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ABSTRACT
This work is devoted to exploring proof abilities in Graph Theory of
undergraduate students of theDegree in Computer Engineering and
Technology of the University of Seville. To do this, we have designed
a questionnaire consisting of five open-ended items that serve as
instrument to collect data concerning their proof skills when dealing
with graphs. We have thus analysed them adapting the methodol-
ogy for computing the degrees of acquisition of the Van Hiele levels.
Our analysis leads todifferentproofprofiles ofGraphTheory students
whose characteristics provide empirical support to consider proof
levels in Graph Theory from the perspective of the Van Hiele model.
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1. Introduction

Mathematics Education at the university level has emerged as a focus of research interest
in the last decade (Durand-Guerrier et al., 2021). As a sign of this, some of the most rele-
vant international conferences onMathematics Education have dedicated specific working
groups or specific meetings to this topic in recent years. Indeed, CERME1 has a Thematic
Working Group (TWG) on University Mathematics Education and ICME2 on Mathemat-
ics Education at Tertiary Level. Likewise, new conferences publishing proceedings have
recently emerged such as the congress of the INDRUM3 or the RUME4 Conference in the
United States. Moreover, there are long-established journals that have University Mathe-
matics Education among their priority objects of study, such as The College Mathematics
Journal and PRIMUS5, published since 1970 and 1991, respectively. In addition to these
publications, since 2006 the Polish journalAnnalesUniversitates PaedagogicaeCracoviensis.
Studia ad Didacticam Mathematicae Pertinentia publishes studies more focused on didac-
tic aspects. All this educational research at tertiary level has helped to deepen into the study
of the skills characterising the so called Advanced Mathematical Thinking (Tall, 1992), this
is, precise mathematical definitions and logical deductions of theorems based upon them.
This type of thinking is directly involved in our work since we are explicitly concernedwith
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the ability of proof, whose relevance is reflected in a number of research papers focusing on
this mathematical ability (Arnal-Bailera & Oller-Marcén, 2017; Demiray & Işiksal, 2017;
Stylianides et al., 2007; Uğurel et al., 2015).

A relevant mathematical topic at tertiary level is Graph Theory because of its multi-
ple applications in other areas such as Ecology, Chemistry, Transportation, Biology, Social
Networks, Information and Communication, Circuits, Computer Networks, and Software
Design; among others (Rosen, 2019). Furthermore, several studies in Mathematics Educa-
tion (Cartier, 2008;DeBellis &Rosenstein, 2004;Grenier&Payan, 1999;Heinze et al., 2004;
Leon et al., 2020) show the importance of the role that graphs can play in the acquisition
of mathematical skills, specifically proof. Besides these works, much educational research
has centred its attention in different aspects of the teaching and learning of Graph The-
ory such as task design (Niman, 1975; Santoso, 2018), resources for enhancing learning
(Costa et al., 2014; Geschke et al., 2005) or the teaching of graphs in levels other than
tertiary (Rosenstein, 2018), among others. However, different authors (Hazzan & Hadar,
2005; Medová et al., 2019) highlight the lack of research on the reasoning of Graph The-
ory students, which requires the development of adequate theoretical frameworks. This last
issue is approached by Gavilán-Izquierdo andGonzález (2016), who first point out the Van
Hiele model to be applied in the teaching and learning of Graph Theory, and subsequently
by Ferrarello and Mammana (2018), who present an experimental teaching activity which
considers the nature of Van Hiele levels.

The Van Hiele model has mainly been applied to the field of Geometry (Burger &
Shaughnessy, 1986; Chen et al., 2019; Gutiérrez & Jaime, 1995; Hoffer, 1983; Lee, 2015;
Pandiscio & Knight, 2010; Perdikaris, 2004; Usiskin, 1982; Wang & Kinzel, 2014), specif-
ically to undertake studies on the abilities of students in proof practices (Gutiérrez et al.,
2004; Manero & Arnal-Bailera, 2021; Senk, 1989). In addition, this model has proved to be
useful to describe the learning of other mathematical topics such as local approximation
(Llorens & Pérez-Carreras, 1997), convergence of sequences (Navarro & Pérez-Carreras,
2006), convergence of series (Jaramillo, 2000) or functions (Nisawa, 2018). Thus, González
et al. (2021) perform a theoretical analysis that produces a characterization of the learning
of Graph Theory through four levels of reasoning under the lens of the Van Hiele model,
whose validity must be tested in empirical studies as the present paper. This characteri-
zation is organised through the development of the processes of reasoning that students
may activate when dealing with graphs: recognition, use and formulation of definitions,
classification, and proof, thus providing descriptors of levels for each process.

The purpose of this work is to provide empirical support for the validity of the levels
of proof in Graph Theory through the lens of the Van Hiele model proposed by González
et al. (2021). Indeed, the results of González et al. (2021) are based on (1) prior research on
students’ mathematical thinking in areas different fromGraphTheory, (2) theirmathemat-
ical understanding of the concept of graph as researchers in Mathematics and Didactics of
Mathematics, and (3) their experience as Graph Theory teachers. Thus, it is necessary to
develop empirical studies as the present work that analyses students’ answers that allow to
evaluate the validity of this theoretical characterization. This is the natural process in the
elaboration of an educational model (Jaime & Gutiérrez, 1990; O’Leary-Kelly & Vokurka,
1998) which requires empirical validation after the theoretical analysis. This implies the
search for evidence of the indicators provided by these authors for the levels, as well as the
study of their adequacy to the particularities of the Van Hiele model.
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2. Theoretical considerations

2.1. The VanHielemodel for geometry

In the 1950s, Van Hiele (1957) and Van Hiele-Geldof (1957) propose a model that charac-
terizes the development of geometric thinking through a sequence of five levels. However,
we do not consider here the fifth level since it mainly concerns professional mathe-
maticians’ reasoning which are out of the scope of this study. Thus, students at level 1
(visualization) recognize geometric figures by their appearance and as a whole; level 2
(analysis) is characterised by the students’ ability to handle the parts and mathematical
properties of figures; the reasoning of level 3 (informal deduction) uses logical deductions,
which enable students to interrelate properties of geometric figures; and students at level 4
(formal deduction) can produce formal proofs and deal with equivalent definitions of a
concept. For a more detailed description of the levels, we refer the reader to the work of
Van Hiele (1986).

These levels have a series of characteristics (Jaime & Gutiérrez, 1990) that differenti-
ate them from levels proposed in other theoretical frameworks (Arnon et al., 2014; Biggs
& Collis, 1982; Pirie & Kieren, 1989). Specifically, Van Hiele levels are (1) hierarchical and
sequential, whichmeans that for students to completely acquire a certain level it is necessary
that they go across the preceding ones in a specific order (e.g. students cannot completely
acquire level 3 before having completely acquired level 2); (2) highly related with language,
this is, each level has specific vocabulary and different ways to understand mathemati-
cal concepts; and (3) continuous, which means that the acquisition of a certain level is
not instantaneous and can start before the complete acquisition of a preceding level (e.g.
students can start the acquisition of level 3 before completely having acquired level 2).

Gutiérrez and Jaime (1998) propose a way to regard the geometrical reasoning as
decomposed into different processes of reasoning: recognition (i.e. identification of types
of figures, as well as their components and properties), use of definitions (i.e. handling of
geometrical concepts), formulation of definitions (i.e. elaboration of descriptions or char-
acterizations of geometrical notions), classification (i.e. placement of geometrical objects
into different families), and proof (i.e. explanation in some convincing way that a state-
ment is true). Thus, these authors characterize the VanHiele levels according to the degree
of development of each of these processes. We next describe the development of the proof
process, which is the focus of this paper.

Proof at level 1 is not considered by Gutiérrez and Jaime (1998). At level 2, proofs are
characterized by verifications in particular cases. Students at level 3 can verify statements by
using informal explanations based on mathematical properties. Moreover, they are able to
understand formal proofs and even reproduce a few logical steps but they cannot produce
themselves formal proofs, which characterizes level 4 students.

2.2. The VanHielemodel for graphs

González et al. (2021) provide a theoretical characterization of students’ reasoning in
Graph Theory based on Van Hiele levels. To present this characterisation, we first provide
some fundamentals of Graph Theory for the sake of completeness. Indeed, a graph G con-
sists of a pair (V, E) whereV is any set, which is called the vertex set, and E is a set of pair of
non-ordered pairs of elements fromV, which is called edge set. The pictorial representation,
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which is the most common way to represent graphs, consists of drawing vertices as points
in the plane which are joined by (non-necessarily straight) segments whenever the corre-
sponding pairs of vertices form edges. Delving into the parts and properties of graphs, we
say that two vertices are adjacent whenever they form an edge, and the degree of a vertex is
the number of vertices adjacent to it. Finally, a graph is said to be Eulerian when it admits
a sequence of adjacent vertices containing each of its edges exactly once and starting and
finishing at the same vertex. Eulerian graphs are characterized by having all their vertices
of even degree. Note that properties of graphs can be divided into local (i.e. associated with
parts of the graph) and global (i.e. associated with the whole graph). Thus, the degree is
local, while the Eulerian character is global. (We refer the reader to the book of Rosen
(2019) for more information on Graph Theory.)

We can now describe the main indicators of the Van Hiele levels for Graph The-
ory (González et al., 2021). It is easy to see that they have the same nature as the Van
Hiele levels for Geometry. Indeed, students at level 1 (visualization) have a visual type
of recognition that limits them when identifying graphs and global properties; the rea-
soning at level 2 (analysis) is mainly supported by students’ ability to identify global
and local mathematical properties of graphs, which enables them to distinguish graphs
independently from their representations; students at level 3 (informal deduction) can
interrelate graph properties and provide logical arguments; and students at level 4 (formal
deduction) perceive graphs as formal mathematical objects, and so they can work with
equivalent definitions of the same concept and construct formal proofs of mathematical
results. More details on the descriptors of each level can be found in the work of González
et al. (2021).

Furthermore, these authors organize the descriptors of each level according to the pro-
cesses proposed by Gutiérrez and Jaime (1998) adapted to the field of graphs. In particular,
the evolution of the process of proof in Graph Theory and inGeometry are analogous from
levels 2–4. However, the proof of level 1, which is not considered by Gutiérrez and Jaime
(1998), is taken into account by González et al. (2021) due to the peculiarities of graphs.
Indeed, proofs at level 2 are given by verifications in specific examples; students at level 3
are able to produce informal proofs to justify the truth of a statement, and they can under-
stand the steps of a formal proof but they cannot write it themselves; and level 4 students
can elaborate formal proofs, thus being able to perform classic techniques in Graph Theory
such as induction, proof by contradiction, or proof by contraposition. Level 1 students just
provide visual arguments to justify the truth of a statement or verify it in specific examples,
as well as level 2 students do, but being very limited by the representations that they know
for a graph.

3. Method

3.1. Data collection instrument

In order to evaluate the proof process in Graph Theory we have designed a five items ques-
tionnaire focused on detecting evidence of the indicators of the proof levels proposed by
González et al. (2021). This instrument has been developed following the same ideas as the
proof tasks proposed by Gutiérrez and Jaime (1998) to evaluate the proof process, which
are open ended tasks that bring to light the reasoning of the students more clearly than
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multiple choice questions (Jaime & Gutiérrez, 1994). For more examples of this type of
tasks, we refer the reader to the works of Aravena et al. (2016) and Burger and Shaughnessy
(1986).

The first version of this questionnaire was validated by experts in Mathematics Edu-
cation and experts in Graph Theory who are familiar with the Van Hiele model, none of
them being involved in this work. Subsequently, this questionnaire was first administered
to students enrolled in the course Logic and Discrete Mathematics of the Degree in Soft-
ware Engineering of the Polytechnical University of Madrid, which allowed us to create
an improved version of the questionnaire employed in this work. Moreover, we studied
the scalability and internal coherence of the questionnaire, which have been measured
through the Guttman and Cronbach’s Alpha coefficients, respectively. The Guttman coef-
ficient applied to our context (Mayberry, 1983) is given byG = 1 − e

l·N , where e is the total
number of errors, l is the number of levels andN is the number of participants in the study.
This coefficient provides an idea of the extent to which an observed set of responses pat-
terns agrees with that expected from a perfect scale (i.e. without errors), which reveals in
our context to what extent the hierarchical nature of the Van Hiele levels appears in our
results. We have obtained for the Guttman coefficient a value of 0.931, which is an indi-
cator of the reliability of the questionnaire as it is greater than 0.9 (Torgerson, 1967). The

Cronbach’s Alpha coefficient is given by α =
(

k
k−1

)
·
(
1 −

∑k
i=1 S

2
i

S2t

)
, where k is the num-

ber of items, Si2 is the variance of item i, and St2 is the variance of the total observed values.
Thus, this coefficient shows to which extent the answers given by each student to the differ-
ent tasks of the test manifest similar levels of reasoning. We have obtained a value of 0.874
for this parameter, which is another indicator of the reliability of the test since it is greater
than 0.7 (Fraenkel & Wallen, 1996).

The questionnaire, that we next describe, consists of five items to evaluate students’
proof skills in Graph Theory, which were answered independently. The tasks included
in each item, all containing concepts familiar to the students, were selected in order to
detect the different types of proof that can appearwhen dealingwith graphs: visual (level 1),
empirical (level 2), informal (level 3) and formal (level 4).

Item 1. Remember that the degree of a vertex is the number of vertices adjacent to it (i.e. they
are connected by an edge). What is the sum of the degrees of all the vertices of a graph? Give
a proof of your answer.

The first item, which demands to prove that the sum of the degrees of the vertices of a
graph is twice the number of its edges, assesses levels from 2 to 4. Indeed, the item does not
serve to evaluate level 1 because the statement to be proved necessarily induces to explore
a local property such as the degree of each vertex, which is not manageable at level 1. Thus,
expected level 2 answers contain a specific value for the required sum and verifications
in concrete examples. In contrast, level 3 answers, which may also contain verifications in
specific examples, provide general mathematical reasoning but they do not explicitly show
the double edge counting that appears in level 4 answers.Moreover, this last type of answers
might be given using mathematical induction.

Item 2. Fill in the gaps of the following sentences:

For a complete graph with 4 vertices, the number of its edges is . . . and the sum of the degrees
of all its vertices is . . .
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For a cycle with 5 vertices, the number of its edges is . . . and the sum of the degrees of all its
vertices is . . .

For a graph on m edges, the sum of the degrees of all vertices is . . . Justify your answer.

The second item provides a scaffolding for the proof of the preceding statement, thus
demanding students to first count the sum of degrees and the number of edges of two
specific graphs. Hence, this scaffolding helps students to find the general relation for any
graph and deduce the corresponding proof, which precisely requires a double counting of
its edges. Note that students could not go back to previous items during the replying of
the questionnaire. Thus, this item does not assess level 1 for the same reasons provided for
item 1 since it requires a proof of the same result. Level 2 expected answers, just like in item
1, are based on verifications in particular graphs. Also, any answers containing reasoning
beyond verifications in examples reflect level 3, even if they explicitly contain the double
edge counting idea. Indeed, this item does not assess level 4 because students have enough
information to give the required proof just by linking a few logical steps, which is feasible
by level 3 students.

Item 3. Remember that the complete bipartite graph Kn,m is composed of two sets of vertices
such that no edge has both vertices in the same set, and has every possible edge connecting
vertices of both sets. Figure 1 shows the graph K3,5.
Try to prove that no complete bipartite graph with an odd number of vertices is Eulerian.

The third item, which serves to assess all levels, asks for proving that no complete bipar-
tite graph with an odd number of vertices is Eulerian. Answers with evidence of indicators
of level 1 could contain visual arguments such as the impossibility to draw the graph with-
out lifting the pencil from the paper, for instance in the example of graph provided in
the questionnaire. Level 2 answers are limited to verifications in specific complete bipar-
tite graphs, whilst level 3 answers contain reasoning made onmathematical properties and
relations between these properties. This type of answersmay contain gaps and provide con-
clusions obtained via a non-rigorous process, for instance, they could avoid a justification
of the fact that a complete bipartite graph with an odd number of vertices must contain
vertices of odd degree. Finally, level 4 answers are characterised by its degree of formality,
showing proofs with a series of justified steps that logically lead us from the hypothesis to
the thesis of the statement. Thus, these answers necessarily include the following ideas: (1)
the degree of a vertex of a set of the complete bipartite graph equals the cardinality of the
other set, and (2) in a complete bipartite graph with an odd number of vertices, exactly one
of the two sets has odd cardinality.

Figure 1. The complete bipartite graph K3,5.
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Item 4. Claim 1. If a graph has a vertex of odd degree, then that graph is not Eulerian.

Claim 2. If the complete bipartite graph Kn,m has an odd number of vertices, then either n is
odd and m is even or vice versa.

Considering the preceding claims, prove that no complete bipartite graphwith an odd number
of vertices is Eulerian.

The fourth item provides some hints to proof the statement of the preceding item. Thus,
if this scaffolding does not work as a deterrent for students that use visual arguments, then
they are assigned level 1. Level 2 expected answers, just like in item 3, lie in specific verifica-
tions in examples, in contrast with level 3 answers, which provide mathematical reasoning
beyond examples. This item does not allow to assess level 4 of proof since students have
enough information to construct the required proof just by properly relating the claims
provided in the statement of the item.

Item 5. Here you have a proof of the fact that no complete bipartite graph with an odd number
of vertices is Eulerian. Read it and try to understand it:

• The vertex set of the complete bipartite graph is partitioned into two sets, one having
n vertices and the other having m vertices. Each vertex of a set is adjacent to all the
vertices of the other set, and there are no adjacencies among vertices of the same set.
(See Figure 2).

• Thus, the vertices of one set have degreemand the vertices of the other set have degree n.
• As the total number of vertices is n+m, which is an odd number, then either m is odd,

and n is even or vice versa.
• Therefore, the graph has vertices of odd degree and so it is not Eulerian.

You have just seen a proof of the fact that no complete bipartite graph with an odd number
of vertices is Eulerian. Give a similar proof for the following statement:

A complete bipartite graph Kn,m is Eulerian if and only if n and m are both even.

The last item exhibits a formal proof of the result of item 3, and then it asks students
to understand it and provide a similar proof for a different statement. Thus, this item does
not assess the features of level 1 since it is required to be at level 2 to at least handle the
mathematical properties appearing in the given proof. Again, level 2 answers should be
made of specific verifications. Level 3 expected answers include general reasonings to prove
the statement but only concerning one of the implications. Although the task demands the

Figure 2. The complete bipartite graph Kn,m.
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Table 1. Levels assessed by each item.

Item Level

1 2 3 4
2 2 3
3 1 2 3 4
4 1 2 3
5 2 3 4

replication of a proof, which could be done in principle by level 3 students, it is remarkable
that the proof provided to students requires arguments for only one implication, while the
proof demanded to students requires to consider two implications. Thus, it is necessary to
possess sufficient formality to be aware of the necessity of proving both implications, which
is characteristic of level 4 students.

We summarize the information provided in this section in Table 1 for the sake of
readability.

3.2. Sample

The questionnaire was administered to 59 students (labelled from S1 to S59) enrolled in
the course Discrete Mathematics, which corresponds to the second year of the Degree in
Computer Engineering and Technology of the University of Seville. We point out that we
have discarded the productions of 5 students (namely S1, S3, S7, S27, and S55) because
they provided non-assessable answers to at least three items of the questionnaire (i.e. more
than a half of the items).

3.3. Assessment of the proof process in graph theory

The data obtained in this study have been analysed by means of the method introduced
by Gutiérrez et al. (1991) to compute the degrees of acquisition of the Van Hiele levels,
which has been applied in several studies in the field of Geometry (Abdullah & Zakaria,
2013; Aravena et al., 2016; Gutiérrez & Jaime, 1995; Gutiérrez & Jaime, 1998; Huerta, 1999;
Manero & Arnal-Bailera, 2021). This method, which provides a description of the devel-
opment of the students’ skills associated with each of the Van Hiele levels, is adequate in
our study since the descriptors of the Van Hiele levels of graphs (González et al., 2021)
have been mainly obtained by analogy with the descriptors of the Van Hiele levels for
the geometrical case. We next summarize the steps of the procedure for applying such
method.

Given the answers of a student to the five items, this method first assigns a level to each
answer, according to the criteria developed in the subsection devoted to the data collec-
tion instrument, and also a type in accordance with the indicators described in the second
column of Table 2.

Subsequently, each answer is marked with a percentage of acquisition for each of the
levels evaluated by the corresponding item. Indeed, the percentage of acquisition of the
level assigned to the answer corresponds with those given in the third column of Table 2;
higher levels evaluated by the item are assigned 0%; and lower levels evaluated by the item
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Table 2. Description of the types of answers and their correspondingweights (Gutiérrez et al., 1991, pp.
240–241).

Type Description Weight (%)

1 No reply or answers that cannot be codified or that indicate that the learner has not attained a given
level but that give no information about any lower level.

0

2 Wrong and insufficiently worked out answers that give some indication of a given level of reasoning;
answers that contain incorrect and reduced explanations, reasoning processes, or results.

20

3 Correct but insufficiently worked out answers that give some indication of a given level of reasoning;
answers that contain very few explanations, inchoate reasoning processes, or very incomplete results.

25

4 Correct or incorrect answers that clearly reflect characteristic features of two consecutive Van Hiele
levels and that contain clear reasoning processes and sufficient justifications.

50

5 Incorrect answers that clearly reflect a level of reasoning; answers that present reasoning processes that
are complete but incorrect or answers that present correct reasoning processes that do not lead to
the solution of the stated problem.

75

6 Correct answers that clearly reflect a given level of reasoning but that are incomplete or insufficiently
justified.

80

7 Correct, complete, and sufficiently justified answers that clearly reflect a given level of reasoning. 100

are assigned 100%. This allows associating each answer with a 4-component vector cor-
responding with the four levels, being empty the components whose corresponding levels
are not assessed by the item.

Once we have obtained the five vectors corresponding to the five items answered by a
student, we consider the items evaluating each level and compute the arithmetical mean of
the percentages of acquisition obtained. Therefore, each student is assigned a vector of 4
numerical components with the percentages of acquisition of each level (quantitative vec-
tor), which is assigned another vector in accordance with the terms of Table 3 (qualitative
vector). The diagram provided in Figure 3 shows an example of application of the method
that we have described in this subsection.

Note that, during the analysis of the answers given by the students to each item, we
directly assigned a level and a type whenever the categorisations made individually by the

Table 3. Correspondence between quantitative
and qualitative values of the degrees of acquisition
(Gutiérrez et al., 1991, p. 238).

Quantitative
acquisition Qualitative acquisition

[0, 15] No acquisition
(15, 40) Low
[40, 60] Intermediate
(60, 85) High
[85, 100] Complete

Figure 3. Scheme of application of the method to obtain the degrees of acquisition in a specific
example.
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four researchers agreed. In case of discrepancies, the researchers opened a discussion to
finally reach a consensus.

4. Results

4.1. Levels and types of answers obtained for each item

We next show examples of answers for each level of proof to illustrate the diversity found
in the students’ productions. Due to space limitations, we cannot show examples of each
type for all levels, but we provide four answers given by students (one per level) of different
type to the same item. Concretely we have chosen item 3 since it assesses the four levels,
allowing the reader to compare the features of the different levels and types while keeping
the underlying content.

An example of level 1 answer to item 3 was given by student S23 (see Figure 4) since
the lack of Eulerian character was justified using a particular representation and visual
arguments through a non-mathematical language: ‘you could lift the pencil from the paper
[. . . ] there is a moment when’. The answer is assigned type 6 since it is correct in the sense
of level 1 because Eulerian character can be recognised in visual terms as the possibility to
draw the edges of the graphwithout lifting the pencil from the paper andwithout repeating
visited edges. Also, the features observed in the answer clearly reflect level 1 of proof. We
have considered it as insufficiently justified since it remains to mention the fact that the
Eulerian character requires starting and finishing at the same place.

A level 2 answer to the same item is provided by student S24 (see Figure 5) since it
contains a verification in a specific graph using mathematical vocabulary instead of visual
arguments (typically found in level 1 answers). Indeed, the student considers the number
of vertices and edges thus exhibiting the relation between them: ‘It should fulfil the following
characteristic: A = 2V-1’. This answer has been labelled with type 5 since it is incorrect, as
the student has checked a property that do not characterize Eulerian graphs, and it clearly
shows level 2 analytic characteristics.

Figure 4. Example of level 1 and type 6 answer, given by student S23. Translation into English: I
don’t remember exactly if to be Eulerian you could lift the pencil from the paper. Assuming that you
cannot . . . You couldn’t as there is a moment when you have to repeat an already drawn Edge.
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Figure 5. Example of level 2 and type 5 answer, given by student S24. Translation into English: Example:
Vertices = 7; Edges = 12; It should fulfil the following characteristic; A = 2V− 1; And a bipartite graph
of 7 vertices as the preceding does not: 12 = 2(7)− 1; 12 �= 13.

Figure 6. Example of level 3 and type 2 answer, given by student S4. Translation into English: In order
to be Eulerian the degrees of all vertices should be even, then in a bipartite graph with an odd number
of vertices, there are always odd vertices.

Student S4 gives a level 3 answer (see Figure 6) since it exhibits a certain use of proposi-
tional logic and its associated vocabulary (‘all vertices . . . , then in a . . . , there are always’),
which is inner to the informal proofs that students at this level usually produce. It is a
type 3 answer because it is wrong, as the second claim provided by the student is not a
consequence of the first one, and insufficiently worked out (reduced explanations), thus
reflecting only some indicators of the level.

Finally, a level 4 proof is given by student S49 (see Figure 7), who starts from the
hypothesis of the statement to be proved and, through a series of logical steps, deduces
the thesis. Note the vocabulary of formal proofs: ‘Let G(V,A) bipartite . . . for any v1∈V1’.
Also, this is a type 7 answer because it is complete, as it clearly displays the formality that
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Figure 7. Example of level 4 and type 7 answer, given by student S49. Translation into English: Let
G(V , A) bipartite with |V1| = n and |V2| = m; |V| = |V1| + |V2| = n + m; |V| ≡ 1 (mod 2) ⇔ n
is odd and m is even or vice versa; Since for any v1 ∈ V1 there are edges with all vertices of V2; ∀v1 ∈
V1∃a ∈ A|a = (v1, v2)∀v2 ∈ V2 ; Hence the degree of v1 ∈ V1 is |V2| and vice versa. Therefore at least
min{n,m} vertices have odd degree. Since a graph is Eulerian ⇔ ∀v ∈ V δ(v) ≡ 0 (mod 2) ; G is not
Eulerian.

Table 4. Distribution of levels assigned to each item.

Number of students (Percentage)

Item 1 Item 2 Item 3 Item 4 Item 5

Non-classifiable 5 (9.26%) 5 (9.26%) 15 (27.78%) 4 (7.41%) 3 (5.56%)
Level 1 – – 3 (5.56%) 0 (0.00%) –
Level 2 18 (33.33%) 15 (27.78%) 4 (7.41%) 11 (20.37%) 5 (9.26%)
Level 3 12 (22.22%) 34 (62.96%) 18 (33.33%) 39 (72.22%) 37 (68.51%)
Level 4 19 (35.19%) – 14 (25.92%) – 9 (16.67%)

this level requires, and correct, since it contains an argumentation that properly links each
of the steps conforming the proof.

We now present the results obtained for each item in Table 4, where the row with non-
classifiable answers corresponds with those of type 1, which are not assigned to any level.
We point out that we have found answers of each level of proof that is measured by the
instrument. Also, note that the lowest percentages appear at level 1, while the highest values
correspond with level 3 in most of the items, specifically, all except for item 1.
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4.2. Levels of proof obtained by students

The degrees of acquisition of each level obtained by the students of the sample (see Table 5)
show that most of them have high or complete acquisition of levels 1 (70.37%) and 2
(74.08%). This evinces sufficient proof skills to provide visual arguments and check state-
ments in specific examples. Concerning level 3, there is at least 14% of the students in each
of the five intervals of acquisition considered. Also, 64.81% of the sample shows at most
intermediate acquisition of level 3, which indicates some difficulties of these students when
trying to prove the truthfulness of a statement using generic arguments instead of checking
in examples. Finally, the vast majority of students (92.59%) feature at most intermedi-
ate acquisition of level 4, which is insufficient to perform formal proofs of mathematical
results.

Concerning the quantitative vectors of the degrees of acquisition of the students, we
observe that 72.22% of them have their components in decreasing order for the four levels
of proof.With regard to the 15 remaining vectors (27.78%), 13 of themhave less acquisition
of level 1 than level 2, while the other two present less acquisition of level 3 than level 4.
Specifically, students S14 and S32 have respectively (100, 70, 55, 60) and (100, 80, 50, 60)
as quantitative vectors. However, both vectors are associated to the same qualitative vector
(complete, high, intermediate, intermediate), whose components are in decreasing order.

We have obtained 6 profiles of students according to their qualitative vectors (see
Table 6). To do this, we have grouped the students first according to the highest level of
proof acquired by the student (high or complete acquisition), and then depending on
whether they have some acquisition (low or intermediate) or not (no acquisition) of the
higher levels. Indeed, profile P1 contains students showing the maximum development of

Table 5. Distribution of the degrees of acquisition of each level of proof obtained for the sample.

Number of students (Percentage)

No acquisition Low Intermediate High Complete

Level 1 3 (5.56%) 0 (0.00%) 13 (24.07%) 0 (0.00%) 38 (70.37%)
Level 2 0 (0.00%) 2 (3.70%) 12 (22.22%) 18 (33.33%) 22 (40.75%)
Level 3 11 (20.37%) 16 (29.63%) 8 (14.81%) 10 (18.52%) 9 (16.67%)
Level 4 32 (59.26%) 6 (11.11%) 12 (22.22%) 3 (5.56%) 1 (1.85%)

Table 6. Proof profiles obtained in the study, considering the order No acquisition ≤ Low Intermedi-
ate ≤ High ≤ Complete.

Degrees of acquisition

Level 1 Level 2 Level 3 Level 4
Number of students

(Percentage)

Profile P1 High or Complete High or Complete High or Complete High or Complete 4a (7.41%)
Profile P2 High or Complete High or Complete High or Complete Low or Intermediate 15 (27.78%)
Profile P3 High or Complete High or Complete Low or Intermediate ≤ Intermediate 14b (25.92%)
Profile P4 High or Complete High or Complete No acquisition No acquisition 7c (12.96%)
Profile P5 Complete Intermediate ≤ Intermediate No acquisition 5 (9.26%)
Profile P6 Intermediate Low or Intermediate ≤ Low No acquisition 9d (16.67%)
aOne student does not satisfy the level 1 condition.
bFour students do not satisfy the level 1 condition.
cTwo students do not satisfy the level 1 condition.
dThree students do not satisfy the level 1 condition.
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proof skills, thus featuring most of the abilities that characterize level 4, and profile P2 has
level 3 students who are acquiring level 4. Profiles P3 and P4 are made up of level 2 stu-
dents, differing in the fact that the former are acquiring higher levels and the latter do not
show any acquisition of them. Finally, profile P5 contains level 1 students featuring some
level 2 and 3 proof skills, while students of profile P6, who also handle some level 2 and 3
abilities, have not attained level 1.

5. Discussion and conclusions

The results presented in the preceding section give empirical support to the validity of
the proposal of proof levels in Graph Theory through the lens of the Van Hiele model
(González et al., 2021), thus reaching the objective proposed in the beginning of this study.
Indeed, all descriptors for every level of proof have been observed in our data since we have
categorised students’ answers with each of these levels. Furthermore, we have obtained
evidence for the properties of the Van Hiele levels, as we next discuss.

The diversity of answers has allowed to verify the specificity of language displayed at
each level. Indeed, we have shown four particular answers that clearly illustrate the nature
of each type of vocabulary. Thus, level 1 students use everyday language to provide visual
arguments, in contrast to the analytical language employed by level 2 students to check
mathematical properties in concrete examples. At level 3, we can observe the use of some
words typical of propositional logic that students use to make informal proofs. Finally,
level 4 students use a more precise language than in the previous level, which is necessary
to produce formal proofs with the rigor that this level demands.

Regarding the hierarchical and sequential character of Van Hiele levels, the degrees of
acquisition of each level obtained by students reflect this property since the higher the level,
the lower the degree of acquisition. Indeed, on the one hand, the most frequent degree of
acquisition for each level decreases: complete for levels 1 and 2, low for level 3, and no
acquisition for level 4. Furthermore, we find that the frequency of complete acquisition
decreases with respect to the levels. Thus, these facts are global validation factors of this
characteristic of the Van Hiele levels (Gutiérrez et al., 1991). On the other hand, if we indi-
vidually examine the quantitative vectors of the degrees of acquisition assigned to each
student, the high percentage of them whose components appear in decreasing order is a
local validation factor. Also, considering the six profiles obtained in the study, it is remark-
able that they fit the expected hierarchical character for the Van Hiele levels. Specifically,
the qualitative vectors associated with profiles P1, P2 and P4 strictly agree with this char-
acteristic, since those featuring low or intermediate acquisition of a certain level, have high
or complete acquisition of the previous levels; the qualitative vectors of the profiles P3, P5
and P6 are not strictly adapted to this characteristic because they have low or intermediate
acquisition of at least two levels, although they also have their components in decreasing
order.

Looking now into the transition from a level to another, we can see from our results
that this occurs continuously, which is also observed in works exploring geometrical rea-
soning (Burger & Shaughnessy, 1986; Gutiérrez et al., 1991; Perdikaris, 2011; Voskoglou,
2017). This is, students who have attained a certain level (i.e. with high or complete acqui-
sition) have already begun the acquisition of the next level. Thus, the profiles obtained in
our study reinforce continuity since all but profile P4 show students in transition between
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levels. (Obviously, this does not have sense for students of profile P1 since they have reached
themaximumdegree of reasoning in the proof process). Indeed, we have only found level 2
students who have not started the acquisition of higher levels, which are precisely those of
P4 profile. This points out the fact that the transition between levels 2 and 3 could occur
less gradually than in other levels, at least for the proof process. This is not surprising
since achieving level 3 implies to understand what a proof really is, as remarked by Senk
(1989) for the geometrical context, who points out that this implies students to move from
verifications in concrete examples to proofs based on general mathematical arguments.

We have detected certain anomalies in the results whose possible causes could be
explored in future works. Indeed, we have obtained a remarkable number of students with
more acquisition of a certain level than the previous one, mostly students withmore acqui-
sition of level 2 than 1, in contrast to the hierarchical nature expected for the levels of proof
under study. This could be due to two main reasons, both of methodological nature. The
first reason could be related to our questionnaire because it only contains two items eval-
uating level 1, which might generate unreliable values. This could be fixed by increasing
the number of tasks in the corresponding questionnaire that serve to assess level 1. The
second, according to the methodology of Gutiérrez et al. (1991), refers to non-assessable
responses (type 1), which are assigned no acquisition for all levels evaluated by the corre-
sponding task. Thus, these responses are weighted with 0 at level 1 (whenever it is assessed
by the task) even for students who could have attained this level. We could explore possible
modifications of this methodology in future studies in order to solve this issue. In addition,
we could increase the number of respondents considering several University degrees from
different countries.

Our work has shown empirical evidence of the suitability of employing the Van Hiele
model to analyse students’ development in the proof process for Graph Theory. Thus, we
contribute to the literature on the reasoning in Graph Theory, which is scarce as noticed
by authors like Hazzan and Hadar (2005) and Medová et al. (2019). In future works, we
could search for empirical support for the rest of the processes undertaken in this theoret-
ical model: recognition, use and formulation of definitions, and classification. Regarding
teaching issues, even though our results already serve to identify difficulties of Graph The-
ory students, it would be also interesting to explore whether the instructional aspects of
the Van Hiele model, such as the sequencing according to its phases, produce a better
acquisition of the levels in Graph Theory.

Notes

1. Congress of the European Society for Research in Mathematics Education.
2. International Congress on Mathematical Education.
3. International Network for Didactic Research in University Mathematics.
4. Research in Undergraduate Mathematics Education.
5. Problems, Resources, and Issues in Mathematics Undergraduate Studies.
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