
energy variables are measured: Zone air temperature, estimated oc-
cupancy and heating system exchanges. Therefore, these are the 
zones that can be fully modeled. Zone 1 and Zone 2 comprise this 
group.

• Almost-Full-Sensorized Zones (AFS Zones): These are the zones 
where all energy variables but occupancy are measured: Zone air 
temperature and heating system exchanges. Since occupancy is not 
known, this could be estimated. Zone 3 and Zone 4 comprise this 
group.

• Low-Sensorized Zones (LS Zones): These are the zones where only 
zone air temperature is measured. These zones are represented by a 
white background color in Fig. 2.

• Non-Sensorized Zones (NS Zones): These are the zones where it is 
not possible to measure any variable. These zones are represented 
by a gray background color in Fig. 2.

3. Model setup and objectives

3.1. Building simplification

The development of a dynamic model of a building is typically a 
complex task, since it usually requires a precise description of every 
material and construction technique of the building, such as the layers 
of which the walls are composed and its materials, the type of win-
dows and the glass properties, etc. In addition, their properties must 
be obtained from architectural metadata, which are typically difficult 
or even impossible to obtain. This is particularly hard in existing build-
ings, where technical information is missing or obsolete. Therefore, this 
methodology is not appropriate to obtain models for existing buildings, 
which is the main objective of this paper.

To this end, it is proposed to use a simplified building model based 
on some assumptions that are commonly addressed in practice. Under 

this simplification, the model obtained may provide less detailed re-
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sults, but this allows one to estimate the evolution of the main variables 
of the building necessary for energy analysis and building management.

These assumptions are developed according to three main principles. 
The first is to avoid detailed building geometry, by assuming that all 
building elements can be modeled as uniform, without any irregularity 
(e.g., a wall that has protruding components is supposed to be smooth). 
The second is to seek simpler equivalent elements, which means that in-
stead of modeling the elements layer-by-layer, they can be modeled by 
an equivalent single layer that encompasses all. And the third principle 
is to take advantage of similarities between the elements that form the 
building (e.g., windows, internal walls, external elements, as in walls or 
roofs, and ceilings between floors). These principles are closely related 
to the philosophy of grey-box models, as motivated in the Introduction.

For the proposed modeling process, the following assumptions are 
made, which are validated in Section 6:

Assumption 1. Building elements with multiple layers of construction 
are modeled as one-layer elements.

Assumption 2. Rooms are modeled with rectangles and smooth sur-
faces.

Assumption 3. Building elements are categorized into a reduced num-
ber of common groups. Within each group, all elements are supposed 
to have the same materials and layers. The only difference will be their 
dimensions (height and width).

Assumption 4. The natural air changes per hour due to air infiltration 
from outside the room are approximately the same in all rooms.

Assumption 5. The ratio between zone capacitance and zone volume 
is approximately the same in all rooms.

These five assumptions are generally applicable to most buildings, 
greatly simplifying the modeling process. As long as these assumptions 
are met, the methodology can be scaled. The objective is to obtain a 
simplified but analogous model to the real building to be used for en-
ergy analysis and building management.

For example, in the case study, according to Assumption 3 there 
are four groups: “Windows”, “Internal walls”, “External elements”, and 
“Ceilings”.

3.2. Identification of parameters of the building model

The set of parameters to identify are the ones of the one-layer el-
ements, the natural air changes per hour, and the ratio between zone 
capacitance and volume. Since they are unknown, they are initially set 
as standard values. Then, the available data collected using the installed 
sensors from different experimental scenarios are used to identify them. 
From the zones to be identified, it is necessary to know the zone air 
temperature, the heat transferred from the HVAC system and the occu-
pancy. In addition, it is necessary to know the zone air temperature of 
the adjacent zones to the identified one.

Since the zones that meet these requirements are the FS Zones, their 
parameters are identified and then analyzed to validate the fulfillment 
of Assumptions 1 to 5, as explained in detail in Section 4.3. This can be 
done provided that all the common group types defined in Assumption 3
are present in the FS Zones; otherwise, the missing groups cannot be 
identified.

Once the above assumptions are validated, the results of the identi-
fied parameters can be extrapolated to the entire building, as explained 
5

in Section 4.4.
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Fig. 4. TRNSYS project in TRNSYS Simulation Studio.

3.3. Estimation of occupancy

Once the building model has been identified and validated, this can 
be used to estimate those signals that are not measured. For instance, in 
the AFS zones, all significant variables are measured except occupancy. 
Based on the model, the occupancy of these zones can be estimated, as 
shown in Section 5.

4. Modeling and identification (based on TRNSYS)

The high-fidelity simulator software TRNSYS (TRaNsient SYstem 
Simulation program) [15] is used to model the building.4 This soft-
ware is compatible with SketchUp 3D modeling software [50], which 
facilitates the introduction of architectural information and dimensions 
of the building, as will be seen below.

Note that the features of the construction materials are unknown at 
this point. This means that they will first be set using generic materials.

4.1. TRNSYS project

In this project, the plugin for SketchUp TRNSYS3D [51] has been 
used to model the building in TRNSYS.5

Based on the layout and main dimensions of the rooms and win-
dows (height, width and depth), the building can be modeled zone by 
zone. This then generates a building file to be directly imported into 
TRNBuild.

Once the building model is available in TRNBuild, a TRNSYS project 
is developed in the TRNSYS Simulation Studio. This project, shown in 
Fig. 4, has the following blocks:

• CollectedData: This is a Type9 block that reads the text file in which 
the collected data are located. In this text file, the data history of 
the values of the variables measured in the zones and outside the 
building—presented in Section 2.2—is found. The corresponding 
values for each iteration are the output of the block.

• TmyWeather: This is a Type15 block that reads a typical meteoro-
logical year file. It is used to complete weather data that have not 
been measured in the building.

• Radiation: This is a Type16 block that calculates the radiation on 
each wall orientation using the radiation measurements in the build-
ing and the solar azimuth and zenith angles provided in the typical 
meteorological year file.

• Building: This is a Type56 block that imports the TRNBuild file.
• CostFunction: This is an Equation Block where a cost function is cal-

culated. It matches the cost function defined in Equation (1), which 
measures the discrepancy between the real temperature evolution 
collected in the zones and the simulated one.

4 The use of TRNSYS is only a proposal without loss of generality. Other 
simulation programs, such as EnergyPlus or IDA ICE, could be used.

5 Please note that the use of TRNSYS3D and SketchUp to model the building 
is optional. There are alternative—although more tedious—ways of developing 

the model directly using TRNBuild. The result would be equally valid.
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• GenerateFile: This is a Type25 block that generates a text file in 
which the simulation results are saved. Specifically, the value of 
the cost function is saved.

4.2. Identification variables

The features of the referred layers and the capacitance-volume ratio 
in the TRNSYS model are set as decision variables in an optimization 
procedure to identify the model. However, it is necessary to determine 
exactly which identification variables to set during the process since a 
one-layer element may have several physical values that can be modi-
fied, e.g. thickness, thermal resistance, capacitance, etc.

Note that the chosen parameters must be compatible so that they 
do not result in redundancy that complicates the identification process. 
Since two different physical values can influence the same system vari-
able, e.g. increasing thickness increases thermal resistance, only one of 
them should be set as a identification variable.

Under these considerations, the proposed identification parameters 
are as follows.

• Ratio between zone volume and capacitance.
• Thickness of the external wall and roof.
• Thickness of the internal wall and the ceiling between levels.6

• Density of the external wall and roof.
• Density of the internal wall and the ceiling between levels.6

• Natural air changes per hour due to infiltration of outside air.
• Convective coefficient of the external wall and roof.
• Convective coefficient of the internal wall and the ceiling between 

levels.6

Thickness and density of the material are chosen since the former 
will allow the thermal resistance to be adjusted and the latter will allow 
the capacity. Alternatively, although less recommended, the identifica-
tion parameters corresponding to the material density could be replaced 
by the material convective coefficient, even though the resulting thick-
ness will be different. In this case, the convective coefficient would 
adjust the thermal resistance, and the thickness would adjust the ca-
pacity.

It must be taken into account that the identification parameters must 
be adapted according to the common groups of building elements as 
specified in Assumption 3.

The parameters of the model are assumed to be time invariant. Al-
though it would be more desirable to define some of them with variable 
values during simulation, for instance, the natural air changes per hour 
and the convective coefficient, it has been assumed that this is an ac-
ceptable error, since the complexity of the optimization problem would 
increase exponentially. This assumption, traditionally accepted in grey-
box modeling [21,52], will be validated by checking that the results 
are good enough and that the resulting values of these variables are 
not very sensitive depending on the results of the other optimization 
variables.

4.3. Parameter identification based on GenOpt

Once the TRNSYS model with generic parameters has been deployed 
according to Assumptions 1 to 5, and the identification variables have 
been defined, the appropriate values of these variables are identified 
using the available data collected with the installed sensors.

4.3.1. Identification process

In the identification process the parameters of the derived model are 
iteratively updated while minimizing the error between the real tem-
perature evolution and that generated by the model being identified. 
6

6 For simplicity, features of internal walls and ceilings are lumped.
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Should the error be small enough, the resulting layer may be consid-
ered to have the same impact on the zone air temperature as the real 
element that it replaces.

Since there are several full-sensorized zones, this redundancy can 
be exploited in the identification procedure considering the following 
scenarios.

Scenario 1: An identification process is applied independently to 
each FS Zone in order to reinforce the validation of the assumptions 
made, specifically Assumptions 3, 4 and 5. Then, different identified 
values for the same materials will be obtained in each of them. This 
allows one to check the congruence between these results: If the identi-
fied parameters for the same materials are similar, then the assumptions 
are probably correct; otherwise, some reconsiderations should be made, 
like reviewing the categorization of building elements (for example, to 
analyze if adding another kind of building element is necessary), or in-
creasing the data set used, etc. See Remark 1.

Scenario 2: When Scenario 2 is performed, a identification process 
is applied simultaneously to all FS Zones, while sharing the variables 
between zones of the corresponding common building elements in order 
to obtain the intermediate values that most resemble reality. In the same 
way as before, it will be necessary to prove the congruence between 
the results of the application jointly and independently. The analysis of 
the resultant error between the evolution of the air temperature of the 
model zone and the real building is another validation method that will 
be developed.

It is important to note that while one or more zones are identified, 
all external variables, except the air temperature of the identified zones, 
are set to the corresponding ones in the real system using the collected 
data described in Section 2.2.

Remark 1. The Identification process applied independently to each FS 
Zone (Scenario 1) is an optional step used to reinforce the validation of 
the assumptions made by proving congruence. It might be possible to 
avoid performing this step and just develop the Identification process 
applied simultaneously to all FS zones (Scenario 2). The assumptions 
are valid provided that the error between actual and simulated temper-
ature evolution is small enough.

In order to evaluate the performance of the resulting model, a cost 
function is defined to measure the estimation error. The function cor-
responds to the root mean square error (RMSE)—a performance index 
commonly found in the literature, as used by [53]—between the evolu-
tion of real building measurements and the temperatures based on the 
simulation of the model. The cost function is expressed in Equation (1).

RMSE𝑝(◦C) =

√∑𝑁

𝑖=1(𝑇𝑟𝑒𝑎𝑙,𝑖 − 𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖)2

𝑁
, (1)

where 𝑇real,𝑖 is the value of the real temperature of the zone at sample 
𝑖 expressed in degrees Celsius (◦C), and 𝑇estimated,𝑖 is the corresponding 
estimate. 𝑁 is the total number of iterations corresponding to a deter-
mined operation period 𝑝.

4.3.2. Identification process in TRNSYS with GenOpt

Once the identification strategy, its variables, and its performance 
evaluation cost function are defined, performing the identification pro-
cedure based on the resulting TRNSYS project is not immediate, as TRN-
SYS does not allow the physical values of the elements to be changed 
as user input in an automated way. This hinders the iterative process 
required in the identification.

However, this issue is solved thanks to the GenOpt optimization pro-
gram [54]. GenOpt can automatically change the TRNSYS configuration 
files externally to set suitable values of the parameters, execute a simu-
lation test and read the file with the simulation results from where the 
cost function is obtained (see Fig. 5).

GenOpt program receives the identification parameters and a tem-

plate equal to the configuration files of the TRNSYS project. Note that 
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Fig. 5. Connection diagram between TRNSYS and GenOpt.

the values of the identification parameters are set with a label instead 
of its number, which has to be developed previously. Thus, GenOpt can 
insert the corresponding values in each iteration and send the file to 
TRNSYS for execution.

When the execution in each iteration is complete, TRNSYS will gen-
erate a file in which the value corresponding to the cost function is 
located. Thus, GenOpt can adjust the parameters, i.e., the decision vari-
ables, and obtain the value of the associated cost function. Based on 
this, GenOpt can iteratively take appropriate values of the parameters 
in order to minimize the cost function. For this, GenOpt allows the user 
to choose an optimization algorithm from a wide collection available.

4.3.3. Training and validation processes

The identification process is divided into two phases:

• Training Phase: From the available data of the real building, a sub-
set is taken to carry out the identification of the parameters. These 
are the so-called training data. Note that the identified parameters 
are those that make the model fit better to the training data.

• Validation Phase: In this phase, the identified model is validated us-
ing the so-called validation data, which corresponds to a time period 
different from the training data. To do this, an open-loop simulation 
of the model with the identified parameters needs to be performed, 
where the only values to be set are the initial temperatures of the 
zones being simulated. The identified model is considered to be 
valid if its simulated evolution fits sufficiently well with the vali-
dation data.

This procedure can be applied to both identification scenarios: when 
the identification is performed independently to every FS Zone and 
when this is done to all the FS Zones together.

If the validation process was not satisfactory, i.e. the identified 
model did not fit the real one, then, there would be a need to recon-
sider some aspects, such as the categorization of building elements (for 
example, to consider adding other kinds of building elements) or in-
creasing the training data set according to a suitable analysis of the 
residuals.

4.4. Modeling the whole building

Once Assumptions 1 to 5 are validated for FS Zones, the entire 
building can be modeled using the resulting identified parameters in 
those zones. In virtue of Assumption 3, all groups of building elements 
have the same materials and layers, so the materials identified in FS 
Zones will match with those of the other zones (AFS, LS and NS Zones). 
And analogously, because Assumptions 4 and 5 specify that natural air 
changes per hour due to infiltration and that the ratio between zone ca-
pacitance and volume is the same in all zones, so infiltration and zone 
capacitance can be calculated. The result is that the entire building is 
7

modeled and identified.
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5. Data-based occupancy estimation

Based on the identified model of the building, it is possible to design 
an estimator to determine the values of missing variables of interest 
that have not been measured.

For instance, in the AFS Zones the occupancy is the only variable 
of interest that has not been measured, and this could be estimated. In 
this case, the temperature measurements of some surrounding zones are 
missing (about 30%, due to NS zones), but they can be approximated 
by the measured temperature of its neighbors for estimation purposes, 
since the contribution of this error to the evolution of the temperature 
of the AFS-zone is negligible compared to the effect of the occupancy.7

5.1. Occupancy estimator

In order to demonstrate this, a simple estimation policy has been 
used. In this case, the parameter to be estimated, the occupancy, is 
calculated as the linear combination of the estimation error and the 
accumulated estimation error. The estimation error is the mismatch be-
tween the real measured temperature and the estimated one. This is 
described as follows.

error𝑖 = 𝑇real,𝑖 − 𝑇model,𝑖, (2)

Occ𝑖 =𝐾1 ⋅ error𝑖 +𝐾2 ⋅
𝑖∑

𝑘=0
error𝑘, (3)

where 𝑇𝑟𝑒𝑎𝑙,𝑖 is the value of the real temperature of the zone and 𝑇𝑚𝑜𝑑𝑒𝑙,𝑖
is the value of the simulated temperature of the zone with the estimated 
occupancy 𝑂𝑐𝑐𝑖−1 at sample 𝑖. 𝐾1 and 𝐾2 are the suitable gains.

5.2. Validation of the estimated occupancy

A byproduct of the occupancy estimator is the possibility of im-
plementing an additional step to reinforce the validation of Assump-
tions 3, 4 and 5, that is, the extension of the identified parameters in FS 
Zones to the entire building. This can be done, for example: (i) by ana-
lyzing its consistency with the use of the building, e.g., checking if the 
resulting estimated occupancy is coherent with the occupancy sched-
ule of offices and the number of people who usually occupy the room), 
(ii) by comparing it with the occupancy measurements in other zones, 
etc.

6. Application to the case study and results

The proposed methodology is applied to a real case study: the Nim-
bus Research Centre building at Munster Technological University, lo-
cated in Cork (Ireland), shown in Fig. 1.

In this case study, by exploiting the similarities between building 
elements, according to Assumption 3, four common groups can be con-
sidered: Windows, internal walls, external elements (walls and roofs) 
and ceilings between floors. Then the whole model is characterized by 
only the six parameters described in Table 2.

The available data for modeling have been collected for 13 days in 
November, since this is a month when the HVAC system is needed to 
be operating and the weather is less regular, so the operating range is 
greater.

7 In addition, note that an air-conditioned building has all the zone tempera-
tures within a small range, so temperature jump between boundary zones will 
always be less than 5 ◦C approximately, whereas the jump between inside and 
outside temperatures is going to be clearly higher. In this case, their distur-

bances can be ignored.
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Fig. 6. 3D model in SketchUp using TRNSYS3D plugin.

6.1. TRNSYS project development

As explained in Section 4.1, TRNSYS3D is used to model the build-
ing. Then, the construction elements are drawn with SketchUp, and, 
next, TRNSYS3D automatically sets the types of construction by analyz-
ing their positions and shapes (roofs, floors, internal and external walls, 
ceilings, windows, etc.). It is important to note that these types must 
be classified according to Assumption 3 (common groups of building 
elements). According to these types, elements are assigned generic ma-
terials of a provided template (in the case study, a generic Irish template 
is used). The features of these materials are not manually changed to 
match those of the actual building since, initially, the materials are as-
sumed to be unknown and are set as random generic materials. Then, a 
feature of TRNSYS3D is used for surface matching, automatically iden-
tifying the adjacent elements between zones, their external elements, 
the boundaries, etc. This is essential information when analyzing the 
thermal evolution of the building. The resulting building is shown in 
Fig. 6.

Once the building is modeled in SketchUp and imported into TRN-
Build, the resulting file is set in the building block (Type56) of the 
TRNSYS project in TRNSYS Simulation Studio, Fig. 4.

Then, the files to be set in the TRNSYS Simulation Studio would be 
the collected data file (Type 9)—which contains the sensors measure-
ments at the Nimbus Center—and the typical meteorological year file 
(Type 15)—which contains weather data collected at Cork Airport [55]. 
The sample time for the data and simulation is 10 minutes.

To simulate internal gains of the building, the following considera-
tions are taken:

• Persons: The number of people is set using the estimated occupancy 
data (done by presence sensors together with CO2 balances). The 
energy gain of each person in the room is set according to ISO 
7730:2005 [56] with the type of activity seated, light work, typing.

• Computers: The number of computers running in the offices is equal 
to the number of people in the room. The computer power is set to 
230 W according to the TRNSYS documentation.

• Artificial lighting: the lights are on wherever there is someone in the 
room. Consumption is 13 W∕m2 (EVG direct).

• Heating power: Heat transferred from the HVAC system to the room 
(estimated by combining measurements of water flow and inlet and 
outlet temperatures in the fan coil) is set as a convective gain.

6.2. Results of parameter identification using full-sensorized zones

The identification problem is performed according to a hybrid gen-
eralized pattern search algorithm with a particle swarm optimization 
algorithm, available in GenOpt [54]. The data collected available are 
divided into a nine-day period for the Training Phase (from 6 to 15 of 
November), and a four-day period for the Validation Phase (from 15 to 
8

19 of November).
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6.2.1. Resulting parameter values

As mentioned in Section 3.2, to identify the features of the equiv-
alent one-layer elements and the ratio between zone capacitance and 
volume, the FS zones are used. And according to Section 4.3, the pa-
rameter identification process is applied both independently to each FS 
Zone and simultaneously to all FS Zones to analyze the congruence be-
tween all the results, as follows.

Scenario 1: In Table 2 the resulting values of the identification pro-
cess for each FS Zone are shown in the first two columns (Zone 1 and 
Zone 2). Taking into account that it is possible to prove congruence if 
results of the zones have similar values for the same and equivalent pa-
rameters, it can be checked that the differences between the results are 
small enough to consider that they are congruent. Therefore, Assump-
tions 1 to 5 would be validated in this case. Specifically Assumption 3, 
where all elements of each defined group are supposed to have the same 
materials and layers, and Assumptions 4 and 5, where all zones have the 
same natural air changes per hour due to infiltration and the same ratio 
between zone capacitance and volume.

Scenario 2: Once the FS Zones have been identified and verified for 
congruence, the next step is to identify these zones with the same pa-
rameters simultaneously to obtain intermediate values that minimize 
the sum of cost functions of each zone. The results are shown in Ta-
ble 2 in fourth column (Zones 1 and 2 together), in comparison with 
the mean values between the Zone 1 and Zone 2 independently, shown 
in third column ((Zone1 + Zone2)∕2). Again, it can be checked that the 
differences between the results are small enough to consider them con-
gruent.

6.2.2. Zone temperature evolution fitting

In the modeling and identification process, there are two types of 
results to show: (i) model response after the Training Phase is applied 
and (ii) model response when the Validation Phase is performed.

To compare the results between simulations, the cost according to 
Equation (1) is taken into account.

The results shown in this section are those corresponding to Scenario 
2 (modeling and identification of both FS Zones simultaneously).

Zone 1: Results corresponding to Training Phase are shown in Fig. 7. 
In the upper plot, the real zone temperature evolution is shown in red, 
and the simulated one is shown in blue. In the lower plot, the main heat 
gains of the real building are shown (heating system exchange is shown 
in red, and occupancy is shown in blue). The maximum error between 
the temperature of the real and simulated zone is less than 1 ◦C, the 
mean absolute error (MAE) is 0.3 ◦C, and the median absolute deviation 
is 0.26 ◦C, with a RMSE9days value of 0.381 ◦C. Similarly, in Fig. 8 the 
results are shown when the Validation Phase is applied. The maximum 
error between the temperature of the real and simulated zone is less 
than 1 ◦C, the mean absolute error is 0.27 ◦C, and the median absolute 
deviation is 0.25 ◦C, with a RMSE4days value of 0.349 ◦C.

Zone 2: Obtained results are similar to those of Zone 1, as shown in 
Fig. 9, for Training Phase, and Fig. 10, for Validation Phase. In the first, 
the maximum error between temperatures is less than 1.2 ◦C, the mean 
absolute error is 0.36 ◦C, and the median absolute deviation is 0.33 ◦C, 
with a RMSE9days value of 0.449 ◦C. In validation, the maximum error 
is less than 1.5 ◦C, the mean absolute error is 0.46 ◦C, and the median 
absolute deviation is 0.38 ◦C, with a RMSE4days value of 0.587 ◦C.

Therefore, it can be concluded that the resulting error between the 
temperature evolution of the real data and those generated with the 
identified model is small enough (RMSE4days < 0.6 ◦C). In white-box 
models, for example, in [53], although with a seven-day validation 
period, using a highly more complex model and starting from archi-
tectural drawings and fabrication details available, the RMSE value 
(0.27 ◦C≤RMSE7days≤1.5 ◦C) is comparable to that of this paper. In [57], 
for a two-day period, with a totally detailed model in terms of archi-
tectural metadata, the RMSE value (RMSE2𝑑𝑎𝑦𝑠≤1.59 ◦C) is also of the 
same order. On the other hand, for PCNN and RC models, for exam-

ple in [38], the mean absolute error is 0.88 ◦C and 1.48 ◦C, respectively, 
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Table 2

Identification results. Values of parameters.

Initial Scenario 1 Scenario 2 - Final

Parameter Random Values Zone 1 Zone 2 (Zone1 + Zone2)∕2 Zones 1&2 together

Ratio Capacitance/Volume (kJ∕m3 ⋅ K) 5.00 28.52 23.56 26.04 26.09
Thickness External Elem. (cm) 0.50 0.110 0.125 0.118 0.093
Convect. Coef. Ext. Elem. (W∕m2 ⋅ K) 50.0 14.34 19.10 16.73 15.33
Thickness Internal Elem. (cm) 0.50 0.123 0.130 0.127 0.128
Convect. Coef. Int. Elements (W∕m2 ⋅ K) 50.0 23.31 21.90 22.64 21.63
Natural air changes per hour (l∕h) 0.50 0.175 0.198 0.188 0.180

Open-loop RMSE9days in training (◦C) 0.377 0.433 0.405 0.415
Open-loop RMSE4days in validation (◦C) 0.360 0.562 0.461 0.468
Fig. 7. Identified vs. Real model according Training Phase: Open-loop simula-
tion from 6 to 15 of November. Zone 1.

Fig. 8. Identified vs. Real model according Validation Phase: Open-loop simu-
lation from 15 to 19 of November. Zone 1.

for a three-day validation period, similar to that obtained in this work 
(0.36 ◦C for a four-day open-loop validation period).

6.3. Results of estimation of occupancy of AFS zones

In this case, the evolution of the resulting estimated occupancy 
9

across the entire time period must be analyzed. To do that, the known 
Fig. 9. Identified vs. Real model according Training Phase: Open-loop simula-
tion from 6 to 15 of November. Zone 2.

Fig. 10. Identified vs. Real model according Validation Phase: Open-loop simu-
lation from 15 to 19 of November. Zone 2.

real occupancy of other zones is used to compare them with the iden-
tified ones, along with the number of people who usually occupy the 
zones.

Zone 3: The results are shown in Fig. 11. In the upper plot, the real 
zone temperature evolution is shown in red, and the simulated one is 
shown in blue. As can be seen, the estimator updates the occupancy in 

order to fit the simulated temperature with the real one. In the lower 
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Fig. 11. Extrapolated model vs. Real model when occupancy is calculated. 
Zone 3.

Fig. 12. Extrapolated model vs. Real model when occupancy is calculated. 
Zone 4.

plot, the identified occupancy of the target zone is shown in blue (left 
axis), and the real occupancy of Zone 2 is shown in red (right axis). 
It can be observed that the number of people usually occupying the 
zone is three or four, and the peaks of the identified occupancy fit the 
corresponding peaks of Zone 2, as expected. Also, people in Zone 3 and 
Zone 2 arrive and leave the building at similar times, and the controller 
never sets a negative occupancy, which is physically impossible.

Zone 4: Obtained results are similar to those of Zone 3, as shown in 
Fig. 12, but with 6 people usually occupying the room instead of 3.

7. Conclusions

Consistent with the need to develop easily extensible methodolo-
gies to model existing buildings, this paper presents a novel practical 
methodology to create and automatically derive thermal models of 
existing buildings developed in high-fidelity simulators for energy man-
agement and without resorting to architectural metadata.

Following the philosophy of grey-box modeling, the objective is not 
to model the real building, but to model a simplified but analogous 
one, which uses only a highly reduced number of parameters, facilitat-
10

ing and expediting the process. Thus, the building has been modeled 
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avoiding the use of detailed building geometry, seeking simpler equiv-
alent elements, and taking advantage of similarities between zones. For 
modeling and simulating the building, a high-fidelity program, tradi-
tionally used for white-box modeling, TRNSYS, is used.

The identification of the model parameter from the available data 
has been done by means of the optimization program GenOpt combined 
with TRNSYS. For this purpose, measurements of air temperature, esti-
mated occupancy, weather conditions and variables of the HVAC system 
are assumed to be available in some rooms to apply the creation and 
identification processes of the building model, resulting in that the en-
ergy features of the real building are identified.

The proposed methodology is applied to a real case study—the Nim-
bus Research Centre building at Munster Technological University—
obtaining an accurate model which is able to represent reality with an 
RMSE4days value always less than 0.6 ◦C. These results—perfectly accept-
able according to the literature—validate this methodology.

Furthermore, an estimator is proposed to determine the values of 
missing occupancy measured of some rooms, resulting in an estimate 
very similar to what is expected, thus increasing the level of confidence 
in the resulting model.

The overall results demonstrate that the identified model proposed 
in this work can replicate the real building and predict its thermal and 
energy evolution. This allows a digital twin of the building with suf-
ficient predictive power to be constructed and used by a higher-level 
controller such as MPC to optimize the efficiency in the operation of 
the building. Implementing those controllers in the building could be a 
future work to carry out.

Future research should explore the potential of combining the pro-
posed methodology with machine learning techniques, such as Sym-
bolic Regression and Neural Networks, to further enhance the accuracy 
and robustness of building thermal behavior modeling.
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