

Radiation Physics and Chemistry 61 (2001) 437-438

Radiation Physics and Chemistry

www.elsevier.com/locate/radphyschem

A simple method for efficiency calibration of HPGe detectors in γ -spectrometric measurements

J.P. Pérez-Moreno, J.P. Bolívar*, R. García-Tenorio, E. San Miguel, J.L. Aguado, J.L. Mas, F. Vaca

Department of Fisica Aplicada, University of Huelva, EPS La Rabida, 21819-Palos, Huelva, Spain

Abstract

In this paper a simple, rapid and general method for γ -ray efficiency calibration of Ge detectors for environmental samples is presented. This method is based on the use of an active natural solid sample with several γ -emissions (in our case, ²²⁶Ra) as the calibrating matrix for determining the full energy peak efficiency (FEPE) ε_c vs γ -emission energy E_{γ} and the sample height *h* in a counting cylindrical geometry. The ²²⁶Ra activity concentration is determined by α -particle spectrometry, a method that has previously been validated. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Gamma-spectrometry; Efficiency-calibration; Self-absorption; Sample-height

1. Introduction

In γ -measurements of solid samples using Ge detectors, it is interesting to obtain the full energy peak effciency (FEPE) in the calibrating matrix ε_c curve as a function of the γ -emission energy E_{γ} and the sample height *h*, in the special case of a cylindrical geometry. The objective of this paper is to design a simple, rapid and general method to find the FEPE curve in the calibrating matrix as a function of E_{γ} and *h*. For this, the only requirement is an active solid calibrating matrix with several γ -emissions in the energy range of interest; in our case 150–1800 keV.

The FEPE in the calibration sample for a γ energy E_{γ} and height *h* is given by the expression $\varepsilon_c = \varepsilon'/a$, where $\varepsilon' = N/(P_{\gamma}TM)$; *a* is the activity concentration of a specified radionuclide; P_{γ} , the probability of γ -emission; *T*, the counting time; *M*, the mass of the sample; *N*, the net counts under the full energy peak; and ε' (which we refer to as the "normalised efficiency").

2. Present investigation

Obviously, ε' has the same functional relation on E_{γ} and h that ε has, since the activity concentration a is constant for every h, that is to say, the γ -emitter radionuclide is homogenously distributed in the matrix. Our method consisted of finding the function $\varepsilon' = f(E_{\gamma}, h)$ using a sample which contains a radionuclide with several γ -emissions in the energy interval of interest.

For the calibrating sample we used phosphate rock, containing mainly Ca₁₀(PO₄)₆F₂ and having an apparent density of 1.60 g cm⁻³. For this mineral we can suppose that ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi are in secular equilibrium if the counting is done at least one month after filling and sealing of the sample container, the latter being a cylinder of 6.5 mm diameter and variable sample height. The content of ²²⁶Ra in the mineral was measured by α -particle spectrometry using a method previously validated (Aguado et al., 1999), yielding an activity concentration $a = 1152 \pm 54$ Bq ²²⁶Ra/kg. γ -spectrometric measurements from 1 to 5.0 cm, in increments of 5 mm, were also done. A total of nine spectra were collected. The measurements were performed using a coaxial Ge detector XtRa model GX3518 (Canberra Industries, Meriden, USA), 38% relative efficiency and

^{*}Corresponding author. Tel.: +34-959017583; fax: +34-959017304.

E-mail addresses: bolivar@uhu.es (J.P. Bolívar).

oncertainties at a connucled level of 19, due to countings statistics and nong of parameters				
Radionuclide	¹⁵² Eu	¹³³ Ba	⁶⁰ Co	¹³⁷ Cs
Certified (Bq/kg)	1338 ± 36	1053 ± 51	620 ± 10	2025 ± 39
Our calibration (Bq/kg)	1262 ± 43	988 ± 49	674 ± 34	1988 ± 72

Table 1 Uncertainties at a confidence level of 1σ , due to countings statistics and fitting of parameters

shielded with 10 cm thick lead. For each energy, the best simple relation for ε' vs E_{γ} was an exponential function $\varepsilon' = \varepsilon'_o e^{bh}$, where the parameters ε_o' and *b* depend on the energy. An empirical energy-dependency relation for these parameters (ε'_o and *b*) was found. A reduced chi-square (χ^2_R) of around unity and a regression coefficients of higher than 0.99 were obtained for all fittings.

Including the parameter fittings in the previous equation, and noting that $\varepsilon_c = \varepsilon'/a$, we find

$$\varepsilon_{\rm c} = 18.08 E_{\gamma}^{-0.972} \exp(-0.417 h E_{\gamma}^{-0.138}).$$
 (1)

This expression relates the FEPE in the calibration sample with the γ -emission energy E_{γ} (keV) and its height *h* (in cm). This calibration was validated, including the necessary self-absorption corrections (Bolívar et al., 1996), via a certified aqueous calibration standard containing ¹⁵²Eu, ¹³⁷Cs, ¹³³Ba and ⁶⁰Co. The results are shown in Table 1.

References

- Aguado, J.L., Bolívar, J.P., García-Tenorio, R., 1999. ²²⁶Ra determination in phosphogypsum by alpha-particle spectrometry. Czech. J. Phys. 49, 439–444.
- Bolívar, J.P., García-Tenorio, R., García-León, M., 1996. A method for determination of counting efficiencies in γspectrometric measurements with HPGe detectors. Nucl. Instrum. Methods A. 382, 495–502.