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Abstract

Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with
an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated
genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in
3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1
only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19
cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping
prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis
of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the
3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the
COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also
found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel
genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization
and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence
supporting genetic disparities among sexes are provided.
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Introduction
Coronavirus disease 2019 (COVID-19)—caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)—develops with wide clinical variability, ranging
from asymptomatic infection to a life-threatening
condition (1). Advanced age and the presence of comor-
bidities are well-known major risk factors of COVID-
19 severity (2,3). In addition, male sex is another risk
factor associated with COVID-19 severity, regardless of
comorbidities (4).

International genetic studies based on genome-wide
association studies (GWAS) and/or comparative genome
sequencing analyses have been conducted to identify
genetic variants associated with COVID-19 severity (5,6).
These studies have revealed the role of genes of the
type-I interferon (IFN) signaling pathway as key players
underlying disease severity (7–9). Besides, they have also
identified other potential loci previously linked to lung
function, respiratory diseases and autoimmunity (9).
Regarding COVID-19 severity in males, sex-disaggregated
genetic analyses have received limited attention despite
the importance of sex disparities in clinical severity (10).
Early studies suggested immune deficits presumably
because of pre-existing neutralizing autoantibodies
against type-I IFN in older male patients (11).

The effects of autozygosity, measured as the change of
the mean value of a complex trait because of inbreed-
ing, have been useful to identify alternative genetic risk
explanations and effects that traditionally are not cap-
tured by GWAS (12). By analyzing the contribution of the
inbreeding depression (ID) through the lens of the runs of
homozygosity (ROH: genomic tracts where homozygous
markers occur in an uninterrupted sequence), it is pos-
sible to assess the importance of directional dominance
or overdominance in the genetic architecture of com-
plex traits (13). Even though this is a relatively modern
approach, different studies have shown the importance
of homozygosity in a large range of complex phenotypes,
including anthropometric, cardiometabolic and mental
traits (14–16).

Through diverse nested sub-studies, the Spanish
Coalition to Unlock Research on Host Genetics on
COVID-19 (SCOURGE) consortium was launched in
May 2020 aiming to find biomarkers of evolution and
prognosis that can have an immediate impact on clinical
management and therapeutic decisions in SARS-CoV-
2 infections. This consortium has recruited patients
from hospitals across Spain and Latin America in
close collaboration with the STOP-Coronavirus initiative
(https://www.scourge-covid.org). Here, we describe the
results of the first SCOURGE genome-wide studies of
COVID-19 conducted in patients recruited in Spain.
This dataset has not been used in any previous GWAS
of COVID-19 that has been published to date. To the
best of our knowledge, this is the first time that the
impact of homozygosity is considered in COVID-19
studies, serving as a complement to the traditional

GWAS to assess both the additive and dominant
components of the genetic architecture of COVID-19
severity. Likewise, the ID analysis could also help to
explain the strong effect of age in COVID-19 severity.

Results
Discovery phase
In the SCOURGE study, 11 939 COVID-19 positive cases
were recruited from 34 centers (Supplementary Mate-
rial, Table S1) between March and December 2020. All
diagnosed cases were classified in a five-level sever-
ity scale (Table 1). Two untested Spanish sample col-
lections were used as general population controls in
some analyses: 3437 samples from the Spanish DNA
biobank (https://www.bancoadn.org) and 2506 samples
from the GR@CE consortium (17). The discovery phase
samples were genotyped with the Axiom Spain Biobank
Array (Thermo Fisher Scientific). Details of quality con-
trol (QC), ancestry inference and imputation are shown
in the Materials and Methods section. Individuals with
inferred European ancestry were used for association
testing. After post-imputation filtering, 15 045 individ-
uals (9371 COVID-19 positive cases and 5674 popula-
tion controls) and 8 933 154 genetic markers remained in
the SCOURGE European study (discovery). Clinical and
demographic characteristics of European patients from
SCOURGE included in the analysis are shown in Table 2.
Population controls were 46.3% females with a mean age
of 55.5 years (standard deviation, SD = 16.2) and 53.7%
males, with a mean age of 51 years (SD = 13.04).

The discovery phase of the GWAS was carried out
with infection susceptibility and three severity outcomes
(hospitalization, severe illness and critical illness), which
were tested using three different control definitions (see
Supplementary Material, Table S2).

• A1 analysis: COVID-19 positive not satisfying the case
condition and control samples from the general pop-
ulation (COVID-19 untested).

• A2 analysis: control samples from the general popu-
lation.

• C analysis: COVID-19 positive not satisfying the case
condition.

The GWAS was carried on by fitting logistic mixed
regression models adjusting for age, sex and the first 10
principal components (PCs; see Materials and Methods).
Summary statistics can be accessed from https://github.
com/CIBERER/Scourge-COVID19. The SCOURGE Board of
Directors has agreed to aggregate the GWAS summaries
with those from the COVID-19 Host Genetics Initiative
(HGI) in the data freeze 7 that has not been used for
any published article to date. Supplementary Material,
Table S3 shows the independent significant associated
loci for hospitalization, severity, critical illness and infec-
tion susceptibility risk, for global and sex-stratified anal-
ysis in the SCOURGE dataset. However, considering the
overlap between the findings for these analyses, only the
main results for the A1 analysis are presented.
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Table 1. Five-level severity scale used to classify SCOURGE patients

Level Clinical findings

Severity 0 (asymptomatic) Asymptomatic
Severity 1 (mild) With symptoms, but without pulmonary infiltrates or need of oxygen therapy
Severity 2 (moderate) With pulmonary infiltrates affecting <50% of the lungs or need of supplemental oxygen therapy
Severity 3 (severe) Hospitalized with any of the following criteria:

• PaO2 < 65 mmHg or SaO2 < 90%
• PaO2/FiO2 < 300
• SaO2/FiO2 < 440
• Dyspnea
• Respiratory frequency ≥ 22 bpm
• Infiltrates affecting > 50% of the lungs

Severity 4 (critical) Admission to the ICU or need of mechanical ventilation (invasive or non-invasive)

Note: PaO2, partial pressure of oxygen in arterial blood; SaO2, saturation of oxygen in arterial blood; FiO2, fraction of inspired oxygen.

Table 2. Baseline characteristics of European patients from SCOURGE included in the analysis

Variable Global N = 9371 Males N = 4343 Females N = 5028

Age—mean years (SD) 62.6 (17.9) 64.3 (16.3) 61.1 (19.1)
Severity—N (%)

0—asymptomatic 582 (6.6) 161 (3.9) 421 (8.9)
1—mild 2689 (30.3) 748 (18.2) 1941 (40.8)
2—intermediate 2099 (23.6) 1093 (26.5) 1006 (21.1)
3—severe 2379 (26.8) 1300 (31.6) 1079 (22.7)
4—critical illness 1128 (12.7) 817 (19.8) 311 (6.5)

Hospitalization—N (%) 5966 (63.8) 3436 (79.3) 2530 (50.5)
Severe COVID-19—N (%) 3507 (39.2) 2117 (51.2) 1390 (28.9)
Critical illness—N (%) 1128 (12.6) 817 (19.8) 311 (6.5)
Comorbidities—N (%)

Vascular/endocrinological 4099 (43.7) 2207 (50.8) 1892 (37.6)
Cardiac 1057 (11.3) 634 (14.6) 423 (8.4)
Nervous 773 (8.3) 341 (7.9) 432 (8.6)
Digestive 264 (2.8) 153 (3.5) 111 (2.2)
Onco-hematological 647 (6.9) 411 (9.5) 236 (4.7)
Respiratory 905 (9.7) 565 (13.0) 340 (6.8)

All analyses support the association of two known
loci, i.e. 3p21.31 and 21q22.11. However, other suggestive
associations were also found (Fig. 1 and Supplementary
Material, Fig. S1). Strikingly, the leading signals found in
the global (sex-aggregated) analysis were genome-wide
significant in the analyses among males but not among
females. Association in 3p21.31 was also found in the
C analyses (rs10490770, P = 3.8 × 10−12) and once again,
association was genome-wide significant only among
males (males: P = 3.9 × 10−9, females: P = 4.6 × 10−5).
However, the leading variant of 9q21.32 (near TLE1 gene)
reached genome-wide significance among females only
(similarly, in the C analysis for females, rs140152223,
P = 2.11 × 10−6). Several variants (rs17763742 near LZTFL1,
rs2834164 in IFNAR2 and rs1826292621 near TLE1)
showed a significant difference in effect sizes (SNP∗sex
interaction P < 0.0031, adjusted probability for 16 com-
parisons) linked not only to hospitalization, but also
to critical illness and infection risk. The A2 and C
analyses did not reveal any additional significant loci
(Supplementary Material, Fig. S2). Although fine-mapping
studies in 3p21.31 and 21q22.11 have led to gene and
variant prioritization within these loci (Supplementary

Material, Fig. S3), a Bayesian fine-mapping on the 9q21.32
did not allow to prioritize variants by their role as
expression quantitative trait loci (eQTLs) or anticipate
the function (Fig. 2). To assess if a higher prevalence of
comorbidities in males may underlie these differential
findings, we performed an additional C analysis in which
the presence of comorbidities was tested for association
within hospitalized patients. No significant association
was found in either males or females (Supplementary
Material, Fig. S4). Further explorations of the genetic
associations with comorbidities are presented in the
Supplementary Note.

This GWAS phase was also performed disaggregated by
age (<60/≥60 years old), and by age and sex simultane-
ously. Differences in effect sizes between both age groups
were tested for the SNPs shown in the Supplementary
Material, Table S3, in global and sex-specific analysis
(Supplementary Material, Table S4). Significant findings
were only found in the subgroup of males with <60 years
old. This was also found in the C analysis for hospital-
ization where association in 3p21.31 was significant only
in males <60 years old (P = 3.32 × 10−9). Differences in
effect size (significant age-interaction) were significant
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Figure 1. Association results of SCOURGE for global and sex-disaggregated A1 hospitalization analysis. (A) Manhattan plot of results from global analysis.
A quantile–quantile plot of the global analysis is also shown as an inset. (B) Miami plot of results from sex-disaggregated analyses (top: males and bottom:
females).

Figure 2. Regional plot of a novel association at 9q21.32 found among females from the SCOURGE study. The x axis reflects the chromosomal position,
and the y axis the −log(P-value). The sentinel variant is indicated by a diamond and all other variants are colour coded by their degree of LD with the
sentinel variant in Europeans. Credible set for this signal is shown within a dashed square. The horizontal dotted blue line corresponds to the threshold
for genome-wide significance (P = 5 × 10−8).
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at 3p21.31 for severity and critical illness, and suggestive
in hospitalization.

Lookup of previously found COVID-19 host risk
factors in the SCOURGE study
Known significant loci for COVID-19 severity in 3p21.31
(near SLC6A20 and LZTFL1) and 21q22.11 (in IFNAR2)
were clearly replicated at genome-wide significance in
this study, specifically for risk of infection, hospitaliza-
tion and severity. Three other loci, in 9q34.2 (in ABO),
12q24.13 (in OAS1) and 19p13.2 (near RAVER1 and TYK2),
did not reach the genome-wide significance threshold
but they were significant after correcting for the 390
tests performed in a lookup (13 SNPs and 30 analyses,
significance threshold P < 1.3 × 10−4). In agreement with
previous results, ABO was mainly associated with the
risk of infection. However, other loci as those in 3q12.3
(near RPL24) and 19p13.3 (near DPP9), previously found
associated with COVID-19 severity, were not replicated
in the SCOURGE Europeans. The complete list of results
for the list of COVID-19 HGI significant loci (9) is shown
in Figure 3 and in the Supplementary Material, Table S5.
Figure 3 also reinforces the clear sex differences found in
this study.

Genetic risk score and the COVID-19 severity
scale
We developed a genetic risk score (GRS) combining the 13
leading variants associated with infection risk, hospital-
ization or severity in the meta-analysis performed by the
COVID-19 HGI (9). This GRS predicted the severity scale
in SCOURGE but supporting the differentiation in three
classes: (i) controls/asymptomatic/mild cases; (ii) moder-
ate and severe cases and (iii) critical cases. (Supplemen-
tary Material, Fig. S5). Simultaneously disaggregating by
age (<60/≥60 years old) and sex, we identify the three
severity classes in the subgroup of males with <60 years
old, supporting the importance of this group in the over-
all findings (Supplementary Material, Fig. S5). Details of
this analysis can be found in Supplementary Note.

Second study phase and meta-analysis with the
discovery
Results for hospitalization risk were meta-analysed with
a second Spanish cohort, the CNIO study (see Materials
and Methods). This study was filtered following the same
QC and imputation procedures. The final dataset of the
CNIO study included 2446 European individuals (1378
COVID-19 positive cases and 1068 population controls)
and 8 895 721 markers.

Table 3 shows the results that were genome-wide
significant either in global or sex-stratified meta-
analysis with SCOURGE. Besides the widely replicated
loci at 3p21.31 and 21q22.11, three additional signals
were found: chr9:33426577:A:G (intergenic to AQP7 and
AQP3), chr17:45422978:G:C (intronic to ARHGAP27) and
chr19:35687796:G:A (intergenic to UPK1A and ZBTB32).
Bayesian fine-mapping around chr17:45422978:G:C

Figure 3. Lookup of previously found COVID-19 host risk factors in
the SCOURGE study. Heatmap illustrating the results in all analyses
performed in this study (rows) for the 13 leading variants in the COVID-
19 HGI study (columns). Each box illustrates the top associated variant
within the focal region. The color (gray to dark red) indicates the strength
(significance level) of the association in SCOURGE. Note: In three cases
(chr12: 112919388, chr19: 4719431 and chr21: 33242905), the imputed
variants did not pass QC filters in SCOURGE and they were replaced by
the nearest QC-ed imputed variant (chr12:112919404, chr19:4719822 and
chr21:33241950, respectively).

failed to prioritize a credible set of variants, hindering
functional links of the locus. Functional assessments of
the prioritized variants by the Bayesian fine-mapping
analysis in the other two regions supported that they
were eQTLs of the AQP3 and ARGAP33 genes, including
whole blood and lung tissues (Fig. 4).

These variants were also associated with the three
severity groups previously outlined in SCOURGE by the
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Table 3. Genome-wide significant variants in global or sex-stratified meta-analysis between the SCOURGE and CNIO studies

SNP chr:position Meta-ALL Meta-males Meta-females Nearest gene

EA NEA beta SE P-value beta SE P-value beta SE P-value

rs115679256 3:45587795 G A 0.43 0.08 1.1E−08 0.48 0.10 2.3E−06 0.40 0.11 2.9E−04 LIMD1
rs17763742 3:45805277 A G 0.60 0.05 4.1E−29 0.74 0.07 3.3E−25 0.43 0.08 4.5E−08 LZTFL1
rs35477280 3:45932600 G A 0.39 0.05 1.4E−17 0.48 0.06 6.3E−15 0.28 0.07 1.6E−05 FYCO1
rs4443214 3:46136372 T C 0.25 0.04 9.0E−09 0.26 0.06 1.4E−05 0.26 0.06 4.4E−05 XCR1
rs115102354 3:46180545 A G 0.41 0.07 1.6E−08 0.52 0.10 2.1E−07 0.32 0.10 2.0E−03 CCR3
rs10813976 9:33426577 A G 0.18 0.03 2.7E−08 0.16 0.04 2.5E−04 0.19 0.05 3.5E−05 AQP3
rs1230082 17:45422978 C G 0.16 0.03 2.1E−08 0.17 0.04 2.8E−05 −0.15 0.04 2.5E−04 ARHGAP27
rs77127536 19:35687796 G A −0.22 0.04 1.3E−08 −0.25 0.05 2.1E−06 −0.19 0.05 4.3E−04 UPK1A/ZTBT32
rs17860169 21:33240996 A G 0.19 0.03 2.3E−11 0.27 0.04 1.4E−11 0.12 0.04 3.7E−03 IFNAR2

Note: Representative SNPs were selected using the clump function of PLINK 1.9 (clumping parameters r2 = 0.5, Pval = 5 × 10−8 and Pval2 = 0.05). EA, effect allele;
NEA, non-effect allele; beta, effect coefficient; SE, standard error.

Table 4. Results of European meta-analysis for hospitalization risk

Meta-all Meta-males Meta-females

SNP chr:position EA NEA beta SE P-value beta SE P-value beta SE P-value Nearest gene

rs115679256 3:45587795 G A 0.37 0.06 1.3E−08 0.41 0.08 5.6E−07 0.36 0.09 1.6E−04 LIMD1
rs13078854 3:45820440 G A 0.53 0.04 6.7E−34 0.64 0.05 2.7E−33 0.38 0.06 1.0E−09 LZTFL1
rs41289622 3:45973053 T G 0.36 0.04 3.6E−21 0.44 0.05 3.4E−20 0.27 0.05 7.2E−07 FYCO1
rs115102354 3:46180545 A G 0.40 0.06 8.9E−12 0.48 0.07 6.8E−11 0.26 0.08 1.8E−03 XCR1
rs61882275 11:34482745 G A −0.12 0.02 1.0E−06 −0.17 0.03 4.1E−08 −0.08 0.03 1.3E−02 ELF5
rs4767028 12:112921383 A G −0.16 0.02 1.6E−10 −0.19 0.03 2.5E−09 −0.11 0.04 8.7E−04 OAS1
rs12609134 19:35687796 G A −0.19 0.03 2.3E−08 −0.22 0.04 9.5E−08 −0.13 0.05 6.0E−03 UPK1A/ZBTB32
rs17860169 21:33240996 A G 0.18 0.03 3.9E−12 0.21 0.03 1.6E−10 0.15 0.04 2.9E−05 IFNAR2

Note: Summary statistics of both phases (SCOURGE and CNIO) were meta-analysed with four additional sex-disaggregated European studies from the
COVID-19 HGI consortium. EA, effect allele; NEA, non-effect allele; beta, effect coefficient; SE, standard error.

GRS under a multinomial model (Supplementary Mate-
rial, Table S6).

Meta-analysis in independent European studies
Hospitalization risk was meta-analysed with other Euro-
pean studies combining both Spanish cohorts (SCOURGE
and CNIO) with other four sex-disaggregated studies
from the COVID-19 HGI consortium, namely: BelCOVID,
GenCOVID, Hostage-Spain and Hostage-Italy (Table 4).
Once again, the most outstanding significant loci were
found at 3p21.31 and 21q22.11 (in global and male-
specific analyses), and three additional loci reached
genome-wide significance in the meta-analysis of males:
chr12:11292383:A:G (in OAS1), chr19:35687796:G:A (inter-
genic to UPK1A and ZBTB32) and chr11:34482745:G:A
(in ELF5). The 3p21.31 variants reached genome-wide
significance in females, although at significantly lower
level than in males despite the similar sample sizes
(Z = 3.33, P = 5 × 10−4).

Significance of two interesting loci revealed in the
Spanish studies was reduced in the meta-analysis with
other European studies, although still showed suggestive
associations: that of 9q21.32 near TLE1 previously found
only in females (female meta-analysis P = 5.4 × 10−7),
and that of 9p13.3 near AQP3 (global meta-analysis,
P = 1.23 × 10−7).

Heritability of COVID-19 hospitalization
In the hospitalization risk analysis, we found that
common variants (minor allele frequency, MAF > 1%)
explain 27.1% (95% confidence interval, CI: 19.0–35.3%)
of heritability on the observed scale (corresponding to
13.1% [95%CI: 9.2–17.0%] on the liability scale, assuming
a prevalence of 0.5%; Fig. 5). We observed less heritability
among females than males (2.9% [95%CI: 0.00–10.6%]
in females and 17.0% [95%CI: 9.2–24.9%] in males on
the liability scale). In agreement with observations
suggesting an accumulation of non-genetic risk factors
with age, especially among males (11,18), we observed
larger heritability differences by age groups among males
(40.2% [95%CI: 22.8–57.5%] in <60 years versus 17.6%
[95%CI: 0.00–38.0%] in ≥60 years on the liability scale)
than among females (9.1% [0.00–31.3%] in <60 years
versus 13.7% [0.00–29.6%] in ≥60 years on the liability
scale).

ID and COVID-19 outcomes
ROH calling was performed in the European QC-ed
genotyped dataset. Inbreeding depression analyses
are described in Materials and Methods section and
Supplemental Note.

The median genomic inbreeding coefficient, FROH, for
the entire SCOURGE study was 0.0048 (IQR = 0.004). No
differences were detected between males (FROH = 0.004,
IQR = 0.0035) and females (FROH = 0.0056, IQR = 0.0038), or
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Figure 4. Regional plots of novel association signals found from the meta-
analysis between the SCOURGE and CNIO studies. Regional plots of novel
association signals found in 9p13.3 (A–C), 17q21.31 (D–F) and 19q13.12
(G–I). The x axes reflect the chromosomal position, and the y axes the
−log(P-value) of the SCOURGE-CNIO meta-analysis. On A, D and G the
sentinel variant is indicated by a diamond and all other variants are
color coded by their degree of LD with the sentinel variant in Europeans.
Whenever a concise set of variants was prioritized, a credible set is shown
within a dashed square. The horizontal dotted blue line corresponds to
the threshold for genome-wide significance (P = 5 × 10−8). In the rest of
panels, the x axes reflect the chromosomal position, and the y axes the
−log(P-value) resulting from the eQTL analyses in whole blood (B, E and
H) and in the lung (C, F and I) whenever a significant finding is available
from GTEx v8.

Figure 5. Forest plot of the SNP-heritability estimates for the COVID-19
hospitalization risk analysis on the liability scale.

between younger and older individuals (FROH individuals < 60

years old = 0.004, IQR = 0.0035; FROH individuals ≥ 60 years old =
0.0052, IQR = 0.0047, respectively; Supplementary Mate-
rial, Fig. S6). Regarding the ID in COVID-19 outcomes,
we detected a positive association of the FROH in COVID-
19 hospitalization risk (Fig. 6), severity risk and risk for
critical illness (Supplementary Material, Table S7). Our
results showed that the hospitalization odds for COVID-
19 patients with an FROH = 0.0039 were 380% higher
than individuals with FROH = 0. No effect of the genomic
relationship matrix (FGRM) was found.

To assess whether ID in COVID-19 hospitalization in
SCOURGE was different between sexes, we first tested
the interaction between FROH and biological sex. FROH,
sex and the interaction of both (FROH:Sex) were significant
(FROH = 4.7 × 10−3, Sex = 1.0 × 10−112, FROH:Sex = 1.2 × 10−3).
This interaction was significant when comparing the
hospitalized COVID-19 patients with different controls
(A2 and C analyses, see Supplementary Material,
Table S8). This interaction was also found significant
with severity, but not with critical illness (Supplementary
Material, Table S8). In sex-disaggregated analyses, we
observed a sex-specific effect of inbreeding. FROH was
significant in hospitalized males but not in females
(Fig. 6 and Supplementary Material, Table S8). This sex-
specific effect was also observed with severity and for
critical illness (Supplementary Material, Table S8). We
then assessed whether ID in COVID-19 hospitalization
was different by age. We detected a significant inter-
action between age and FROH for the three outcomes
considered (hospitalization, severity and critical illness)
(Supplementary Material, Table S9). After disaggregating
SCOURGE by sex and age (<60, ≥60), we found that
the ID for hospitalization and severity were signifi-
cant mainly in older males (Fig. 6 and Supplemen-
tary Material, Table S9). We detected significant ID
for hospitalization and severity in males ≥ 60 years old,
but it was marginally significant in females (Fig. 6 and
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Figure 6. Effect of the ID on COVID-19 hospitalization in the SCOURGE cohort. Forest plots are shown for global analyses as well as for sex and age-
disaggregated analyses.

Supplementary Material, Table S9). Age and sex-specific
effects in hospitalization and severity were robust across
different experimental designs using different control
groups (Supplementary Material, Fig. S7).

Finally, we then aimed to replicate the ID results with
hospitalization, assessing sex and age-specific effects, in
a 4418 case-enriched European cohort made of 16 studies
from nine countries. Median FROH in this other European
cohort was slightly higher than that of SCOURGE, 0.05
(0.009–0.0577). A positive and significant ID in COVID-
19 hospitalization was detected in this other European
cohort when the entire cohort was considered (FROH

Beta = 18.22, P = 3.33 × 10−3). FGRM was not significant
(FGRM Beta = −7.34, P = 0.240). ID was also detected
in hospitalized COVID-19 males but not in females
(Male FROH Beta = 16.22, P = 3.31 × 10−3; Female FROH

Beta = 15.65, P = 0.269). FGRM was not significant in males
or in female analyses. When disaggregating by age, it was
possible to detect significant ID in hospitalization only
in males ≥60 years old (FROH Beta = 36.16, P = 3.34 × 10−3)
(Supplementary Material, Table S10).

No evidence was found of major loci that may be exert-
ing large effects. Rather, polygenicity seems to underlie
the ID association. Different islands of ROH (ROHi)
and regions of heterozygosity (RHZ) were found to be

unique for hospitalized COVID-19 individuals (males
and females) and non-hospitalized males, respectively
(Supplementary Note, Supplementary Material, Table
S11). Enrichment analysis of pathways based on the
protein coding genes present in ROH islands were
also different between sexes (Supplementary Note,
Supplementary Material, Table S12), revealing links with
coagulation and complement pathways in males.

Discussion
Here we report the replication of six COVID-19 loci
across analyses and provide evidence supporting three
additional loci, one of them specifically detected among
females. Besides, our analyses provide new insights
into disease severity disparities by sex and age and
support the necessity of similarly stratified studies
to increase the possibility of detecting additional risk
variants. Our GWAS constitutes the largest study on
COVID-19 genetic risk factors conducted in Spain, with
an intrinsic design benefit that SCOURGE includes
detailed clinical and genetic information gathered
homogeneously across the country. Besides, the study
included patients from the whole spectrum of COVID-19
severity covering from asymptomatic to life-threatening
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disease. To date, most research on COVID-19 disease has
focused on respiratory failure. However, the inclusion
of a severity scale provided a unique opportunity to
assess whether previously reported loci combined into
a GRS model were associated with differential risk by
strata. We warn, however, that the GRS model findings
should be interpreted with caution as sex and age-
differential results in some of the severity strata needs
appropriate replication. Association was tested for four
main variables: infection, hospitalization, severe illness
and critical illness, and using different definitions of
controls to align with the COVID-19 HGI. Irrespective
of the tested outcomes or the definition of controls,
the results were very similar, supporting the use of
population controls to increase power in these studies
and the utility of using hospitalization as a proxy of
severity. However, our results from the GRS analysis
reported a need to maintain separated categories for
medium–severe and critical illness.

We observed larger heritability differences by age
groups among males than among females for COVID-
19 hospitalization, which have diverse support from the
literature. On the one hand, there is robust evidence
supporting that the presence of X-linked deleterious
variants in the TLR7 gene are causal for life-threatening
COVID-19 only affecting males (19–21). Of note, most of
these severe COVID-19 male patients were younger than
60 years (21). On the other hand, autoantibodies impair-
ing type-I interferon signaling, which are supported to
be strong determinants of critical COVID-19 pneumonia,
are preferentially found among males older than 65 years
(11,18). Taken together, this reconciles with the idea that
non-genetic factors involved in severe COVID-19 are
expected among older males.

We clearly replicated previously reported associations
at 3p21.31 (near SLC6A20 and LZTFL1-FYCO1) (7,9,22,23)
and 21q22.11 (in IFNAR2) (7,9), and other findings in ABO,
OAS1, TYK2 and ARHGAP27. We also found a differential
effect between males and females for SNPs in 3p21.31
and 21q22.11. Although in the meta-analysis with other
European studies the leading variants of 3p21.31 reached
genome-wide significance in females, there was still a
difference in effect size that, considering its magnitude,
should not be disregarded. It is important to remark
that these association signals found in males were not
associated with the presence of comorbidities (see Sup-
plementary Material, Fig. S4). In fact, genetic effects were
only found for younger males (<60 years old), consistent
with other studies (24) and strongly supporting those
comorbidities outweigh genetic effects in disease out-
comes in the older patients.

Some novel genome-wide significant signals were
found in our study, one in chromosome 19q13.12
(intergenic to UPK1A and ZBTB32, and also linked to the
transcriptional regulation of ARHGAP33), and another
in chromosome 9p13.3 (intergenic to AQP7 and AQP3).
Interestingly, we also found two sex-specific signals: ELF5
in males and TLE1 in females. ELF5 has been recently

reported as a new locus associated with critical illness in
Europeans (25). Variants of this locus reached genome-
wide significance in our male meta-analysis of European
cohorts (P = 4.1 × 10−8). As regards of TLE1, this locus
should be taken as speculative as the signal did not reach
the standard genome-wide significance in the study.
However, given that the meta-analysis involved a low
number of studies (and the top marker was not imputed
in one of them), this result should be taken with caution
as further sex-specific studies will be needed to validate
this finding.

TLE1 encodes for the transducin-like enhancer of split
1, a co-repressor of other transcription factors and sig-
naling pathways. Besides repressing the transcriptional
activity of FOXA2 and of the Wnt signaling, TLE1 has
been shown to negatively regulate NF-κB, which is fun-
damental in controlling inflammation and the immune
response. The deficiency of TLE1 activity in mice results
in enhancement of the NF-κB-mediated inflammatory
response in diverse tissues including the lung (26). Inter-
estingly, TLE1 is one of the 332 high-confidence SARS-
CoV-2 protein–human protein interactions identified so
far (27). Taken together, SARS-CoV-2 would be directly
targeting the innate immunity and inflammation signal-
ing pathways by interfering with the NF-κB activity. Thus,
it is not surprising that TLE1 is a top-ranking regulator
of inflammation that allows to transcriptionally distin-
guish mild from severe COVID-19 (28).

In the 19q13.12 locus, the most biologically plausible
genes are ARHGAP33 (also showing the best functional
support based on the fine-mapping variants) and ZBTB32.
ARHGAP33 is transcriptionally regulated by IRF1—a
prominent antiviral effector and IFN-stimulated gene
(29). It also harbors NF-κB binding site that modifies its
expression in human lymphoblastoid cell lines by the
presence of genetic variants in the binding site linked
to many inflammatory and immune-related diseases
including sepsis, and bacterial and viral infection (30). Its
expression is also altered in human induced pluripotent
stem cells-derived pancreatic cultures in response to
SARS-CoV-2 infection (31). ARHGAP33 was identified
in an unbiased genome-wide CRISPR-based knockout
screen in human Huh7.5.1 hepatoma cells infected by
coronaviruses including SARS-CoV-2 and further inter-
actome studies (32). With respect to the transcription
factor ZBTB32, it has been shown to impair antiviral
immune responses by affecting cytokine production and
the proliferation of natural killer and T cells, and the
generation of memory cells (33). In single cell studies,
transcripts of ZBTB32 were enriched in T follicular helper
cells and were also expressed at significantly higher
levels in hospitalized COVID-19 patients (34).

AQP3 is expressed most strongly in the kidney
collecting duct, the gastrointestinal tract, large airways
(in basal epithelial cells and the nasopharynx), skin
and the urinary bladder; whereas AQP7 is expressed
primarily in the testis, fat cells and, to a lesser extent
in a subsegment of the kidney proximal tubule (35). In
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addition, AQP3 is upregulated in the lung tissues during
viral or bacterial-induced diffuse alveolar damage (36).
Based on this, in the fact that SARS-CoV-2 interacts
with host proteins with the highest expression in lung
tissues (27), and the functional evidence linking the fine-
mapped variants with eQTLs in lung tissues, our data
support AQP3 as the most likely 9p13.3 gene driving
the association with COVID-19 hospitalization. Many
patients develop acute respiratory distress syndrome
(ARDS) during severe COVID-19 (37), and one of the
hallmarks of ARDS is the increase of fluid volume
(edema) in the airspaces of the lung because of an
increase in the alveolo-capillary membrane permeability.
Some of the aquaporins, including AQP3, essentially
function as water transport pores between the airways
and the pulmonary capillaries (38), are key in lung fluid
clearance and the formation of this lung edema as a
consequence of the lung injury (35). In fact, the use of
aquaporin modulators in lung inflammation and edema
has been proposed for potential use for the treatment of
COVID-19 respiratory comorbidity (39).

We have also shown for the first time that COVID-
19 severity risk suffers from ID, where individuals with
higher levels of homozygosity associate with higher risk
of being hospitalized and of developing severe COVID-
19. Our results also suggested that autozygous rare
recessive variants found in ROH across the genome,
rather than homozygous common variants in strong LD,
are underlying the ID. Furthermore, the ID is stronger
in males than in females suffering from COVID-19
hospitalizations, especially in males ≥ 60 years old.
Although these results may be found counterintuitive
with the rest of findings, they are supported by the
mutation accumulation senescence theory. Under this
theory, alleles with detrimental effects that act in late life
are expected to accumulate and cause senescence, thus
increasing the ID (40). We detected further sex-specific
effects of homozygosity through ROHi. In hospitalized
males, coagulation and complement pathways, which
have been previously associated with severe COVID-
19 (41), were enriched among the protein coding genes
located in ROHi, highlighting the role of homozygosity
whereas the Lectin pathway of complement activation
is reported to be involved in the response to SARS-
CoV-2 infection (42–44). In hospitalized females, PI3K-
Akt signaling genes were found to be enriched in ROH
islands, whose networks are affected by a great variety of
viruses (45).

Given that the effect of the genetic variants in SARS-
CoV-2 severity is clearer among males and previous evi-
dence on this regard, we elucubrate on the role of andro-
gens in COVID-19 severity. Androgenic hormones have
been suggested to be responsible of the excess male
mortality observed in COVID-19 patients (46), and several
lines of evidence suggest that the androgen receptor
(AR) pathway is involved in the severity of SARS-CoV-2
infection: (i) A higher mortality rate among men has
been established (47); (ii) A substantial proportion of

individuals, both males and females, hospitalized for
severe COVID-19 have androgenetic alopecia [AGA; (47)]
and (iii) Most of the genes on COVID-19 severity in this
study have been identified in male-only analyses, and
these genes have been shown to interact with the AR.
The following lines of evidence suggest the AR pathway
is a mechanism responsible for some identified genes-
COVID-19 severity relationship: (i) FYCO1 is regulated by
the AR (48), and binding sites between the sex hormone
receptor AR and FYCO1 have been demonstrated (48,49);
(ii) There is a cross-talk between the IFN pathways and
the androgen signaling pathways (50), and androgens
are regulated by IFNs in human prostate cells (51); (iii)
TMPRSS2, another gene associated with COVID-19 sever-
ity in other studies, is induced by androgens through
a distal AR binding enhancer (52); (iv) AR induces the
expression of chemokine receptors such as CCR1; (v)
Variants of LZTFL1 gene are likely pathogenic for male
reproductive system diseases (53) and (vi) Genetic poly-
morphisms in the AR (long polyQ alleles ≥23) and higher
testosterone levels in subjects with AR long-polyQ appear
to predispose some men to develop more severe dis-
ease (54). Thus, it is not unexpected to find that antian-
drogen treatments are under the focus as treatment
options and prophylaxis of severe COVID-19 (47) and that
randomized controlled clinical trials with bicalutamide
(NCT04374279), degarelix (NCT04397718) and spirono-
lactone (NCT04345887) are currently underway.

Materials and Methods
Recruitment of cases and phenotype definitions
for the discovery phase
In Spain, 11 939 COVID-19 positive cases were recruited
as part of SCOURGE study from 34 centers in 25 cities
between March and December 2020. The complete list of
hospitals or research centers and the number of samples
that each contributed to the study is shown in Sup-
plementary Material, Table S1. Study samples and data
were collected by the participating centers, through their
respective biobanks after informed consent, with the
approval of the respective Ethic and Scientific Commit-
tees. The whole project was approved by the Galician Eth-
ical Committee Ref 2020/197. All samples and data were
processed following normalized procedures. Study data
were collected and managed using REDCap electronic
data capture tools hosted at Centro de Investigación
Biomédica en Red [CIBER; (55,56); Supplementary Mate-
rial, Supplemental Note]. Individuals were diagnosed as
COVID-19 positive through a PCR-based test (81.7% of
cases) or according to local clinical (3.4%) and laboratory
procedures (antibody test: 14.2%; other microbiological
tests: 0.7%). All cases were classified in a five-level sever-
ity scale (Table 1).

Two Spanish sample collections with unknown COVID-
19 status were included as general population controls
in some analyses: 3437 samples from the Spanish
DNA biobank (https://www.bancoadn.org) and 2506
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samples from the GR@CE consortium (17). General
population controls were collected from branches of the
National Blood Service from adult unrelated individuals
self-reporting Spanish origin and absence of personal
and familial history of diseases including infectious,
cancerous, blood and circulatory, endocrine, mental
or behavioral, nervous, vision, hearing, respiratory,
immunological, bone, congenital, skin and digestive.

Second phase: the CNIO study
A total of 1598 COVID-19 cases from six different Spanish
Biobanks (Biobanco CNIO, Biobanco Vasco, Biobanco Hos-
pital Ramón y Cajal, Biobanco Hospital Puerta de Hierro,
Biobanco Hospital San Carlos, and Banco Nacional de
ADN) were obtained according to the ethical committee
approval CEI PI 34_2020-v2. In addition, 1068 individuals
from Spanish DNA biobank with unknown COVID-19
status were included as healthy controls in the anal-
ysis whenever necessary. Classification as healthy was
based on self-reported absence of cardiovascular, renal,
pulmonary, hepatic, hematological illnesses or any other
chronic conditions, which require continuous treatment,
hepatitis B, C infections or acquired immunodeficiency
syndrome (AIDS). No clinical characterization was per-
formed on any subject, no information from medical
record was incorporated and no medical testing was per-
formed on these individuals. We will refer to these cases
and controls as the Centro Nacional de Investigaciones
Oncológicas (CNIO) study.

Genotyping
The discovery phase samples were genotyped with the
Axiom Spain Biobank Array (Thermo Fisher Scientific)
following the manufacturer’s instructions in the San-
tiago de Compostela Node of the National Genotyping
Center (CeGen-ISCIII; http://www.usc.es/cegen). This
array contains 757 836 markers, including rare variants
selected in the Spanish population. Genomic DNA was
obtained from peripheral blood and isolated using the
Chemagic DNA Blood100 kit (PerkinElmer Chemagen
Technologies GmbH), following the manufacturer’s
recommendations.

For the second phase study samples, a total of 250 ng
of DNA was processed according to the Infinium HTS
assay Protocol (Part # 15045738 Rev. A, Illumina), includ-
ing amplification, fragmentation and hybridization using
the Global Screening Array Multi-disease v3.0. This array
contains a total of 730 059 markers and was scanned
on an iScan platform (Illumina, Inc.). Clustering and
genotype calling were performed using Genome Studio
v2.0.4 (Illumina, Inc.).

Quality control
A QC procedure was carried out for the SCOURGE study
samples and control datasets. First, a list of probe sets
was removed based on poor cluster separation or exces-
sive MAF difference from The 1000 Genomes Project data
(1KGP) (57). Then, the following QC steps were applied

using PLINK 1.9 (58) and a custom R script. We excluded
variants with MAF < 1%, call rate < 98%, a difference in
missing rate between cases and controls >0.02, or devi-
ating from Hardy–Weinberg equilibrium (HWE) expecta-
tions [P < 1 × 10−6 in controls, P < 1 × 10−10 in cases, with
a mid-P adjustment (59)]. Samples with a call rate < 98%
and those in which heterozygosity rate deviated >5 SD
from the mean heterozygosity of the study were also
removed.

To assess kinship and assign ancestries, autosomal
SNPs (MAF > 5%) were pruned with PLINK using a
window of 1000 markers, a step size of 80 and a r2

of 0.1. In addition, high-linkage disequilibrium (LD)
regions described in Price et al. (60) were also excluded.
A subset of 131 937 independent SNPs was used to
evaluate kinship (IBD estimation) in PLINK. Given the
possible confusion between relatedness and ancestry,
we removed only one individual from each pair of
individuals with PI_HAT > 0.25 (second-degree relatives)
that showed a Z0, Z1 and Z2 coherent pattern (according
to theoretical expected values for each relatedness
level). The unrelated SCOURGE individuals were merged
with samples from 1KGP and the common SNPs were
LD-pruned as previously indicated. Ancestry was then
inferred with Admixture (61) using the defined 1KGP
superpopulations. Those individuals with an estimated
probability >80% of pertaining to European ancestry
were defined as European (N = 15 571).

Genomic PCs were also computed using a LD-pruned
(r2 < 0.1 with a window size of 1000 markers) subset of
genotyped SNPs passing quality check for controlling the
population structure in the GWAS.

The CNIO study data was filtered following the same
QC procedures, where 220 individuals were identified as
non-European and, therefore, were excluded from fur-
ther analysis.

Variant imputation
Imputation was conducted based on the TOPMed version
r2 reference panel [GRCh38; (62)] in the TOPMed Impu-
tation Server. After post-imputation filtering (Rsq > 0.3,
HWE P > 1 × 10−6, MAF > 1%), 15 045 individuals (9371
COVID-19 positive cases and 5674 population controls)
and 8 933 154 genetic markers remained in the SCOURGE
European study (discovery). The final dataset of the
CNIO study (replication) included 2446 individuals (1378
COVID-19 positive cases and 1068 population controls)
and 8 895 721 markers. For directly genotyped variants,
the original genotype was maintained in place of the
imputed data.

Statistical analysis
Association testing was computed by fitting logistic
mixed regression models adjusting for age, sex and
the first 10 ancestry-specific PCs. SNPRelate (63) was
used for prior LD-pruning and data management.
Association analyses were performed in SAIGEgds (64),
which implements the SAIGE (65) two-step mixed model
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methodology and the SPA test while using more efficient
objects for genotype storage. A null model was fitted in
the first step using the LD-pruned genotyped variants
(MAF > 0.5%, missing rate < 98%) to estimate variance
components and the genetic relationship matrix. Then,
in a second step, association analyses were performed
for both genotyped and imputed SNPs. Significance was
established at P < 5 × 10−8 after meta-analysis of the
discovery and the second study phases.

To align the results with those from the COVID-19 HGI,
three outcomes were evaluated in relation to severity:
hospitalization, severe COVID-19 (severity ≥ 3) and very
severe COVID-19 (severity = 4, critical illness). For each
comparison, three control definitions (A1, A2 and C) were
used (Supplementary Material, Table S2).

In addition, the risk to COVID-19 infection was also
analysed by comparing all COVID-19 positive cases with
control samples from the general population.

All analyses were conducted for each complete dataset
and stratified by sex and age (<60 years, ≥60 years). The
SNP∗sex and SNP∗age-interaction terms were tested for
each SNP in the subset of clumped signals, adjusting the
models for the same covariates.

Then, the main results of both Spanish cohorts
(SCOURGE and CNIO) for the overall and sex-stratified
analyses were meta-analysed assuming a fixed-effects
model using METAL (66).

Because of the similarity of both the SCOURGE and
CNIO studies in the clinical variables recorded and, more
importantly, in the definition of the severity scale, the
leading variants from the significant and validated loci
in the hospitalization analysis were also analysed under
a multinomial model (Supplementary Material, Supple-
mental Note).

Meta-analysis in independent European studies
In order to validate the findings in independent study
samples of European ancestry, a meta-analysis of hos-
pitalization risk was performed for the overall and sex-
stratified summary statistics of both Spanish cohorts
(SCOURGE and CNIO) and other four sex-stratified Euro-
peans studies from the COVID-19 HGI consortium (Bel-
COVID, GenCOVID, Hostage-Spain and Hostage-Italy).

Bayesian fine-mapping of GWAS findings
Credible sets were calculated for the GWAS loci to
identify a subset of variants most likely containing the
causal variant at 95% confidence level, assuming that
there is a single causal variant and that it has been
tested. We used corrcoverage for R (67) to calculate the
posterior probabilities of the variant being causal for all
variants with r2 > 0.1 with the leading SNP and within
1 Mb. Variants were added to the credible set until the
sum of the posterior probabilities was ≥0.95. VEP (https://
www.ensembl.org/info/docs/tools/vep/index.html) and
the V2G aggregate scoring from Open Targets Genetics
(https://genetics.opentargets.org) were used to annotate

the most prominent biological effects of the variants in
the credible sets.

Genetic risk score
A GRS was created for the SCOURGE cohort individuals
and population controls using the list of SNPs associated
with hospitalization, severity or risk in the meta-analysis
performed by the COVID-19 HGI [see Supplementary
Material, Table S2 in (9)] to appraise its prediction power
of the severity scale in SCOURGE. Details of this analysis
can be found in Supplementary Note.

SNP-heritability of COVID-19 severity
We relied on GCTA-GREML 1.93.2beta (68) to assess
the heritability of severe COVID-19 symptoms among
SCOURGE patients, excluding those with cryptic related-
ness or with missing genotypes above 0.5% and assuming
a prevalence of COVID-19 hospitalization of 0.5%. This
analysis considered all patients (modelling for age, sex,
sex∗age and the 10 first PCs), and males and females
separately (modelling for age and the 10 first PCs). We
also partitioned the variance to assess the heritability
changes among the patients <60 or ≥60 years old.
We focused on the 547 206 autosomal variants with
MAF > 1% and missingness <0.5%. Assuming 0.5% of
prevalence of severe COVID-19, and at least 1500 cases
and 1500 controls per stratum, we estimate >97.9%
power to detect a heritability >0.2.

ROH calling
The ROH segments longer than 300 Kb were called
in SCOURGE using PLINK 1.9 in the European QC-
ed genotyped dataset (before imputation) with the
following parameters: homozyg-snp 30, homozyg-kb 300,
homozyg-density 30, homozyg-window-sn 30, homozyg-gap
1000, homozyg-window-het 1, homozyg-window-missing 5
and homozyg-window-threshold 0.05. No LD pruning was
performed.

Calculating genomic inbreeding coefficients
Different genomic inbreeding coefficients were calcu-
lated (69):

FROH measures the actual proportion of the autosomal
genome that is autozygous above a specific threshold of
minimum ROH length.

FROH =
∑n

i=1 ROH > 1.5 Mb
3 Gb

FGRM is an alternative genomic inbreeding coefficient
that was obtained using PLINK’s parameter -ibc (Fhat3).
This coefficient is described by Yang et al. (68) where N is
the number of SNPs, pi is the reference allele frequency of
the ith SNP, and xi is the number of copies of the reference
allele. The reference allele frequencies were site-specific
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and included only variants with MAF > 0.05.

FGRM = 1
N

n∑

i

(
x2

i − (
1 + 2pi

)
xi + 2p2

i

)

2pi
(
1 − pi

)

Testing and replicating the ID
Inbreeding depression is defined as the change in the
mean phenotypic value in a population because of
inbreeding (12,13). The ID was modelled in SCOURGE
by a multiple logistic regression. The covariables used in
this study were sex, age and the first 10 PCs.

The results were replicated in a cohort gathered by
Nakanishi et al. (24). This consists of clinical and genomic
data from 4418 individuals of European ancestry (3946
hospitalized COVID-19 cases and 422 controls): 2597
males (1072 males < 60 years old, 1525 males ≥ 60 years
old) and 1821 females (808 females < 60 years old,
1013 females ≥ 60 years old). The cohort was built by
harmonizing individual-level data from 16 different
studies (24). The FROH and FGRM coefficients were obtained
following the procedure explained previously. The model
described previously with the same covariables (age, sex
and the first then PCs) was applied in this cohort.

Genome-specific effects on COVID-19 severity and
hospitalization were tested through ID in genomic win-
dows, ROH islands (ROHi) and regions of heterozygosity
(RHZ) (Supplementary Material, Supplemental Note).

Supplementary Material
Supplementary Material is available at HMGJ online.
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