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Introduction

The main purpose of this work is to present recent results obtained on the
existence of fixed points for nonexpansive mappings and orbit-nonexpansive
mappings in the general context of metric spaces. Additionally, our tech-
niques will allow us to deduce the existence of common fixed points for
groups of such mappings based on features of the closed balls of the metric
space. In order to do that, the concepts of normal structure and uniform
normal structure will be analyzed and extended from the Banach space
framework to the more general environment of metric spaces. Applications
to important families of metric spaces without linear structure will be dis-
played.

Fixed Point Theory is a wide field of Mathematics which has three ma-
jor branches, namely, Topological Fixed Point Theory, Metric Fixed Point
Theory and Discrete Fixed Point Theory. This work is focused on Metric
Fixed Point Theory which is a branch whose starting point is considered
to be the publishing of [4] by S. Banach. In this article we can see for the
first time the famous Banach’s Contraction Principle which states that every
contraction mapping from a complete metric space into itself has a unique
fixed point.

Studying the aforementioned Banach’s result leads us naturally to the
study of the extreme case where the Lipschitz constant is replaced by 1. Such
mappings are called nonexpansive mappings and there are many famous
results which guarantee the existence of fixed points of these mappings under
certain conditions, see for example [10],[23],[34] and [11].

The work is divided into three chapters which are subdivided into sec-
tions. Most of the non-original results are presented in Chapter 1. Some
non-original concepts and results are presented in the other chapters in or-
der to give more logical coherence to the text. We try to present references
and authorship to all such results.

As already mentioned, in Chapter 1 we present the basic concepts and
results that we believe are necessary for reading and understanding the other
chapters. It is in this chapter that we introduce most of the notation used
throughout the work. Whenever possible, we have tried to provide examples
and some of the historical context of what is presented. The chapter is
divided into six sections.
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Introduction

In the first section we introduce some basic definitions and general results
regarding metric spaces. In the second section we define the concept of fixed
point of a self-mapping and also what it means for a class of self-mappings
to have the fixed point property. Finally, we present some classes of self-
mappings which we will study in this work, the most important of them
being the class of nonexpansive mappings. In the third section we introduce
the concept of normal structure in the context of metric spaces and present
some examples in the context of Banach spaces. Then, we present in the
context of metric spaces a famous result by Kirk which states that on a
bounded metric space, normal structure and compactness of the family of
admissible sets imply the fixed point property for nonexpansive mappings.
The proof we present will give us a model for other proofs presented in
this work. We finish the section providing some examples in the context of
Banach spaces of sets which satisfy the requirements of Kirk’s theorem. In
the fourth section we introduce the concept of uniform normal structure in
the context of metric spaces. Even though every metric space with uniform
normal structure has normal structure, the study of this structure on its own
is justified by the fact that it is easier to work with. In the fifth section we
give a brief presentation of hyperconvex metric spaces which are a heavily
studied special case of metric spaces with uniform normal structure. In sixth
section we give a brief presentation of CAT(0) spaces which are another case
example of metric spaces with uniform normal structure. In the seventh
section we introduce the concept of uniform relative normal structure in the
context of metric spaces, a concept which we will use and extend in Chapter
2. We also present an equivalent characterization of this concept and state a
metric version of a theorem by Soardi which says that on a bounded metric
space, uniform relative normal structure and compactness of the family of
admissible sets imply the fixed point property for nonexpansive mappings.

In Chapter 2 and Chapter 3 we will present some recent results in Metric
Fixed Point Theory most of which can be found in the articles [19] and [20]
by Rafael Esṕınola Garćıa, Maŕıa Japón and myself.

Chapter 2 is divided into four sections. In the first section we make a
brief presentation of some sequence spaces which will be used in the following
sections. In the second section we present some subsets of c with the fixed
point property for nonexpansive mappings. Two of the examples we present
namely, Example 2.2.1 and Example 2.2.2 give a positive answer to a ques-
tion posed in [22] on whether it was possible to find a closed, bounded and
convex subset of (c, ‖·‖∞) which is non-weakly compact and has the fixed
point property for nonexpansive mappings without being hyperconvex. In
the third section we introduce the concept of (p, q)-uniform relative normal
structure which formally extends the concept of relative normal structure
presented in Chapter 1. We then show that on a bounded metric space,
(p, q)-uniform relative normal structure and compactness of the family of
admissible sets imply the fixed point property for nonexpansive mappings.
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Introduction

Moreover, we show that on a hyperconvex (M,d), taking an equivalent met-
ric close enough to d, leads to (p, q)-uniform relative normal structure. In
the fourth section we present some examples of sets with the fixed point
property for nonexpansive mappings which illustrate what we have built in
the previous section.

Chapter 3 is divided into three sections. In the first section we present
the concept of orbit of a self-mapping and the class of orbit-nonexpansive
mappings over a metric space. We then show some properties of this class of
mappings and present examples so the concepts introduced can be grasped
more easily. In the second section we introduce the concept of a family
of interlaced orbit-nonexpansive mappings and study how this concept to-
gether with normal structure and compactness of the family of admissible
sets leads to the existence of common fixed points for such families. We
also define what it means for a group of self-mappings to act on a metric
space. We then show that our fixed point result also applies to the class
of orbit-nonexpansive mappings and to a group of orbit-nonexpansive map-
pings acting on a metric space. In the third section we again study fixed
points of interlaced orbit-nonexpansive mappings but this time under the
assumption of (p, q)-uniform relative normal structure and compactness of
the family of admissible sets. In both Sections 2 and 3 we show that our
results extend previous results found in the literature. In the fourth and
final section, we present some open questions which arose from our research.
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Chapter 1

Preliminaries

In this chapter we will present some basic definitions and results which
we believe are necessary for the understanding of what will be presented
in the following chapters. The first two sections consist in introducing no-
tations, definitions and general results regarding metric spaces, classes of
self-mappings and fixed points of such mappings.

In the third and fourth sections we introduce the concepts of normal
structure and uniform normal structure in the context of metric spaces.
Kirk’s Theorem and its proof are presented in this context.

In the fifth and sixth section we give a brief presentations of hyperconvex
metric spaces and CAT(0) spaces.

Finally, in the seventh section we introduce the concept of uniform rel-
ative normal structure in the context of metric spaces.

1.1 Basic definitions and results

In what follows we will introduce some basic definitions and results which
will be used throughout this work.

Definition 1.1.1. Let (M,d) be a metric space, A a nonempty bounded
subset of M , x0 ∈M . We define:

D (x0, A) = sup
y∈A
{d (x0, y)};

r (A) = inf
x∈A
{D (x,A)};

diam (A) = sup {d (x, y) : x, y ∈ A} = sup
x∈A
{D (x,A)};

B (x0, r) = {y ∈M : d (x0, y) ≤ r};
B [A, r] =

⋂
x∈A

B (x, r) = {y ∈M : A ⊂ B (y, r)}.

We have that r (A) is called the Chebyshev radius of A while diam (A)
is called the diameter of A. Also, B (x0, r) is called the closed ball
centered at x0 of radius r.
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Preliminaries

The notation B [A, r] to denote the set
⋂
x∈A

B (x, r) was introduced in

[19] and, as we will see throughout this work, makes proofs and definitions
much clearer.

We will now present two lemmas which will be needed further. Their
proofs make use of many of the concepts we have defined above.

Lemma 1.1.1. Let (M,d) be a metric space and A and A′ be nonempty
bounded subsets of M . Then:

i) x0 ∈ B [A, r] if and only if D (x0, A) ≤ r;

ii) 0 < r ≤ r′ implies B [A, r] ⊂ B [A, r′];

iii) A ⊂ A′ implies B [A′, r] ⊂ B [A, r].

Proof: Let (M,d), A and A′ be as above

i) (=⇒) Given x0 ∈ B [A, r] then, x0 ∈ B (x, r) for all x ∈ A which
implies that d (x0, x) ≤ r for all x ∈ A and therefore, D (x0, A) =
sup
x∈A
{d (x0, x)} ≤ r.

(⇐=) Given x0 ∈ M such that D (x0, A) = sup
x∈A
{d (x0, x)} ≤ r then,

d (x0, x) ≤ r for all x ∈ A which implies that x0 ∈ B (x, r) for all x ∈ A
and therefore, x0 ∈ B [A, r].

ii) If 0 < r ≤ r′ then, for any x0 ∈ B [A, r] we have that x0 ∈ B (x, r) ⊂
B (x, r′) for all x ∈ A and therefore, x0 ∈ B [A, r′].

iii) If A ⊂ A′ then, for any x0 ∈ B [A′, r] we have that x0 ∈ B (x, r) for all
x ∈ A′. In particular, since A ⊂ A′, we have that x0 ∈ B (x, r) for all
x ∈ A which implies that x0 ∈ B [A, r]. Therefore, B [A′, r] ⊂ B [A, r].

�

Lemma 1.1.2. Let (M,d) be a metric space and A a nonempty bounded sub-

set of M . Then,
1

2
diam (A) ≤ r (A) ≤ diam (A). Moreover, if diam (A) > 0

and r (A) < diam (A) there exists 0 < r < diam (A) such that A∩B [A, r] 6=
∅.

Proof: Let (M,d) be a metric space and let A be a nonempty bounded
subset of M .

Fix z ∈ A. For any x, y ∈ A we have that

d (x, y) ≤ d (x, z) + d (z, y) ≤ D (z,A) +D (z,A) = 2D (z,A)
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which implies that

diam (A) = sup {d (x, y) : x, y ∈ A} ≤ 2D (z,A)

and therefore,
1

2
diam (A) ≤ D (z,A) ≤ diam (A).

Since z is an arbitrary element of A, it follows that for all z ∈ A we have
that

1

2
diam (A) ≤ D (z,A) ≤ diam (A)

which implies that

1

2
diam (A) ≤ inf

z∈A
{D (z,A)} = r (A) ≤ diam (A) .

Suppose now that diam (A) > 0 and r (A) < diam (A). Then, since 0 <
1

2
diam (A) ≤ r (A), we have that r (A) > 0.

Given x ∈ A, for any a ∈ A we have that

d (x, a) ≤ sup
a∈A
{d (x, a)} = D (x,A)

which implies that A ⊂ B (x,D (x,A)).
Then, since x is an arbitrary element ofA, we have thatA ⊂ B (x,D (x,A))

for all x ∈ A.
Now, since inf

x∈A
{D (x,A)} = r (A) < diam (A) there exists x0 ∈ A such

that D (x0, A) < diam (A). Moreover, since 0 < r (A) ≤ D (x0, A) we
have that 0 < D (x0, A) and therefore, taking r = D (x0, A) it follows that
A ⊂ B (x0, r) and 0 < r < diam (A) which implies that x0 ∈ A ∩B [A, r].

�
We will now introduce the concept of convexity structure which will allow

us, in some sense, to extend to metric spaces the concept of convexity used
in vector spaces. This concept was first introduced in [28] for general sets
and the definition we present for metric spaces is a bit different from the
original one.

Definition 1.1.2. Let (M,d) be a metric space. A nonempty family F of
subsets of M is said to be a convexity structure on (M,d) if it has the
following properties:

i) F is closed under intersections;

ii) F contains the closed balls of M .

Looking at property ii) above we can immediately see that being a con-
vexity structure on (M,d) depends on the metric.

9
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In the literature the concept of convexity structure is defined in many
different ways, all of them aiming to emulate the idea of convexity in a
given context. All definitions in the literature require property i) to hold.
In the original abstract definition presented in [28], property ii) is replaced
by requiring that ∅ and M belong to F . We will show below that, in the
cases which we will be interested in this work, the latter property follows
from i) and ii).

• If M has more than one point then, since every metric space is Haus-
dorff, by taking x, y ∈ M with x 6= y, there exists r > 0 such that
B (x, r) ∩B (y, r) = ∅ and therefore i) and ii) imply that ∅ ∈ F .

• If (M,d) is bounded then, M = B (x,diam (M)) for any x ∈ M and
therefore, if property ii) holds we have that M ∈ F .

In the following definition we introduce the convexity structure which
will be used the most in this work.

Definition 1.1.3. Let (M,d) be a metric space. A subset A of M is said
to be admissible if it is an intersection of closed balls of (M,d). The set of
admissible subsets of (M,d) is denoted by Ad (M).

It is easy to see that Ad (M) is a convexity structure on M . Also, since
any convexity structure F on M is closed under intersections and contains
the closed balls of M , it follows that F must contain Ad (M). Thus, Ad (M)
is the smallest family which defines a convexity structure on (M,d).

Moreover, given r > 0 and A a nonempty bounded subset of (M,d) then
B [A, r] ∈ Ad (M).

Whenever there is no risk of confusion, we will drop the subscript d and
simply write A (M).

Example 1.1.1. Let (X, ‖·‖) be a normed vector space and let τ be a topol-
ogy on X for which the closed balls of (X, ‖·‖) are τ -closed. Then, it is easy
to see that the family the family of τ -closed, bounded and convex subsets of
X forms a convexity structure.

Some important particular cases of the previous example which are heav-
ily used in the study of Fixed Point Theory in Banach spaces are listed
below.

• If τ is the topology induced by the norm, we get that the family of
closed (with respect to the norm), bounded and convex subsets of X
forms a convexity structure.

• If (X, ‖·‖) is a Banach space and τ is the weak topology or the weak*-
topology (in case of a dual Banach space).

10



Preliminaries

• If τ is the closed in measure topology on the Lebesgue space L1 [0, 1].

It is worth mentioning that sometimes, when we work with a normed
vector space (X, ‖·‖) (or any subset of it with the induced norm), instead of
saying that

(
X, d‖·‖

)
has a certain property, we will simply say that (X, ‖·‖)

has it.
Now, we will define a few concepts which will be needed in some proofs.

Definition 1.1.4. Let (M,d) be a metric space and let F be a family of
self-mappings on M we define

AF (M) = {A ∈ A (M) , A 6= ∅, T (A) ⊂ A for all T ∈ F} .

Given X ⊂M , we define

cov (X) =
⋂

X ⊂ A
A ∈ A (M)

A and covF (X) =
⋂

X ⊂ A
A ∈ AF (M)

A,

as, respectively, the admissible and F-admissible covers of X in M .

Since A (M), by definition, is closed under intersections, both hulls in
the previous definition are elements of A (M). Also, if F = {T} we will
write AT (M) instead of AF (M). In the following proposition we present
basic properties of the sets we defined above which will be used throughout
the text.

Proposition 1.1.1. Let (M,d) be a metric space, F a family of self-mappings
on M and X a nonempty subset of M . Then, we have that

i) X ⊂ cov (X) ⊂ covF (X);

ii) T (covF (X)) ⊂ covF (X) for all T ∈ F ;

iii) B [X, r] = B [cov (X) , r] for all r > 0;

iv) X ∈ A (M) if and only of X = cov (X).

Proof: Let (M,d), F and X be as above.

i) Since every element of the set {A ∈ A (M) : A ⊂ X} contains X, it
follows that the intersection of all such sets contain X and therefore,
X ⊂ cov (X).

Since every element of the set {AF (M) : A ⊂ X} is admissible and
contains X, it follows that each such set contains cov (X) which implies
that the intersection of all such sets contain cov (X) and therefore,
cov (X) ⊂ covF (X).

Hence, X ⊂ cov (X) ⊂ covF (X).

11
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ii) Let T ∈ F . For all L ∈ {AF (M) : A ⊂ X}, we have that L ∈ AF (M)
which implies that T (L) ⊂ L for all such L. Thus,

T (covF (X)) = T

 ⋂
X ⊂ A

A ∈ AF (M)

A

 ⊂ ⋂
X ⊂ A

A ∈ AF (M)

T (A) ⊂
⋂

X ⊂ A
A ∈ AF (M)

A = covF (X) .

iii) Let r > 0. By item i) we have that X ⊂ cov (X) which implies
that B [cov (X) , r] ⊂ B [X, r]. Thus, if B [X, r] = ∅ it follows that
B [cov (X) , r] = B [X, r].

Now, suppose that B [X, r] 6= ∅. Given z ∈ B [X, r] we have that
d (z, x) ≤ r for all x ∈ X which implies that X ⊂ B (z, r). Since
B (z, r) is an admissible set which contains X, it follows from the
definition of cov (X) that cov (X) ⊂ B (z, r).

Thus, d (z, y) ≤ r for all y ∈ cov (X) which implies that z ∈ B (y, r)
for all y ∈ cov (X) and therefore, z ∈ B [cov (X) , r].

Hence, B [X, r] ⊂ B [cov (X) , r] and then it follows that B [X, r] =
B [cov (X) , r].

iv) (=⇒) If X ∈ A (M) then, since X ⊂ X, it follows from the definition
of cov (X) that cov (X) ⊂ X. Thus, since we know by item i) that
X ⊂ cov (X) it follows that X = cov (X).

(⇐=) Since cov (X) ∈ A (M) for all X ⊂ M , it follows that if X =
cov (X) then, X ∈ A (M).

�
The following proposition tells us a simple way to write any admissible

set on a metric space.

Proposition 1.1.2. Let (M,d) be a metric space. Then, for every A ∈
A (M) we have that A =

⋂
x∈M

B (x,D (x,A)).

Proof: Given a fixed y ∈ A, for every x ∈ M we have that d (x, y) ≤
sup {d (x, z) : z ∈ A} = D (x,A) which implies that y ∈

⋂
x∈M

B (x,D (x,A)).

Thus, A ⊂
⋂
x∈M

B (x,D (x,A)). In particular,
⋂
x∈M

B (x,D (x,A)) 6= ∅.

Since A ∈ A (M) there exists a family of closed balls {B (xα, rα)}α∈Γ

such that A =
⋂
α∈Γ

B (xα, rα).

Given α ∈ Γ, since A ⊂ B (xα, rα), we have that d (xα, y) ≤ rα for all
y ∈ A which implies that D (xα, A) ≤ rα and therefore,
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⋂
x∈M

B (x,D (x,A)) ⊂ B (xα, D (xα, A)) ⊂ B (xα, rα) .

Hence,
⋂
x∈M

B (x,D (x,A)) ⊂
⋂
α∈Γ

B (xα, rα) = A which implies that

A =
⋂
x∈M

B (x,D (x,A)) .

�

Definition 1.1.5. Let M be a set. A family {Xλ}λ∈Γ of subsets of M is

said to have the finite intersection property if
⋂
λ∈Γf

Xλ 6= ∅ for all finite

Γf ⊂ Γ.

Definition 1.1.6. A family L of subsets of a metric space (M,d) is said to
be compact if every subset of it which has the finite intersection property
has nonempty intersection.

If in the previous definition we restrict ourselves to only taking countable
subsets of L with the finite intersection property then, we get the notion of
a countably compact family.

Example 1.1.2. It is a well known fact from general topology that a topo-
logical space is compact if and only if the family of its closed subsets is
compact.

Another well known result from general topology, tells us that every
compact metric space is complete. The next proposition tells us that a
similar result holds when we assume that the family of admissible sets is
compact.

Proposition 1.1.3. Let (M,d) be a metric space such that the family A (M)
is compact. Then (M,d) is complete.

Proof: Let (M,d) be as above and let (xn)n∈N be a Cauchy sequence in M .
If (xn)n∈N is eventually constant then it obviously converges.
Suppose that (xn)n∈N is not eventually constant. Since (xn)n∈N is a

Cauchy sequence, it follows that the set {d (xn, xm) : m,n ∈ N} is bounded.
Thus, for each n ∈ N the number rn = sup

m≥n
{d (xn, xm)} always exists and

also, since (xn)n∈N is not eventually constant we have that rn > 0 for all
n ∈ N.

Moreover, given n, n′ ∈ N with n ≤ n′ we have that

d (xn, xn′) ≤ sup
m≥n
{d (xn, xm)} = rn.

13
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Now, consider the family of closed balls {B (xn, rn)}n∈N.
Given {n1, . . . , nk} ⊂ N with ni < ni+1 for all 1 ≤ i ≤ k − 1, it follows

from what we have seen above that d (xni , xnk
) ≤ ri for all 1 ≤ i ≤ k which

gives us that xnk
∈

k⋂
i=1

B (xni , rni).

Thus, for any finite nonempty F ⊂ N we have that
⋂
n∈F

B (xn, rn) 6= ∅

which implies that {B (xn, rn)}n∈N has the finite intersection property.
Now, since every closed ball is in A (M) and A (M) is compact, it follows

that there exists x ∈
⋂
n∈N

B (xn, rn).

Let ε > 0. Since (xn)n∈N is a Cauchy sequence, there exists n0 ∈ N such

that d (xn, xm) <
ε

2
for all m,n ∈ N with n0 ≤ n ≤ m. Thus, given any

fixed n ≥ n0 we have that d (xn, xm) <
ε

2
for all m ≥ n which implies that

rn ≤
ε

2
< ε and therefore, rn < ε for all n ≥ n0. Since d (x, xn) < rn for all

n ∈ N we have that d (x, xn) < ε for all n ≥ n0. Therefore, lim
n→∞

xn = x.

Hence, (M,d) is complete.
�

Now, we will show that the compactness of the family of admissible sets
of a metric space is inherited by the family of admissible sets of an admissible
subset of the metric space.

Proposition 1.1.4. Let (M,d) be a metric space, let X be a nonempty ele-
ment of A (M) and consider the metric space

(
X, d|X

)
. If A (M) is compact

then, A (X) is compact.

Proof: Let (M,d) and X be as above and suppose that A (M) is compact.
Observe first that given any x ∈ X and r > 0, the closed ball in X

centered at x of radius r is the set X ∩B (x, r).
Let {Ai}i∈I be a family of elements of A (X) which has the finite inter-

section property.
For each i ∈ I since Ai ∈ A (X), it follows from Proposition 1.1.2 that

Ai =
⋂
x∈X

(X ∩B (x,D (x,Ai))) = X ∩
⋂
x∈X

B (x,D (x,Ai)) .

Now, since
⋂
x∈X

B (x,D (x,Ai)) and X are elements of A (M) which is a con-

vexity structure, we have that Ai ∈ A (M) for all i ∈ I and therefore, {Ai}i∈I
is a family of elements of A (M) which has finite intersection property.

Thus, since A (M) is compact we have that⋂
i∈I

Ai =
⋂
i∈I

(
X ∩

⋂
x∈X

B (x,D (x,Ai))

)
= X∩

⋂
i∈I

(⋂
x∈X

B (x,D (x,Ai))

)
6= ∅.

14
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Hence, A (X) is compact.
�

We finish this section by presenting a lemma which will be invoked several
times in this work.

Lemma 1.1.3. Let (M,d) be a bounded metric with more than one element
space such that A (M) is compact and let F be a family of self-mappings on
M . Then, AF (M) has a minimal element with respect to set inclusion.

Proof: Let (M,d), A (M) and F be as above and recall that

AF (M) = {A ∈ A (M) , A 6= ∅, T (A) ⊂ A for all T ∈ F} .

For every T ∈ F we have that T (M) ⊂ M . Since M is bounded with
more than one element, we have that its diameter is a positive real number
and then, given any x ∈ M we have that M = B (x, diam (M)). Thus,
M is a closed ball in M which tells us that M ∈ A (M) and therefore,
AF (M) 6= ∅.

Now, consider the inclusion partial order over AF (M).
Let C = {Aα}α∈Γ be a nonempty totally ordered subset of AF (M).

Then, given a nonempty finite {Aα1 , . . . , Aαn} ⊂ C there exists 1 ≤ i0 ≤ n

such that Aαi0
⊂ Aαi for all 1 ≤ i ≤ n which implies that Aαi0

⊂
n⋂
i=1

Aαi

(actually, the two sets are equal). Since Aαi0
∈ AF (M) we have that

Aαi0
6= ∅ and therefore,

n⋂
i=1

Aγi 6= ∅.

Thus,
⋂
α∈Γf

Aα 6= ∅ for all Γf ⊂ Γ finite and nonempty, that is, C has the

finite intersection property.
Now, since A (M) is compact and C ⊂ AF (M) ⊂ A (M), it follows that⋂

α∈Γ

Aα 6= ∅.

Finally, given y ∈ T

(⋂
α∈Γ

Aα

)
, there exists x ∈

⋂
α∈Γ

Aα such that T (x) =

y. Then, since x ∈ Aα and T (Aα) ⊂ Aα for all α ∈ Γ we have that y =

T (x) ∈ Aα for all α ∈ Γ, that is, y ∈
⋂
α∈Γ

Aα. Thus, T

(⋂
α∈Γ

Aα

)
⊂
⋂
α∈Γ

Aα

and therefore,
⋂
α∈Γ

Aα ∈ AF (M).

Hence, any nonempty totally ordered subset of AF (M) has a lower
bound in AF (M) and therefore it follows from Zorn’s lemma that AF (M)
has a minimal element.

�
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1.2 Fixed points and fixed point property

In this section we present the main concepts around which this work
revolves, namely, the concepts of fixed point of a self-mapping and the fixed
point property.

Definition 1.2.1. Let X be a nonempty set and T : X → X a mapping.
We say that x ∈ X is a fixed point of T if Tx = x. The set of all fixed
points of T will be denoted by Fix (T ).

In the following we present a class of mappings each of which has at least
one fixed point.

Example 1.2.1. Let X be a vector space whose zero vector is 0. It is known
from Linear Algebra that for any given linear mapping T : X → X we have
that T (0) = 0 which gives us that 0 is a fixed point of T .

Observe that in the example above, 0 is a common fixed point of the
class of linear mappings from X into X. We will study common fixed points
of some other classes of mappings in Chapter 3.

Next we present a very simple example of a mapping without fixed points.

Example 1.2.2. Consider the mapping T : R→ R given by T (x) = x2 + 1.
We have that T has no fixed points since the equation x2 +1 = x has no real
solutions.

Now, we will introduce some classes of mappings which we will be inter-
ested in this work. We will also give a bit of historical context.

Definition 1.2.2. Let (M,dM ) and (N, dN ) be metric spaces. A mapping
T : M → N is said to be lipschitzian if there exists k ≥ 0 such that
dN (Tx, Ty) ≤ kdM (x, y) for all x, y ∈ M . The smallest k for which the
previous inequality holds is called the Lipschitz constant of T and for this k,
we say that T is k-lipschitzian. Moreover, if T is k-lipschitzian with k < 1
then T is said to be a contraction and if dN (Tx, Ty) = dM (x, y) for all
x, y ∈M , T is called an isometry.

In [4] Banach presented his fixed point theorem which we state below.

Theorem 1.2.1 (Banach). Let (M,d) be a complete metric space and let
T : M → M be a contraction mapping. Then, T has a unique fixed point
xT . Moreover, given any x0 ∈M the sequence (Tnx0)n∈N converges to xT .

The previous theorem, also known in the literature as Banach’s Contrac-
tion Principle, is really amazing since it guarantees not only the existence
but also the uniqueness of fixed points of contraction self-mappings on a com-
plete metric. Also, it led to further studies of fixed points of self-mappings
giving rise to what is known today as Metric Fixed Point Theory.
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After Banach’s result was presented, mathematicians started to study
other classes of mappings in order to see if they could obtain similar re-
sults, this led to the study of the class of nonexpansive mappings which we
introduce below.

Definition 1.2.3. Let (M,dM ) and (N, dN ) be metric spaces. A mapping
T : M → N is said to be nonexpansive if dN (Tx, Ty) ≤ dM (x, y) for all
x, y ∈M .

It is important to mention that in this work, whenever we talk about a
self-mapping, we mean a mapping T : (M,d) → (M,d), that is, we always
consider the same metric on the domain and codomain of T . Although the
two previous definitions were presented in the most general form, in this
work we will only deal with self-mappings.

We can immediately see that contraction mappings and isometries are
nonexpansive mappings. The class of nonexpansive mappings will be the
most important class studied in this work and we will present some exten-
sions of it in Chapter 3.

The next two examples show that, unlike contraction mappings, general
nonexpansive mappings defined on complete metrics spaces do not always
have fixed points. Our examples will be defined respectively over Rn and
[1,+∞) with their usual metrics.

Example 1.2.3. Consider the normed space (Rn, ‖·‖2) where ‖·‖2 is the
euclidean norm. Let x0 be a nonzero vector of Rn and consider the mapping
Tx0 : Rn → Rn defined by Tx0x = x+ x0 for all x ∈ Rn. For any x, y ∈ Rn
we have that

‖Tx0x− Tx0y‖2 = ‖x+ x0 − (y + x0)‖2 = ‖x+ x0 − y − x0‖2 = ‖x− y‖2
which tells us that Tx0 is an isometry and therefore, a nonexpansive mapping.

Now, observe that since x0 is not the zero vector, the equation x0 +x = x
has no solution in Rn which implies that Tx0 has no fixed points.

Example 1.2.4. Consider the metric space ([1,+∞) , |·|) where |·| is the
usual norm on R and consider the mapping T : [1,+∞) → [1,+∞) defined

by Tx = x +
1

x
for all x ∈ [1,+∞). For any x, y ∈ [1,+∞) with x 6= y we

have that 1 < xy which implies that

|Tx− Ty| =
∣∣∣∣x+

1

x
−
(
y +

1

y

)∣∣∣∣ =

∣∣∣∣x− y − x− y
xy

∣∣∣∣ =∣∣∣∣(x− y)

(
1− 1

xy

)∣∣∣∣ = |x− y|
∣∣∣∣1− 1

xy

∣∣∣∣ = |x− y|
(

1− 1

xy

)
< |x− y| .

and therefore, not only we obtain that T is a nonexpansive mapping but
we also have that the inequality is strict whenever x 6= y.

Now, observe the equation x + 1
x = x has no solution in [1,+∞) which

implies that T has no fixed points.
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A nonexpansive mapping satisfying the strict inequality whenever x 6= y
as in the previous example is called a weak contractive mapping.

As we mentioned earlier, Theorem 1.2.1 is an amazing result and the
next example gives us a glimpse of its power.

Example 1.2.5. Let λ 6= 0, K : [a, b] × [a, b] → R and h : [a, b] → R
continuous functions and consider the following integro-differential equation

f (x) = h (x) + λ

∫ b

a
K (x, y) f (y) dy

which is called a Fredholm integral equation of second kind.

If we consider the metric on C [a, b] given by d (f, g) = sup
x∈[a,b]

|f (x)− g (x)|

then, we know from Analysis that (C [a, b] , d) is a complete metric space and
therefore, if we define the operator T : (C [a, b] , d)→ (C [a, b] , d) by

(Tf) (x) = h (x) + λ

∫ b

a
K (x, y) f (y) dy,

we can write the Fredholm equation above as Tf = f . Thus, f is a solution
of the Fredholm equation if and only if f is a fixed point of T .

Now, let M = sup
(x,y)∈[a,b]×[a,b]

|K (x, y)| and observe that for any f, g ∈

C [a, b] we have that

d ((Tf) , (Tg)) = sup
x∈[a,b]

|(Tf) (x)− (Tg) (x)| =

sup
x∈[a,b]

∣∣∣∣h (x) + λ

∫ b

a
K (x, y) f (y) dy −

(
h (x) + λ

∫ b

a
K (x, y) g (y) dy

)∣∣∣∣ =

sup
x∈[a,b]

∣∣∣∣λ∫ b

a
K (x, y) f (y) dy − λ

∫ b

a
K (x, y) g (y) dy

∣∣∣∣ =

sup
x∈[a,b]

|λ|
∣∣∣∣∫ b

a
K (x, y) (f (y)− g (y)) dy

∣∣∣∣ ≤
|λ| sup

x∈[a,b]

∫ b

a
|K (x, y)| |f (y)− g (y)| dy ≤

|λ|Md (d, f)

∫ b

a
1dy = |λ|M (b− a) d (f, g) .

Hence, if |λ| < 1

M (b− a)
we have that T is a contraction mapping

on (C [a, b] , d) and then it follows from Theorem 1.2.1 that the Fredholm
integral equation above has a unique solution on (C [a, b] , d). Moreover, if
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we take any f0 ∈ C [a, b], the sequence (Tnf0)n∈N converges to the solution
of the equation and therefore, we know (at least theoretically) how to find
the solution of the equation.

Once it was established that Theorem 1.2.1 does not work for nonex-
pansive mappings it became clear that it was necessary to study which
conditions we need to impose on the metric space in order to guarantee the
existence of fixed points for nonexpansive. The first result in this direction
was presented by Browder in [10] where he showed that nonexpansive self-
mappings defined on a bounded, closed, convex subset of a Hilbert space
have fixed points. Improvements of Browder’s result were presented in that
same year assuming weaker conditions, one of this results (Kirk’s Theorem)
will be studied and extended in this work.

Definition 1.2.4. Let C be a class of self-mappings on a metric space
(M,d). We say that (M,d) has the fixed point property (FPP for short)
for the elements of C if every T ∈ C has a fixed point.

Example 1.2.6. If we take a complete metric space (M,d) and let

C = {T : M →M | T is a contraction} ,

then what Banach’s result tells us is that (M,d) has the FPP for the
elements of C.

Two interesting questions arise from what we have seen above, namely:

• Given a class C of self-mappings on a metric space (M,d), is there any
condition that we can impose on (M,d) in order to guarantee that it
has the FPP for the elements of C?

• Given a metric space (M,d) satisfying some condition(s), what classes
of self-mappings on (M,d) will have the FPP?

For example, in Banach’s result we only ask the metric space to be
complete in order to get the FPP for the class of contraction mappings. In
this work we will explore both these questions.

1.3 Normal structure

The concept of normal structure was first introduced by Brodskĭi and
Mil’man in [9] to study fixed point of isometries. In [34] Kirk used this
structure to study fixed points of nonexpansive mappings in reflexive Banach
spaces. The concept was further extended to the metric space context by
Kijima and Takahashi in [32] where they also extended Kirk’s result to this
context.
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Definition 1.3.1. A metric space (M,d) is said to have normal structure
if for every A ∈ A (M) with 0 < diam (A) we have that r (A) < diam (A).

Observe that given a metric space (M,d) and a convexity structure F
on it, since A (M) ⊂ F , if for every A ∈ F with 0 < diam (A) we have that
r (A) < diam (A) then, Definition 1.3.1 is satisfied and therefore, (M,d)
already has normal structure.

When working on a Banach space (X, ‖·‖) and considering the metric
induced by the norm, one usually replaces A (X) in Definition 1.1 by the
family of closed, bounded and convex subsets of (X, ‖·‖) and when (X, ‖·‖)
is said to have normal structure this is what is meant. By applying the
same idea to the family of weakly compact (weak*-compact, in the case
of a dual Banach space) and convex subsets of X when endowed with the
weak topology (weak*-topology) we obtain what is called weak normal
structure.

Example 1.3.1. It follows from Theorem 4.1 of [6] that every uniformly
convex Banach space has normal structure.

The following classes of spaces are known to be uniformly convex Banach
spaces (see [5, Part 3, Chapter II]) and therefore have normal structure:

• Hilbert spaces.

• Closed subspaces of a uniformly convex Banach space.

• Lp (X,σ, µ) (and therefore, `p) for 1 < p < +∞.

Since the previous example only dealt with reflexive Banach spaces we
now present examples of nonreflexive spaces with normal structure.

Example 1.3.2. The space `1 (seen as the dual space of c0) is a Banach
space with weak normal structure.

Example 1.3.3. The space L1 [0, 1] with the convexity structure formed by
the sets which are convex and compact in measure has normal structure.

Now, we will show that normal structure is inherited by admissible sets
with positive diameter.

Proposition 1.3.1. Let (M,d) be a metric space which has normal struc-
ture. Given any X ∈ A (M) such that diam (X) > 0, we have that

(
X, d|X

)
has normal structure.

Proof: Let (M,d) be as above, let X ∈ A (M) such that diam (X) > 0 and
consider the metric space

(
X, d|X

)
.
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If we take A ∈ A (X) with diam (A) > 0 and proceed as in the proof
of Proposition 1.1.4, we obtain that A ∈ A (M) and then, since (M,d) has
normal structure, we have that r (A) < diam (A).

Thus, since r (A) and diam (A) are intrinsic to the set A (with respect
to the metric d), it follows that

(
X, d|X

)
has normal structure.

�
The following proposition gives us a characterization of normal structure

which makes use of the notation B [A, r]. This characterization is the one
we will use throughout this work since it makes the study of extensions of
the concept easier.

Proposition 1.3.2. A metric space (M,d) has normal structure if and only
if for each A ∈ A (M) with 0 < diam (A) there exists 0 < r < diam (A) such
that

A ∩B [A, r] 6= ∅.

Proof: Let (M,d) be a metric space.
(=⇒) If (M,d) has normal structure then, given A ∈ A (M) with 0 <
diam (A) we have that r (A) < diam (A) and therefore, it follows from
Lemma 1.1.2 that there exists 0 < r < diam (A) such that A ∩B [A, r] 6= ∅.

(⇐=) Suppose that for each A ∈ A (M) with 0 < diam (A) there exists
0 < r < diam (A) such that A ∩B [A, r] 6= ∅.

Let A ∈ A (M) with 0 < diam (A). Then, there exists xA and 0 < rA <
diam (A) such that xA ∈ A∩B [A, r] which implies that d (xA, x) ≤ r for all
x ∈ A and therefore, D (xA, A) = sup {d (xA, x) : x ∈ A} ≤ r.

Hence, r (A) = inf {D (x,A) : x ∈ A} ≤ D (xA, A) ≤ rA < diam (A)
and then, since A was an arbitrary element of A (M) with 0 < diam (A)
it follows that r (A) < diam (A) for any such set and therefore, (M,d) has
normal structure.

�
In the following theorem we can see that when some conditions are im-

posed on a metric space, we obtain the FPP for the class of nonexpansive
mappings.

Theorem 1.3.1 (Kirk’s Theorem). Let (M,d) be a bounded metric space
such that which has normal structure and such that A (M) is compact. Then,
(M,d) has the FPP for nonexpansive mappings.

Proof: Let (M,d) be as above and let T : M → M be a nonexpansive
mapping.

Since A (M) is compact, it follows from Lemma 1.1.3 that we can take
a minimal element A0 of AT (M) with respect to inclusion.

Since T (A0) ⊂ A0 and A0 ∈ A (M) we have that cov (T (A0)) ⊂ A0

which gives us that T (cov (T (A0))) ⊂ T (A0) ⊂ cov (T (A0)) and therefore,
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cov (T (A0)) ∈ AT (M). Thus, it follows from the minimality of A0 that
A0 = cov (T (A0)).

Since A0 6= ∅, there exists x0 ∈ A0. We affirm that A0 = {x0}.
Suppose that A0 has more than one element. Then, it follows that

0 < diam (A0) and therefore, since (M,d) has normal structure, there exists
0 < r < diam (A0) such that A0 ∩B [A0, r] 6= ∅.

Now, take a0 ∈ A0 ∩B [A0, r].
Since a0 ∈ B [A0, r] we have that d (a0, a) ≤ r for all a ∈ A0 and then

since T is nonexpansive, it follows that d (Ta0, Ta) ≤ d (a0, a) ≤ r for all
a ∈ A0. Thus, T (A0) ⊂ B (Ta0, r).

SinceB (Ta0, r) ∈ A (M) it follows thatA0 = cov (T (A0)) ⊂ B (Ta0, r)which
implies that d (Ta0, a) ≤ r for all a ∈ A0 and therefore, Ta0 ∈ B [A0, r].

Thus, since Ta0 ∈ A0 we have that Ta0 ∈ A0 ∩ B [A0, r] and then since
a0 was an arbitrary element of A0 ∩B [A0, r], we have that

T (A0 ∩B [A0, r]) ⊂ A0 ∩B [A0, r] .

Therefore, A0 ∩B [A0, r] ∈ AT (M).
Now, observe that given x, y ∈ A0 ∩ B [A0, r], since x ∈ A0 and y ∈

B [A0, r] we have that d (x, y) ≤ r < diam (A0) which implies that

diam (A0 ∩B [A0, r]) < diam (A0)

and therefore, A0 ∩B [A0, r] is a proper subset of A0 which contradicts the
minimality of A0.

Hence, A0 = {x0} for some x0 ∈M and therefore, since T (A0) ⊂ A0 we
have that x0 is a fixed point of T .

Thus, since T : M → M was an arbitrary nonexpansive mapping, we
have that (M,d) has the FPP for nonexpansive mappings.

�
It is worth mentioning that Kirk showed in [35] that the compactness of

A (M) can be replaced by countably compactness in the previous theorem.
As examples of metric spaces satisfying the requirements of Theorem

1.3.1 we can mention the following:

• Closed bounded and convex subsets of a Banach space.

• Weak*-compact and convex subsets of `1.

• Convex and compact in measure subsets of L1 [0, 1].

1.4 Uniform normal structure

The concept of Uniform normal structure was first introduced by Gille-
spie and Williams in [24]. It is a structure which implies uniform structure
and is widely explored and applied in metric fixed point theory since it is
easier to handle than plain uniform structure.
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Definition 1.4.1. A metric space (M,d) is said to have uniform normal
structure if there exists some c ∈ (0, 1) such that r (A) ≤ c · diam (A)
for every A ∈ A (M) with 0 < diam (A). When we need to emphasize the
constant c, we say that (M,d) has c-uniform normal structure.

The next proposition which can be found in [2], tells us that finite di-
mensional normed spaces have uniform normal structure. We believe it is
worth presenting the proof of the proposition here since it uses several con-
cepts presented in this chapter and also because it is a nice application of
Helly’s Theorem which we state before the proposition.

Theorem 1.4.1 (Helly’s Theorem). Let (X, ‖·‖) be a normed space of di-
mension n and consider a finite collection A1, . . . , Am of convex subsets of
X where, m ≥ n + 1. If the intersection of every n + 1 of these sets is

nonempty, then

m⋂
i=1

Ai 6= ∅.

Proposition 1.4.1. Let (X, ‖·‖) be a normed space of dimension n. Then,(
X, d‖·‖

)
has

n

n+ 1
−uniform normal structure.

Proof: Let A be an admissible subset of
(
X, d‖·‖

)
such that 0 < diam (A).

It follows from Lemma 1.1.2 that 0 < r (A).
Let 0 < r < r (A).
Observe that A ∩ B [A, r] = ∅ because if this were not the case, there

would exist x ∈ A such that ‖x− a‖ ≤ r for all a ∈ A which would imply
D (x,A) ≤ r contradicting the fact that r (A) ≤ D (x,A). Thus, it follows
from Helly’s theorem that there exists x1, . . . , xn+1 in A such that

n+1⋂
i=1

B (xi, r) ∩A = ∅.

Now, since A is admissible, we have that it is convex we which implies

that x =
1

n+ 1

n∑
i=1

xn ∈ A. Then, there exists 1 ≤ j ≤ n + 1 such that

r < ‖x− xj‖. We have also that

‖x− xj‖ =

∥∥∥∥∥ 1

n+ 1

n+1∑
i=1

xi − xj

∥∥∥∥∥ =

∥∥∥∥∥ 1

n+ 1

n+1∑
i=1

xi −
1

n+ 1
(n+ 1)xj

∥∥∥∥∥ =

∥∥∥∥∥ 1

n+ 1

(
n+1∑
i=1

xi − (n+ 1)xj

)∥∥∥∥∥ =
1

n+ 1

∥∥∥∥∥
n+1∑
i=1

xi − (n+ 1)xj

∥∥∥∥∥ =
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1

n+ 1

∥∥∥∥∥∥∥∥
n+1∑
i = 1
i 6= j

(xi − xj)

∥∥∥∥∥∥∥∥ ≤
1

n+ 1

n+1∑
i = 1
i 6= j

‖xi − xj‖ ≤

1

n+ 1

n max
1 ≤ i ≤ n + 1

i 6= j

‖xi − xj‖

 ≤ n

n+ 1
diam (A)

which gives us that r <
n

n+ 1
diam (A). Thus, r <

n

n+ 1
diam (A) for all

0 < r < r (A) and therefore, r (A) ≤ n

n+ 1
diam (A).

Hence, r (A) ≤ n

n+ 1
diam (A) for all A ∈ A (X) subset of

(
X, d‖·‖

)
with

0 < diam (A) and therefore,
(
X, d‖·‖

)
has

n

n+ 1
−uniform normal structure.

�

Proposition 1.4.2. A metric space (M,d) has c-uniform normal structure
if and only if for each A ∈ A (M) with 0 < diam (A) we have that

A ∩B [A, c · diam (A)] 6= ∅.

Proof: Let (M,d) be a metric space.
(=⇒) Suppose (M,d) has c-uniform normal structure. Then, given A ∈
A (M) with 0 < diam (A) we have that r (A) = inf {D (x,A) : x ∈ A} ≤
c · diam (A) which implies that there exists xA ∈ A such that D (xA, A) =
sup {d (xA, x) : x ∈ A} ≤ c ·diam (A) and therefore, xA ∈ B [A, c · diam (A)].

Hence, A∩B [A, c · diam (A)] 6= ∅ and then, since A was an arbitrary el-
ement of A (M) with 0 < diam (A) it follows that A∩B [A, c · diam (A)] 6= ∅
for any such set.

(⇐=) Suppose that for each A ∈ A (M) with 0 < diam (A) we have that
A ∩B [A, c · diam (A)] 6= ∅.

Let A ∈ A (M) with 0 < diam (A) and take xA ∈ A∩B [A, c · diam (A)].
Then, we have that d (xA, x) ≤ c · diam (A) for all x ∈ A and therefore,
D (xA, A) = sup {d (xA, x) : x ∈ A} ≤ c · diam (A).

Hence, r (A) = inf {D (x,A) : x ∈ A} ≤ D (xA, A) ≤ c · diam (A) and
then, since A was an arbitrary element of A (M) with 0 < diam (A) it
follows that r (A) ≤ c · diam (A) for any such set and therefore, (M,d) has
c-uniform normal structure.

�
As we have seen in Proposition 1.1.3, given a metric space (M,d), the

compactness of A (M) implies the completeness of (M,d). It is worth men-
tioning that Khamsi showed in [30] that if a complete metric space (M,d)
has uniform normal structure then, A (M) is countably compact. Kulesza
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and Lim showed in [36] that under the same hypotheses, compactness and
countably compactness of A (M) are equivalent. The results of Khamsi,
Kulesza and Lim toghether result in the following lemma.

Lemma 1.4.1. Let (M,d) be a bounded complete metric space with uniform
normal structure. Then, A (M) is compact.

Also, Theorem 1.3.1 and Lemma 1.4.1 imply the following theorem which
was first stated in this form by Khamsi in [30].

Theorem 1.4.2. Let (M,d) be a bounded complete metric space. If (M,d)
has uniform normal structure then, it has the FPP for nonexpansive map-
pings.

We will now state a few definitions and results which will give us a tool
to construct sets with uniform normal structure from a family of sets with
uniform normal structure.

Definition 1.4.2. Let {(Mi, di)}1≤i≤n be a family of metric spaces and let

M =
n∏
i=1

Mi. We define d∞ : M ×M → R by d∞ (x, y) = max
1≤i≤n

{di (xi, yi)}

for all x = (x1, . . . , xn) and y = (x1, . . . , xn) ∈M . It can be shown that d∞
is a metric on M .

Lemma 1.4.2. Let {(Mi, di)}1≤i≤n be a family of metric spaces and let
(M,d∞) be as in Definition 1.4.2. For each 1 ≤ i ≤ n let Ai be a nonempty

bounded subset of Mi and let A =
n∏
i=1

Ai. Then we have that:

(i) diam (A) = max
1≤i≤n

{diam (Ai)} which gives us in particular that A is

bounded subset of M ;

(ii) for all x = (x1, . . . , xn) ∈ A, D (x,A) = max
1≤i≤n

{D (xi, Ai)};

(iii) r (A) = max
1≤i≤n

{r (Ai)}.

(iv) Also, A (M) =

{
n∏
i=1

Ai : Ai ∈ A (Mi)

}
.

Proposition 1.4.3. Let {(Mi, di)}1≤i≤n be a family of metric spaces such
that (Mi, di) has ci-uniform normal structure for each 1 ≤ i ≤ n, let c =
max

1≤i≤n
{ci} and let (M,d∞) be as in Definition 1.4.2. Then, (M,d∞) has

c-uniform normal structure.
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Proof: Let {(Mi, di)}1≤i≤n, (M,d∞) and c be as above.
Given A ∈ A (M) with 0 < diam (A), for each 1 ≤ i ≤ n there exists

Ai ∈ A (Mi) such that A =
n∏
i=1

Ai.

By Lemma 1.4.2 we have that

diam (Ai) = max
1≤i≤n

{diam (Ai)} and r (A) = max
1≤i≤n

{r (Ai)} .

For each 1 ≤ i ≤ n, since (Mi, di) has ci-uniform normal structure we
have that r (Ai) ≤ ci · diam (Ai) and then it follows that given 1 ≤ i ≤ n we
have that

r (Ai) ≤ max
1≤j≤n

{cj} diam (Ai) ≤ max
1≤j≤n

{cj} max
1≤j≤n

{r (Aj)} = c · diam (A)

and therefore, r (A) ≤ c · diam (A).
Hence, for all A ∈ A (M) with 0 < diam (A) we have that r (A) ≤

c · diam (A) and therefore, (M,d∞) has c−uniform normal structure.
�

Definition 1.4.2, Lemma 1.4.2 and Proposition 1.4.3, with proper adap-
tations, have infinite versions as we can see for example in Proposition 12
of [30].

Using Propositions 1.4.1 and 1.4.3 we can present the following example.

Example 1.4.1. Let (X1, ‖·‖1) and (X2, ‖·‖2) be finite dimensional normed
spaces of dimensions n1 and n2 respectively. Then (X1 ⊕X2, ‖·‖∞) has

c−uniform normal structure where, c = max

{
n1

n1 + 1
,

n2

n2 + 1

}
and for each

(x1, x2) ∈ X1 ⊕X2, ‖(x1, x2)‖∞ = max {‖x1‖1 , ‖x2‖2}.

It is easy to see that Example 1.4.1 can be easily extended to any finite
direct sum.

1.5 Hyperconvex spaces

The concept of hyperconvexity was introduced in [3] by Aronszajn and
Panitchpakdi in an attempt to extend the Hanh-Banach theorem to the
context of metric spaces. Since its first appearance, hyperconvex spaces
have been shown to be very useful in Metric Fixed Point theory. In this
section we will make a brief presentation of those spaces with emphasis in
the properties we will use in further chapters. A very thorough exposition
on the subject can be found in [16].

Definition 1.5.1. A metric space (M,d) is said to be hyperconvex if for
every family {B (xα, rα)}α∈Γ of closed balls in M for which d (xα, xβ) ≤
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rα + rβ for all α, β ∈ Γ, it follows that
⋂
α∈Γ

B (xα, rα) 6= ∅.

As our first example, we will show that the real line is a hyperconvex
space.

Example 1.5.1. The metric space (R, |·|) is hyperconvex.
To see why this is true, let {Iα}α∈Γ = {[xα − rα, xα + rα]}α∈Γ be a family

of closed nondegenerate intervals such that |xα − xβ| ≤ rα+rβ for all α, β ∈
Γ and consider the sets A = {xα − rα : α ∈ Γ} and B = {xα + rα : α ∈ Γ}.

It is easy to see that xβ − rβ ≤ xα + rα for all α, β ∈ Γ which implies
that A is bounded above and B is bounded below and therefore, there exist
u = supA and v = inf B.

Given x ∈ [u, v] we have that u ≤ x ≤ v which gives us that a ≤ x ≤ b
for all a ∈ A and b ∈ B and therefore, x ∈ Iα for all α ∈ Γ. Thus,

[u, v] ⊂
⋂
α∈Γ

Iα and in particular,
⋂
α∈Γ

Iα 6= ∅. This already tells us that

(R, |·|) is a hyperconvex metric space.

Moreover, given x ∈
⋂
α∈Γ

Iα we have that x ∈ Iα for all α ∈ Γ which gives

us that xα−rα ≤ x ≤ xα−rα for all α ∈ Γ and therefore, supA ≤ x ≤ inf B,

that is, x ∈ [u, v]. Thus,
⋂
α∈Γ

Iα ⊂ [u, v] which implies that
⋂
α∈Γ

Iα = [u, v].

In what follows we present a simple example of a metric space which is
not hyperconvex.

Example 1.5.2. The metric space
(
R2, d2

)
where d2 is the euclidean metric,

is not hyperconvex as it can be seen from the picture below, where x1 =
(−1, 1) , x2 = (1, 1) and x3 =

(
0, 1 +

√
3
)
.

The previous example can be extended to show that (Rn, d2) is not hy-
perconvex.

We will now state some results which will give us tools to identify hy-
perconvex spaces and also construct hyperconvex spaces from a family of
hyperconvex spaces. The proofs of the results can all be found in [16].
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Proposition 1.5.1. Let {(Mi, di)}1≤i≤n be a family of hyperconvex spaces
and let (M,d∞) be as in Definition 1.4.2. Then, (M,d∞) is a hypeconvex
space.

Proposition 1.5.2. Let {(Mα, dα)}α∈Γ be a family of hyperconvex spaces

and let M =
∏
α∈Γ

Mα. Fix a = (aα)α∈Γ ∈M and define

M =

{
(xα)α∈Γ ∈M : sup

α∈Γ
dα (xα, aα) < +∞

}
.

Then, (M,d∞) is a hyperconvex metric space where d∞ is defined by
d∞ ((xα) , (yα)) = sup

α∈Γ
{dα (xα, yα)} for all (xα)α∈Γ , (yα)α∈Γ ∈M .

Proposition 1.5.3. Let (M,d) be a hyperconvex space. If A is a nonempty
admissible subset of M then,

(
A, d|A

)
is a hyperconvex metric subspace of

(M,d).

Example 1.5.3. It follows from Example 1.5.1 and Proposition 1.5.1 that
the metric space (Rn, ‖·‖∞) is hyperconvex, where

‖(x1, . . . , xn)‖∞ = max
1≤i≤n

{|xi|} .

Comparing the previous example with Example 1.5.2 we can see that
being a hyperconvex metric space depends on the metric we defined on the
set.

The next example and the proposition that follows it (whose proof can
also be found in [16]) give us the prototypical hyperconvex metric space.

Example 1.5.4. Let I be a nonempty set of indices and consider the hyper-
convex space (R, |·|). By letting M = RI (the set of all functions from I to
R), taking a = (aα)α∈I ∈ M for which aα = 0 for all α ∈ I and proceeding
as in Proposition 1.5.2, we obtain that (`∞ (I) , d∞) is a hyperconvex space
where `∞ (I) is the set of all bounded functions from I to R.

Proposition 1.5.4. Any metric space can be isometrically embedded in a
hyperconvex metric space of the form (`∞ (I) , d∞) for some nonempty index
set I.

The following results will tell us that bounded hyperconvex spaces have
the FPP for nonexpansive mappings. We chose to present the proofs of the
results so the reader can appreciate some features of hyperconvexity which
will be used further.

Proposition 1.5.5. Let (M,d) be a hyperconvex metric space. Then, A (M)
is a compact family.
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Proof: Let {Aα}α∈Γ be a family of sets in A (M) which has the finite
intersection property. By Proposition 1.1.2, for every α ∈ Γ we have that

Aα =
⋂
x∈M

B (x,D (x,Aα)) .

Consider the family of closed balls B = {B (x,D (x,Aα))}x∈M,α∈Γ.
Given x, x′ ∈ M and α, β ∈ Γ, the finite intersection property tells us

that Aα∩Aβ =

( ⋂
x∈M

B (x,D (x,Aα))

)
∩

( ⋂
x∈M

B (x,D (x,Aβ))

)
6= ∅ which

implies that B (x,D (x,Aα)) ∩B (x′, D (x′, Aβ)) 6= ∅ and therefore,

d
(
x, x′

)
≤ D (x,Aα) +D

(
x′, Aβ

)
.

The hiperconvexity of (M,d) implies that
⋂
α∈Γ

Aα =
⋂
B∈B

B 6= ∅.

Hence, A (M) is compact.
�

Corollary 1.5.1. Every hyperconvex metric space is complete.

Proof: If (M,d) is a hyperconvex metric space then, Proposition 1.5.5 tells
us that A (M) is compact. Thus, it follows from Proposition 1.1.3 that
(M,d) is complete.

�

Proposition 1.5.6. Let (M,d) be a hyperconvex metric space. Then, for

every nonempty A ∈ A (M) we have that r (A) =
1

2
diam (A). In particular,

every hyperconvex space has
1

2
-uniform normal structure.

Proof: Let (M,d) be a hyperconvex metric space, let A be a nonempty
element of A (M) and let δ = diam (A). By Lemma 1.1.2 we already know

that
δ

2
≤ r (A).

By Proposition 1.1.2, we have that A =
⋂
x∈M

B (x,D (x,A)).

Now, consider the family of closed balls

B = {B (x,D (x,A))}x∈M ∪
{
B

(
a,
δ

2

)}
a∈A

.

Given x, x′ ∈M , if we take a ∈ A, we have that

d
(
x, x′

)
≤ d (x, a) + d

(
x′a
)
≤ D (x,A) +D

(
x′, A

)
.

Given a, a′ ∈M , we have that
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d
(
a, a′

)
≤ δ =

δ

2
+
δ

2
.

Given x ∈M and a ∈ A we have that

d (x, a) ≤ D (x,A) ≤ D (x,A) +
δ

2
.

Thus, it follows from the hiperconvexity of (M,d) that

A ∩
⋂
a∈A

B

(
a,
δ

2

)
=
⋂
B∈B

B 6= ∅.

Now, if we take x0 ∈
⋂
B∈B

B, since x0 ∈
⋂
a∈A

B

(
a,
δ

2

)
we have that

d (x0, a) ≤ δ

2
for all a ∈ A which implies that D (x0, A) ≤ δ

2
and therefore,

r (A) = inf {d (x, y) : x ∈ A} ≤ D (x0, A) ≤ δ

2
.

Hence, r (A) =
δ

2
.

�

Theorem 1.5.1. Every bounded hyperconvex metric space has the FPP for
nonexpansive mappings

Proof: If (M,d) is a bounded hyperconvex metric space then, Corollary
1.5.5 tells us that (M,d) is complete and Proposition 1.5.6 tells us that it

has
1

2
-uniform normal structure.

Hence, it follows from Theorem 1.4.2 that (M,d) has the FPP for non-
expansive mappings.

�

1.6 CAT(0) spaces

In this section we will make a brief presentation of CAT(0) spaces. These
spaces have been studied in the context of Metric Fixed Point Theory (see
for example [33] and [17]) and they are also known to have uniform normal
structure (see [38] and references therein). Most facts about CAT(0) spaces
presented in this section can be found in [8].

Definition 1.6.1. Given a metric space (M,d) and x, y ∈ M , a geodesic
path joining x and y is a mapping γ : [0, d (x, y)] ⊂ R → M such that
γ (0) = x, γ (d (x, y)) = y and d (γ (s) , γ (t)) = |s− t| for all s, t ∈ [0, d (x, y)].
The set γ ([0, d (x, y)]) is said to a be geodesic joining x and y.
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Observe that any geodesic path joining x and y is an isometry and there-
fore continuous. Moreover, for any given geodesic path γ joining x and y we
have that the path

δ : [0, d (x, y)] → X
t → γ (d (x, y)− t)

is a geodesic path joining y and x such that γ ([0, d (x, y)]) = δ ([0, d (x, y)]).

Definition 1.6.2. A metric space (M,d) is said to be a geodesic space if
for any x, y ∈ M there exists a geodesic joining x and y. Moreover, if for
each x, y ∈ X there is a unique geodesic joining them, then the space is said
to be uniquely geodesic.

Example 1.6.1. Any normed space (X, ‖·‖) is a geodesic space since for
any given x, y ∈ X the mapping

γ : [0, ‖x− y‖] → X

t →
(

1− t

‖x− y‖

)
x+

t

‖x− y‖
y

is a geodesic joining x and y. Actually, γ ([0, ‖x− y‖]) is the line segment
joining x and y.

Next we define a notion of convexity in geodesic spaces.

Definition 1.6.3. Given a geodesic space (M,d) a subset C of M is said
to be convex if for every x, y ∈ C any geodesic joining x and y is contained
in C.

Example 1.6.2. Given a geodesic space (M,d) we have that the empty set
is convex by vacuity. Also, by definition, given any x, y ∈ M we have that
any geodesic joining x and y is contained in M which implies that M is
convex.

Example 1.6.3. It is well known ([8, see Chapter I.4]) that inner product
spaces are uniquely geodesic and that any closed ball in those spaces are
convex.

Proposition 1.6.1. Given a geodesic space (M,d) and {Ci}i∈I a family of

convex subsets of M . We have that
⋂
i∈I

Ci is a convex subset of M .

Proof: Let (M,d) and {Ci}i∈I be as above and let C =
⋂
i∈I

Ci. If C = ∅

then, as we have already seen in Example 1.6.2, C is convex.
Suppose that C 6= ∅ and let x, y ∈ C.
Given any i ∈ I, since Ci is convex, we have that Ci contains any geodesic

joining x and y. Thus, any geodesic joining x and y is contained in C and
therefore, C is convex.

�
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Corollary 1.6.1. Given a geodesic space (M,d), if all the closed balls of
M are convex, then any A ∈ A (M) is convex and the family of all convex
subsets of (M,d) is a convexity structure on (M,d).

Proof: Let (M,d) be as above and let C be the family of convex subsets
of (M,d). Since any A ∈ A (M) is an intersection of closed balls of M and
each such ball is in C, if follows from Proposition 1.6.1 that A (M) ⊂ C.

It follows from Example 1.6.2 that ∅,M ∈ C. Also, Proposition 1.6.1
tells us that C is closed under intersections.

Hence, C is a convexity structure on (M,d).
�

Next we present the model spaces of constant negative and zero cur-
vature. A thorough presentation of these spaces can be found in [8, see
Chapter I.2].

Let En denote the Euclidean space (Rn, d2) and let En,1 denote the vector
space Rn+1 endowed with the symmetric bilinear form which associates to
vectors u = (u1, . . . , un, un+1) and v = (v1, . . . , vn, vn+1) the real number

〈u,v〉 = −un+1vn+1 +

n∑
i=1

uivi.

Definition 1.6.4. Then the real hyperbolic n-space Hn is the set{
u = (u1, . . . , un, un+1) ∈ En,1 : 〈u,u〉 = −1, un+1 ≥ 1

}
.

Proposition 1.6.2. [8, Proposition 2.6] Let d : Hn×Hn → R be the function
that assigns to each pair (u, v) ∈ Hn × Hn the unique nonnegative number
d (u, v) such that

cosh d (u, v) = −〈u, v〉 .

Then, d is a metric.

Now, we are ready to define the model spaces M2
κ for κ ≤ 0.

Definition 1.6.5. Given κ ∈ (−∞, 0] we define M2
κ as:

i) the euclidean space E2 if κ = 0;

ii) the space obtained from the hyperbolic space H2 by multiplying the

distance function (as in Proposition 1.6.2) by the constant
1√
−κ

.

Definition 1.6.6. Let (M,d) be a geodesic space, a geodesic triangle
∆ (p, q, r) consists of three points p, q and r in M (the vertices of the
triangle) and three geodesics joining each pair of vertices (the edges of
the triangle). For the geodesic triangle ∆ (p, q, r) a comparison trian-
gle is a triangle ∆ (p̄, q̄, r̄) in the Euclidean plane E2 such that d (p, q) =
d2 (p̄, q̄) , d (q, r) = d2 (q̄, r̄) and d (p, r) = d2 (p̄, r̄).
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It is known from Euclidean geometry that the comparison triangles de-
fined above always exist and are unique up to isometry so, we will denote any
comparison triangle corresponding to the points p, q, r ∈ M as ∆ (p̄, q̄, r̄).
For a chosen geodesic triangle ∆ (p, q, r) we will denote the edges joining its
vertices by [p, q] , [q, r] and [p, r] and the corresponding edges in the compar-
ison triangle ∆ (p̄, q̄, r̄) by [p̄, q̄] , [q̄, r̄] and [p̄, r̄].

Definition 1.6.7. Let (M,d) be a geodesic space and let ∆ (p, q, r) be a
geodesic triangle. Given z, w ∈ {p, q, r} with z 6= w, for any x ∈ [z, w] we
say that x̄ ∈ [z̄, w̄] is a comparison point for x if d (z, x) = d2 (z̄, x̄).

Now we can finally define CAT(0) spaces.

Definition 1.6.8. Let (M,d) be a geodesic space. We say that a geodesic
triangle satisfies the CAT(0) inequality if for all x, y ∈ ∆ (p, q, r) we have
that d (x, y) ≤ d2 (x̄, ȳ). A CAT(0) space is a geodesic space for which
every geodesic triangle satisfies the CAT(0) inequality.

It can be shown that CAT(0) spaces are uniquely geodesic.

Example 1.6.4. It is easy to see that that inner product spaces are CAT(0)
spaces.

The following proposition will allow us to easily show that bounded and
complete CAT(0) spaces have the FPP for nonexpansive mappings.

Proposition 1.6.3. Every complete and bounded CAT(0) space has uniform
normal structure.

Theorem 1.6.1. Every complete and bounded CAT(0) space has the FPP
for nonexpansive mappings.

Proof: It follows straight from Proposition 1.6.3 and Theorem 1.4.2.
�

In Section 3.2 we will extend the previous Theorem.

1.7 Uniform relative normal structure

The concept of uniform relative normal structure was introduced by
P. Soardi in [44] as a geometric property in Banach spaces related to the
normal structure and led to the existence of fixed points for nonexpansive
mappings. This property was useful to cover the case of L∞-spaces and,
more generally, abstract M -spaces (see [43, Chapter 2, Section 7] and [44])
where the standard normal structure or uniform normal structure do not
generally work, in particular when complex Banach lattices are considered.
The concept was later used by A. To-Ming Lau [45, Theorem 1] to obtain a
common fixed point for (onto) isometries defined on a closed convex bounded
subset of a Banach space. In [29, Chapter 5], the concept was defined in the
general environment of metric spaces as we present in this section.
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Definition 1.7.1. A metric space (M,d) is said to have uniform rela-
tive normal structure (URNS for short) if there exists some c ∈ (0, 1)
such that, for every nonempty A ∈ A (M) with 0 < diam (A), the following
conditions are satisfied:

i) There exists zA ∈M with

D (zA, A) ≤ c · diam (A) ,

ii) For zA as above and x ∈M with D (x,A) ≤ c · diam (A), we have that

d (x, zA) ≤ c · diam (A) .

When we need to emphasize the constant c, we say that (M,d) has c-
URNS.

There is a subtle but important difference between Definition 1.4.1 and
Definition 1.7.1 since the point zA given in Definition 1.7.1 does not neces-
sarily belong to the set A. Because of that, the extra condition ii) is needed
to assure the existence of a fixed point for a nonexpansive mapping. The
following result was also proven by Soardi in [44] in the context of Banach
spaces.

Theorem 1.7.1. [29, Theorem 5.6] Let (M,d) be a bounded metric which
has uniform relative normal structure and such that A (M) is compact.
Then, (M,d) has the FPP for nonexpansive mappings.

We will not present the proof of Theorem 1.7.1 since in the next chapter
we will extend the concept of URNS and we will also state and prove an
extension of this theorem.

We finish this chapter by presenting the following characterization of
URNS.

Proposition 1.7.1. A metric space (M,d) has c-URNS if and only if for
each A ∈ A (M) with 0 < diam (A) we have that

B [A, c · diam (A)] ∩B [B [A, c · diam (A)] , c · diam (A)] 6= ∅.

Proof: Let (M,d) be a metric space.
(=⇒) Suppose (M,d) has c-URNS. Consider A ∈ A (M) with 0 < diam (A)
and let zA be an element in M as in conditions i) and ii).

Since D (zA, A) = sup {d (zA, a) : a ∈ A} ≤ c · diam (A), it follows that
d (zA, a) ≤ c·diam (A) for all a ∈ A which implies that zA ∈ B [A, c · diam (A)].

Given x ∈ B [A, c · diam (A)] we have that d (x, a) ≤ c · diam (A) for all
a ∈ A which implies that D (x,A) = sup {d (x, a) : a ∈ A} ≤ c · diam (A).
Then, condition ii) implies that d (x, zA) ≤ c · diam (A) and therefore,

zA ∈ B [B [A, c · diam (A)] , c · diam (A)] .
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Hence,

B [A, c · diam (A)] ∩B [B [A, c · diam (A)] , c · diam (A)] 6= ∅

and then, since A was an arbitrary element of A (M) with 0 < diam (A) it
follows that

B [A, c · diam (A)] ∩B [B [A, c · diam (A)] , c · diam (A)] 6= ∅

for any such set.

(⇐=) Suppose that for each A ∈ A (M) with 0 < diam (A) we have that

B [A, c · diam (A)] ∩B [B [A, c · diam (A)] , c · diam (A)] 6= ∅.

Let A ∈ A (M) with 0 < diam (A) and take

zA ∈ B [A, c · diam (A)] ∩B [B [A, c · diam (A)] , c · diam (A)] .

Since zA ∈ B [A, c · diam (A)] we have that d (zA, x) ≤ c · diam (A) which
implies that

D (zA, A) = sup {d (zA, x) : x ∈ A} ≤ c · diam (A) .

Given x ∈ M such that D (x,A) ≤ c · diam (A) we have that d (x, a) ≤
c · diam (A) for all a ∈ A which implies that x ∈ B [A, c · diam (A)]. Since
zA ∈ B [B [A, c · diam (A)] , c · diam (A)] we have that d (zA, x) ≤ c·diam (A).

Hence, conditions i) and ii) are satisfied and then, since A was an arbi-
trary element of A (M) with 0 < diam (A) it follows that both conditions
are satisfied for any such set and therefore, (M,d) has c-URNS.

�
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Chapter 2

Some results regarding the
FPP for nonexpansive
mappings

In this chapter we will present some recent results revolving around the
FPP for nonnexpansive mappings, most of which can be found in the article
[19] by Rafael Esṕınola Garćıa, Maŕıa Japón and myself.

In the first section we make a brief presentation of some sequences spaces
which will be used in the other sections.

In the second section we present some subsets of (c, ‖·‖∞) with the FPP
for nonexpansive mappings.

In the third section we introduce the concept of (p, q)-uniform relative
normal structure ((p, q)-URNS for short) and show how it is related to the
FPP for nonexpansive mappings. We also relate hyperconvexity and (p, q)-
URNS.

In the fourth section we apply what we did in the previous section to
obtain some examples of sets with the FPP for nonexpansive mappings.

2.1 Some important sequence spaces

In this section we will make a quick review of some important sequence
spaces which will show up in the following sections. Although in this work
we mainly deal with real sequence spaces, for the sake of generality, the
definitions in this section will be presented by letting the scalar field K be
either R or C.

Definition 2.1.1. Given a real number 1 ≤ p < +∞ we define

`p :=

{
(xn)n∈N ∈ KN :

∞∑
n=1

|xn|p < +∞

}
.
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We also define

`∞ :=

{
(xn)n∈N ∈ KN : sup

n∈N
|xn| < +∞

}
,

c :=
{

(xn)n∈N ∈ KN : lim
n→∞

xn exists and is finite
}

and

c0 :=
{

(xn)n∈N ∈ KN : lim
n→∞

xn = 0
}
.

For 1 ≤ p < +∞, `p is called the set of absolutely p-summable
sequences and `∞ is simply the set of bounded sequences in K. It is easy
to see that for all p, q ∈ [1,+∞) with p < q it is true that `p ( `q ( `∞. It
is also easy to see that c0 ( c ( `∞ and `p ( c0 for all p ∈ [1,+∞). Any set
on the previous definition can be made into a K-vector space by considering
coordinatewise sum and scalar multiplication.

Moreover, if for each bounded sequence x = (xn)n∈N in K we define

‖x‖∞ := sup
n∈N
|xn| ,

it follows that ‖·‖∞ is a norm on `∞ and (c0, ‖·‖∞) , (c, ‖·‖∞) and (`∞, ‖·‖∞)
are all Banach spaces.

It can be shown that for any p ∈ [1,+∞), (`p, ‖·‖∞) is not a Banach
space. In the next proposition we will present a norm on `p which makes it
into a Banach space.

Proposition 2.1.1. Let p ∈ [1,+∞) and consider the function ‖·‖p : `p →
[0,+∞) given by

‖x‖p =

( ∞∑
n=1

|xn|p
) 1

p

for all x = (xn) ∈ `p.
We have that ‖·‖p is a norm on `p and

(
`p, ‖·‖p

)
is a Banach space.

Proofs of the results above can be found in the first chapter of [21].

Our next goal is to present the Orlicz sequence spaces. Before that, we
will talk about more general concepts and then, these spaces will show up
as a particular case of a modular space.

Definition 2.1.2. Let X be a K-vector space, whose zero vector is 0. A
mapping ρ : X → [0,+∞] is said to be a convex modular if it has the
following properties:
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(i) ρ (x) = 0 if and only if x = 0;

(ii) ρ (αx) = ρ (x) for all x ∈ X and for every α ∈ K such that |α| = 1;

(iii) ρ (αx+ βy) ≤ αρ (x) + βρ (y) for all x, y ∈ X whenever α ≥ 0, β ≥ 0
and α+ β = 1.

The following proposition shows us hot to use convex modulares to build
Banach spaces from a given vector space.

Proposition 2.1.2. Let X be a K-vector space with a convex modular ρ.
Then, the set

Xρ =
{
x ∈ X : ρ

(x
λ

)
< +∞ for some λ > 0

}
is a vector subspace of X. A vector space as Xρ is called a modular

space.
Moreover, the function

‖·‖ρ : Xρ → [0,+∞)

defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}

is a norm on Xρ and
(
Xρ, ‖·‖ρ

)
is a Banach space. Such a norm is

usually called a Luxemburg norm.

Example 2.1.1. Consider the vector space KN. Given a sequence (pn)n∈N
in [1,+∞) the mapping ρ : KN → [0,+∞] given by

ρ (x) =
∞∑
n=1

|xn|pn

for all x = (xn)n∈N ∈ KN is a convex modular.

Now, we are ready to introduce the Orlicz sequence spaces.

Definition 2.1.3. Let (pn)n∈N be a sequence in [1,+∞) and let ρ be the
modular defined in the previous example. Then, we define the Orlicz se-
quence space `pn as the modular space associated to ρ, that is

`pn =
{
x = (xn)n∈N ∈ KN : ρ

(x
λ

)
< +∞ for some λ > 0

}
.

If we call ‖·‖pn the Luxemburg norm associated to `pn , it follows from

Proposition 2.1.2 that
(
`pn , ‖·‖pn

)
is a Banach space.

For more about Orlicz sequence spaces, modular spaces and related con-
cepts (including the proofs of the previous results) see for example [39],[40],[41]
and [27, Chapter 4].
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2.2 On subsets of c with the FPP for nonexpansive
mappings

It is well-known that for the Banach spaces (c0, ‖·‖∞) and (c, ‖·‖∞), any
of its convex weakly compact subsets (K, ‖·‖∞) has the FPP for nonexpan-
sive mappings (see [7]). Moreover, it was shown in [12, 14, 15] that convex
weakly compact sets are the only convex closed subsets of (c0, ‖·‖∞) with
the FPP for nonexpansive mappings, that is, if a closed and convex subset of
(c0, ‖·‖∞) has the FPP for nonexpansive mappings then, it has to be weakly
compact. This raised the question on whether this characterization of weak
compactness was true for (c, ‖·‖∞). This question was answered negatively
in [22], although weak compactness in (c, ‖·‖∞) has actually been character-
ized in terms of fixed point properties for some larger family of mappings.
In fact, it was shown in [26] that a closed and convex subset of (c, ‖·‖∞)
is weakly compact if, and only if, every (so-called) cascading nonexpansive
self-mapping defined on it has a fixed point.

In [22] the authors introduced the following subset of c:

W =
{
x = (xn)n∈N ∈ `∞ : 1 ≥ x1 ≥ x2 ≥ . . . ≥ 0

}
.

In the article it was shown that (W, ‖·‖∞) is a closed, bounded and
convex subset of (c, ‖·‖∞) which is non-weakly compact and has the FPP
for nonexpansive mappings. The set W was the first known example in
the literature of a subset of (c, ‖·‖∞) with the mentioned properties and
its existence closed the door to a possible characterization result for weakly
compactness in (c, ‖·‖∞) as the one we have previously described, although
it opened the scenario to considering fixed point theorems for a larger family
of mappings as it can be seen in [26].

After defining W , for each sequence q = (qn)n∈N ∈ (0,+∞) for which
there exists positive real numbers A and B such that A ≤ qn ≤ B for all
n ∈ N, the authors of [22] defined the set

Wq =
{

(qnyn)n∈N ∈ `∞ : (yn)n∈N ∈W
}

and showed that each Wq has the same properties as those described for
W .

The authors of [22] showed that the key fact why the set W and all
the sets Wq have the FPP for nonexpansive mappings is that they are all
hyperconvex. In the article several proofs of the hyperconvexity of (W,d∞)
were presented using different techniques. None of the proofs was an ele-
mentary based purely on the definition of hyperconvexity. So, we will start
this chapter by providing such a proof.

Proposition 2.2.1. The metric space (W,d∞) is a hyperconvex metric sub-
space of (`∞ (N) , d∞), where
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W =
{
x = (xn)n∈N ∈ `∞ : 1 ≥ x1 ≥ x2 ≥ . . . ≥ 0

}
.

Proof: Let
{
BW

(
(xα (n))n∈N , rα

)}
α∈Γ

be a family of closed balls in W

such that d∞
(
(xα (n))n∈N , (xβ (n))n∈N

)
≤ rα + rβ for all α, β ∈ Γ.

Observe that W ⊂ [0, 1]N which gives us that for each α ∈ Γ,

BW
(
(xα (n))n∈N , rα

)
= W ∩B`∞(N)

(
(xα (n))n∈N , rα

)
=

W ∩ [0, 1]N ∩
∏
n∈N

[xα (n)− rα, xα (n) + rα] =

W ∩

(
[0, 1]N ∩

∏
n∈N

[xα (n)− rα, xα (n) + rα]

)
=

W ∩

(∏
n∈N

([0, 1] ∩ [xα (n)− rα, xα (n) + rα])

)
.

Thus, ⋂
α∈Γ

BW
(
(xα (n))n∈N , rα

)
=

⋂
α∈Γ

(
W ∩

(∏
n∈N

([0, 1] ∩ [xα (n)− rα, xα (n) + rα])

))
=

W ∩
⋂
α∈Γ

(∏
n∈N

([0, 1] ∩ [xα (n)− rα, xα (n) + rα])

)
=

W ∩
∏
n∈N

(⋂
α∈Γ

([0, 1] ∩ [xα (n)− rα, xα (n) + rα])

)
.

Let γ /∈ Γ and for each n ∈ N let xγ (n) =
1

2
and rγ =

1

2
. This

gives us that [0, 1] = [xγ (n)− rγ , xγ (n) + rγ ] for all n ∈ N. Now if we let
Γ′ = Γ ∪ {γ}, for each n ∈ N we have that

⋂
α∈Γ

([0, 1] ∩ [xα (n)− rα, xα (n) + rα]) = [0, 1]∩
⋂
α∈Γ

[xα (n)− rα, xα (n) + rα] =

⋂
α∈Γ′

[xα (n)− rα, xα (n) + rα] .

It follows from what we have seen in Example 1.5.1 that for each n ∈ N,⋂
α∈Γ′

[xα (n)− rα, xα (n) + rα] = [an, bn]
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where an = sup {α ∈ Γ′ : xα (n)− rα} and bn = inf {α ∈ Γ′ : xα (n) + rα}.
Thus,

∏
n∈N

( ⋂
α∈Γ′

[xα (n)− rα, xα (n) + rα]

)
=
∏
n∈N

[an, bn]

which tells us in particular that

(bn)n∈N ∈
∏
n∈N

( ⋂
α∈Γ′

[xα (n)− rα, xα (n) + rα]

)
.

Now, given n ∈ N, since xα (n+ 1) + rα ≤ xα (n) + rα for all α ∈ Γ′, it
follows that

bn+1 = inf
{
α ∈ Γ′ : xα (n+ 1) + rα

}
≤ inf

{
α ∈ Γ′ : xα (n) + rα

}
= bn

which gives us that 0 ≤ bn ≤ bn+1 ≤ 1 for all n ∈ N and therefore,
(bn)n∈N ∈W .

Hence, W ∩
∏
n∈N

(⋂
α∈Γ

([0, 1] ∩ [xα (n)− rα, xα (n) + rα])

)
6= ∅ and there-

fore, (W,d∞) is a hyperconvex metric subspace of (`∞ (N) , d∞).

�
Since the sets presented in [22] were all hyperconvex, at the end of the

article, its authors say that they do not know of an example of a non-weakly
compact, closed, bounded and convex subset of (c, ‖·‖∞) which has the FPP
for nonexpansive mappings and is not hyperconvex. Our next example shows
that such a set indeed exists.

Example 2.2.1. Let Q =
{

(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 = 1
}

, let W

be as previously described. If we set

M =
(
Q, ‖·‖∞,3

)
⊕ (W, ‖·‖∞), where ‖·‖∞,3 is the sup norm in R3,

then (M, ‖·‖∞) is a non-weakly compact, closed, bounded and convex sub-
set of c which is not hyperconvex but still has the FPP for nonexpansive
mappings.

Proof: Since W ⊂ c, it is obvious that M ⊂ c. It is also obvious that M is
closed, bounded and convex. We claim that W has uniform normal struc-

ture. Indeed, observe that
(
Q, ‖·‖∞,3

)
is isometric to

(
P, ‖·‖∞,3

)
where

P =
{

(x1, x2, x3) ∈ [0, 1]2 × [−1, 0] : x1 + x2 + x3 = 0
}

.
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Also, P is contained in
{

(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0
}

which is a 2-
dimensional subspace of R3. Thus, it follows from Proposition 1.4.1 that

P with the ‖·‖∞,3 norm has
2

3
-uniform normal structure and therefore, by

isometry,
(
Q, ‖·‖∞,3

)
has

2

3
-uniform normal structure too.

Since (W, ‖·‖∞) is hyperconvex, it follows from Proposition 1.5.6 that

(W, ‖·‖∞) has
1

2
-uniform normal structure and therefore, Proposition 1.4.3

tells us that (M, ‖·‖∞) has
2

3
-uniform normal structure.

Thus, it follows from Theorem 1.4.2 that (M, ‖·‖∞) has the FPP for
nonexpansive mappings.

To show that (M, ‖·‖∞) is not hyperconvex we consider the family of
closed balls in (M, ‖·‖∞) given by:{

B

(
ei,

1

2

)
: 1 ≤ i ≤ 3

}
where ei stands for the i-th standard basis element in c, that is,

ei =

0, 0, . . . , 0, 1︸︷︷︸
i-th coordinate

, 0, . . . , 0, 0, . . .

 .

If (M, ‖·‖∞) were hyperconvex, since ‖ei − ej‖∞ = 1 =
1

2
+

1

2
whenever

i 6= j, this collection of balls should have nonempty intersection within M .
However, if there existed, x = (xn)n∈N in these three balls, it would be the
case that

|xi − 1| ≤ 1

2
and |xi| ≤

1

2
for all 1 ≤ i ≤ 3.

Thus, we would have that x1 = x2 = x3 =
1

2
which contradicts the fact that

x /∈M . Hence (M, ‖·‖∞) is not hyperconvex.
Finally, since (M, ‖·‖∞) is a direct sum with a non-weakly compact sub-

set of c, it follows that M is not weakly compact either.
�

The previous example can be modified by replacing the first term of the
direct sum by any non hyperconvex, bounded, closed and convex subset of
any finite dimensional normed space since such sets, as stated in Proposition
1.4.1, have uniform normal structure.

A direct sum, as the previous example, may be seen as a too straightfor-
ward construction and one might wonder if there is any such example which
cannot be obtained in that way. The next example we will present shows
that it is indeed possible to do so. Before we proceed to the example, we
will make a brief detour to introduce a few definitions and results which will
be used in it but deserve a more general presentation.
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Definition 2.2.1. Let I be a nonempty set of indices and let A be a nonempty
and bounded subset of (`∞ (I) , ‖·‖∞). For each α ∈ I we define

iA (α) = inf
x∈A
{x (α)} , sA (α) = sup

x∈A
{x (α)} and zA (α) =

iA (α) + sA (α)

2
.

We also define

i (A) = (iA (α))α∈I , s (A) = (sA (α))α∈I and z (A) = (zA (α))α∈I .

Lemma 2.2.1. Let I be a set of indices and let A be a nonempty and
bounded subset of (`∞ (I) , ‖·‖∞). Then, |sA (α)− iA (α)| ≤ diam (A) for all

α ∈ I and A ⊂ B
(
z (A) ,

1

2
diam (A)

)
.

Proof: Let A be as above and let δ = diam (A).
For any given x, y ∈ A we have that ‖x− y‖∞ ≤ δ which implies that

|x (α)− y (α)| ≤ δ for all α ∈ I and therefore,

|x (α)− y (α)| ≤ δ for all x, y ∈ A and for all α ∈ I.

Now, if we fix α ∈ I, since for each fixed y ∈ A it is true that −δ ≤
x (α) − y (α) ≤ δ for all x ∈ A, we obtain that −δ ≤ sA (α) − y (α) ≤ δ for
all y ∈ A and therefore, −δ ≤ sA (α)− iA (α) ≤ δ.

Hence, |sA (α)− iA (α)| ≤ δ for all α ∈ I.
Now, if we fix α ∈ I, for every x ∈ A we have that iA (α) ≤ x (α) ≤ sA (α)

which gives us that

iA (α)− iA (α) + sA (α)

2
≤ x (α)− iA (α) + sA (α)

2
≤ sA (α)− iA (α) + sA (α)

2

and therefore, −sA (α)− iA (α)

2
≤ x (α)− zA (α) ≤ sA (α)− iA (α)

2
.

Thus, |x (α)− zA (α)| ≤ sA (α)− iA (α)

2
≤ δ

2
for all α ∈ I and for all

x ∈ A which implies that ‖x− z (A)‖∞ ≤
δ

2
for all x ∈ A.

Hence, A ⊂ B
(
z (A) ,

δ

2

)
.

�

Example 2.2.2. Let

D =
{
x = (xn)n∈N ∈ [0, 1]N : x1 + x2 + x3 = 1, x3 ≥ x4 ≥ . . . ≥ 0

}
.

Then (D, ‖·‖∞) is a bounded, closed, convex and non-weakly compact subset
of (c, ‖·‖∞) which is not hyperconvex and has the FPP for nonexpansive
mappings.

43



Some results regarding the FPP for nonexpansive mappings

Proof: It is obvious that D ⊂ c and D is closed, bounded and convex.
Similar arguments to those used in the Example 2.2.1 show that D is neither
weakly compact nor hyperconvex.

We will apply Theorem 1.4.2 to prove that D has the FPP for nonex-
pansive mappings.

It suffices to show that D has
2

3
-uniform normal structure. Let A ∈

A (D) such that δ = diam (A) > 0. For each n ∈ N, let

an = iA (n), bn = sA (n) and zn = zA (n).

Given n ≥ 3 since xn ≥ xn+1 for all x ∈ A, it follows that an ≥ an+1 and
bn ≥ bn+1 which implies that zn ≥ zn+1. However, we cannot assure that
z1 + z2 + z1 = 1 and therefore, we do not know if z (A) = (zn)n∈N ∈ D.

Let τ be the coordinatewise convergence topology on `∞ and consider
the projection mapping:

π : (`∞, τ) →
(
R3, ‖·‖∞,3

)
x = (xn)n∈N 7→ (x1, x2, x3)

Observe that D is τ -compact which implies that any element of A (D)
is τ -compact. Since A is also convex, it follows that π (A) is a compact and

convex subset of
(
R3, ‖·‖∞,3

)
. From Proposition 1.4.1 together with the

translation argument we used in Example 2.2.1, we know that there exists
w = (wn)n∈N ∈ A such that

‖π (w)− π (x)‖∞ ≤
2

3
diam (π (A)) ≤ 2

3
δ for all x ∈ A.

This implies that, for every x ∈ A, |wn − xn| ≤
2

3
δ for 1 ≤ n ≤ 3. For n ≥ 4

we already know that wn ∈ [an, bn].

Now, we are going to show that A ∩ B
[
A,

2

3
δ

]
6= ∅. To this end, let us

define

w̃n =

{
wn if 1 ≤ n ≤ 3,
min {w3, zn} if n ≥ 4.

Observe that w̃1 + w̃2 + w̃3 = 1 and |w̃n − xn| ≤
2

3
δ for 1 ≤ n ≤ 3 and for

all x ∈ A. Also, since 0 ≤ an ≤ wn ≤ w3 and an ≤ zn ≤ bn for all n ≥ 4, it
follows that w̃n ∈ [an, bn] for n ∈ N.

Since A ∈ A (D) we have that

A =
⋂
i∈I

B
(
pi, ri

)
∩D
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for a certain collection of centers pi =
(
pin
)
n∈N ∈ D for i ∈ I. Therefore,

given x = (xn)n∈N ∈ A, we have that x ∈ B
(
pi, ri

)
for all i ∈ I. In

particular, we have that
∣∣xn − pin∣∣ ≤ ri for all n ∈ N and i ∈ I. Thus, given

n ∈ N,
pin − ri ≤ xn ≤ pin + ri

for all x ∈ A and i ∈ I. Therefore, pin − ri ≤ an ≤ bn ≤ pin + ri and we can
conclude that

[an, bn] ⊂
⋂
i∈I

[
pin − ri, pin + ri

]
.

Hence,

w̃∈
⋂
i∈I

B
(
pi, ri

)
and therefore, since w̃ ∈ D, w̃ ∈ A.

Let x = (xn)n∈N ∈ A. We already know that |w̃n − xn| ≤
2

3
δ for 1 ≤

n ≤ 3. Let n ≥ 4. We have the following three cases to study:

� Case zn ≤ w3. In this case we have that w̃n = zn and then it follows
from Lemma 2.2.1 that

|w̃n − xn| = |zn − xn| ≤
1

2
δ ≤ 2

3
δ.

� Case w3 < zn and xn ≤ zn. In this case, since w̃n, xn ∈ [an, bn] and
zn is the middle point of [an, bn], we have that

|xn − w̃n| ≤
1

2
δ ≤ 2

3
δ.

� Case w3 < zn and zn < xn. In this case we have that

|xn − w̃n| = |xn − w3| = xn − w3 ≤ x3 − w3 ≤
2

3
δ.

Since these are the only possible cases, we can conclude that

|xn − w̃n| ≤
2

3
δ for all n ≥ 4.

Hence, |w̃n − xn| ≤
2

3
δ for all n ∈ N and x ∈ A. Therefore, w̃ ∈

⋂
y∈A

B

(
y,

2

3
δ

)
=

B

[
A,

2

3
δ

]
and, finally,

A ∩B
[
A,

2

3
δ

]
6= ∅.

Now, since A was an arbitrary admissible subset of D with positive diameter,

we have that D has
2

3
-uniform normal structure and, by Theorem 1.4.2, D

has the FPP for nonexpansive mappings.
�
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2.3 The (p, q)-uniform relative normal structure

In this section we introduce a concept that is a formal extension of the
uniform relative normal structure that and which will be applied to obtain
some fixed point results as well as stability of the FPP for nonexpansive
mappings.

Definition 2.3.1. A metric space (M,d) is said to have (p, q)-URNS for
some p > 0 and q ∈ (0, 1) if

B [A, p · diam (A)] ∩B [B [A, p · diam (A)] , q · diam (A)] 6= ∅

for every A ∈ A (M) with 0 < diam (A).

Observe that if we take p = q = c ∈ (0, 1) in the previous definition
we obtain c-URNS and so (p, q)-URNS provides a formal extension of both
normal structure and uniform normal structure.

In what follows we will show that, under standard assumptions, bounded
metric spaces with (p, q)-URNS have the FPP for nonexpansive mappings.
Before we can show this result, we will present some technical lemmas.
In all lemmas, (M,d) is a bounded metric space and T : M → M is a
nonexpansive mapping. In the following proofs we will make extensive use
of the sets presented in Definition 1.1.4.

Lemma 2.3.1. Let A ∈ AT (M) and let s > 0 such that A ∩ B [A, s] 6= ∅.
If we set

Ã := covT (A ∩B [A, s]),

it holds that diam(Ã) ≤ s.

Proof: If we manage to show that Ã ⊂ Ã ∩ B[Ã, s], we will automatically
obtain that diam(Ã) ≤ s. So, we will show that

i) A ∩B [A, s] ⊂ Ã ∩B[Ã, s] and

ii) Ã ∩B[Ã, s] is T -invariant.

Since Ã ∩B[Ã, s] ∈ A (M), the conclusion follows.

i) From the definition, A ∩ B [A, s] ⊂ Ã. Since A is T -invariant and
admissible and also A ∩ B [A, s] ⊂ A, we have Ã ⊂ A and then it
follows from item iii) of Lemma 1.1.1 that B [A, s] ⊂ B[Ã, s].

Thus, A ∩B [A, s] ⊂ B[Ã, s] and so

A ∩B [A, s] ⊂ Ã ∩B[Ã, s].
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ii) Let z ∈ Ã ∩ B[Ã, s]. Since Ã is T -invariant, we have that Tz ∈ Ã. It
remains to be shown that Tz ∈ B[Ã, s] which is equivalent to the fact
that Ã ⊂ B (Tz, s). Thus, it suffices to show that

Ã ∩B (Tz, s) ∈ {L ∈ AT (M) : L ⊃ A ∩B [A, s]}.

It is obvious that Ã∩B (Tz, s) ∈ A (M). Since B [A, s] ⊂ B[Ã, s] and
Tz ∈ Ã, given x ∈ A ∩ B [A, s], it follows that d (x, Tz) ≤ s, which
implies that A ∩B [A, s] ⊂ B (Tz, s) and therefore,

A ∩B [A, s] ⊂ Ã ∩B (Tz, s) .

Now, take y ∈ Ã ∩ B (Tz, s). Since Ã is T -invariant, it follows that
Ty ∈ Ã. Since T is nonexpansive, y ∈ Ã and z ∈ B[Ã, s] we have

d (Ty, Tz) ≤ d (y, z) ≤ s,

which implies that Ty ∈ B (Tz, s). Thus, Ã∩B (Tz, s) is T -invariant.

From the above, we conclude that Ã ∩ B[Ã, s] ∈ AT (M) and contains
A ∩B [A, s]. Thus, Ã ⊂ Ã ∩B[Ã, s] and diam(Ã) ≤ s.

�

Lemma 2.3.2. If A (M) is compact and A ∈ AT (M). Then, there exists
A0 ⊂ A such that:

i) A0 ∈ AT (M) and

ii) B [A0, r] ∈ AT (M) whenever B [A0, r] is nonempty.

Proof: Let LA := {L ∈ AT (M) : L ⊂ A}. Since A ∈ AT (M) we have that
LA 6= ∅. Since, A (M) is compact, by proceeding as in the proof of Lemma
1.1.3 we can find a minimal element A0 of LA and therefore, i) is proven.

Since A0 ∈ AT (M) we have that cov (T (A0)) ⊂ A0, and so

T (cov (T (A0))) ⊂ T (A0) ⊂ cov (T (A0)) .

Therefore, cov (T (A0)) ∈ LA. The minimality of A0 implies that

A0 = cov (T (A0)) .

Now, let r > 0 be such that B [A0, r] 6= ∅. Given x ∈ B [A0, r] we have
that d (x, y) ≤ r for all y ∈ A0. Then, since T is nonexpansive, it follows
that d (Tx, Ty) ≤ d (x, y) ≤ r for all y ∈ A0. Thus, Tx ∈ B (Ty, r) for all
y ∈ A0 which implies that Tx ∈ B [T (A0) , r] and therefore,

T (B [A0, r]) ⊂ B [T (A0) , r] .
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Item iii) of Proposition 1.1.1 tell us thatB [T (A0) , r] = B [cov (T (A0)) , r]
and then since, A0 = cov (T (A0)) we have that B [T (A0) , r] = B [A0, r].

Hence, T (B [A0, r]) ⊂ B [A0, r] which implies that B [A0, r] ∈ AT (M)
and therefore, ii) is proven.

�

Lemma 2.3.3. If A (M) is compact and A ∈ AT (M). Given A0 ⊂ A as in
Lemma 2.3.2, if B [A0, r] ∩B [B [A0, r] , s] 6= ∅, then the set

Ã0 := covT (B [A0, r] ∩B [B [A0, r] , s])

satisfies:

i) Ã0 is T -invariant.

ii) Ã0 ⊂ B [A0, r].

iii) diam(Ã0) ≤ s.

Proof: Assertion i) follows from item ii) of Proposition 1.1.1. Assertion ii)
follows from the definition of Ã0 and from item ii) of Lemma 2.3.2. Assertion
iii) follows from the definition of Ã0 and Lemma 2.3.1.

�
With the previous lemmas in hand we are now ready to show the anal-

ogous of Theorem 1.7.1 for (p, q)-URNS.

Theorem 2.3.1. Let (M,d) be a bounded metric space such that:

i) A (M) is compact.

ii) (M,d) has (p, q)-URNS for some p > 0 and q ∈ (0, 1).

Then (M,d) has the FPP for nonexpansive mappings.

Proof: Let (M,d) be as above and let T : M → M be a nonexpansive
mapping.

In order to make the proof clearer, we will denote diam (An) and diam(Ãn)
by δn and δ̃n respectively.

Now, take A0 ∈ AT (M) resulting from letting A = M in Lemma 2.3.2.
If A0 is a singleton then, we already have a fixed point of T .

If A0 is not a singleton, since (M,d) has (p, q)-URNS we have that

B [A0, pδ0] ∩B [B [A0, pδ0] , qδ0] 6= ∅.

Thus, defining Ã0 := covT (B [A0, pδ0] ∩B [B [A0, pδ0] , qδ0]) as in Lemma
2.3.3, we have that

Ã0 ∈ AT (M), Ã0 ⊂ B [A0, pδ0] and δ̃0 ≤ qδ0.

Now, taking A = Ã0 and applying Lemma 2.3.2, we find A1 ∈ AT (M)
such that A1 ⊂ Ã0 which implies that
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A1 ⊂ B [A0, pδ0] and δ1 ≤ qδ0 .

If A1 is a singleton then, we already have a fixed point of T .
If A1 is not a singleton, since (M,d) has (p, q)-URNS we have that

B [A1, pδ1] ∩B [B [A1, pδ1] , qδ0] 6= ∅.

Thus, defining Ã1 := covT (B [A1, pδ1] ∩B [B [A1, pδ1] , qδ1]) as in Lemma
2.3.3, we have that

Ã1 ∈ AT (M), Ã1 ⊂ B [A1, pδ1] and δ̃1 ≤ qδ1.

Now, taking A = Ã1 and applying Lemma 2.3.2, we find A2 ∈ AT (M)
such that A2 ⊂ Ã1 which implies that

A2 ⊂ B [A1, pδ1] and δ2 ≤ qδ1.

Proceeding inductively, if there exists n0 such that An0 is a singleton
then, we already have a fixed of T . Otherwise, we can construct a sequence
(An)n∈N in AT (M) having the following properties for every n ∈ N:

(1) An ⊂ B [An−1, pδn−1];

(2) δn ≤ qδn−1.

Assuming we have a sequence as above, for each n ∈ N we can choose
xn ∈ An and consider the sequence (xn)n∈N. Then, given n ∈ N, it follows
from (2) that δn ≤ qnδ0. Since (1) tells us that An+1 ⊂ B [An, pδn], we have
that d (xn, xn+1) ≤ pδn ≤ pqnδ0.

Thus, since q ∈ (0, 1), it follows that (xn)n∈N is a Cauchy sequence in
(M,d). Moreover, since A (M) is compact it follows from Lemma 1.1.3 that
(M,d) is complete and therefore, (xn)n∈N is convergent. Let x = lim

n→∞
xn.

The triangle inequality and the nonexpansivity of T imply that for each
n ∈ N we have that

d (Tx, x) ≤ d (Tx, Txn) + d (Txn, xn) + d (xn, x) ≤

d (x, xn) + d (Txn, xn) + d (xn, x) ≤

d (Txn, xn) + 2d (xn, x) .

Since x = lim
n→∞

xn, we have that lim
n→∞

d (xn, x) = 0.

Since xn, Txn ∈ An for all n ∈ N, it follows that

d (Txn, xn) ≤ δn ≤ qnδ0

and therefore since q ∈ (0, 1), we have that

lim
n→∞

d (Txn, xn) = 0.
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Thus, d (Tx, x) = 0 which implies that x is a fixed point of T .
Hence, (M,d) has the FPP for nonexpansive mappings.

�
In the next theorem we will see that, given a hyperconvex metric space

(M,d) and a metric d1 equivalent to d which is “close enough” to it then,
(M,d1) has (p, q)-URNS.

Theorem 2.3.2. Let (M,d) be a hyperconvex metric space and let d1 be a
metric equivalent to d such that

ad (x, y) ≤ d1 (x, y) ≤ bd (x, y) for all x, y ∈M .

Then, for any L ⊂M with diamd1 (L) > 0 we have

Bd1

[
L,

b

2a
diamd1 (L)

]
∩Bd1

[
Bd1

[
L,

b

2a
diamd1 (L)

]
,
b2

2a2
diamd1 (L)

]
6= ∅.

In particular, if
b

a
<
√

2 then, (M,d1) has

(
b

2a
,
b2

2a2

)
-URNS.

Proof: Let (M,d) and d1 be as above.
Now, let L ⊂ M be such that δ1 = diamd1 (L) > 0. We will begin by

showing that

A = Bd

[
L,

1

2a
δ1

]
∩Bd

[
Bd1

[
L,

b

2a
δ1

]
,
b

2a2
δ1

]
6= ∅.

Since A is an intersection of closed balls on the hyperconvex metric
space (M,d), if we manage to check that for any given two balls B (x, r1)
and B (y, r2) in the family of balls whose intersection equals to A, it is true
that d (x, y) ≤ r1 + r2 then, the hyperconvexity of (M,d) will imply that
A 6= ∅.

It suffices to consider the following three cases:

� Case 1: x, y ∈ L. In this case we have that

d (x, y) ≤ 1

a
d1 (x, y) ≤ 1

a
δ1 =

1

2a
δ1 +

1

2a
δ1.

� Case 2: x ∈ L and y ∈ Bd1
[
L,

b

2a
δ1

]
. In this case we have that

d (x, y) ≤ 1

a
d1 (x, y) ≤ b

2a2
δ1 ≤

b

2a2
δ1 +

1

2a
δ1.
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� Case 3: x, y ∈ Bd1
[
L,

b

2a
δ1

]
. In this case we have that for any z ∈ L,

d (x, y) ≤ 1

a
d1 (x, y) ≤ 1

a
d1 (x, z) +

1

a
d1 (z, y) ≤ b

2a2
δ1 +

b

2a2
δ1.

Thus, as we mentioned before it follows from the hyperconvexity of (M,d)
that A 6= ∅.

Now, from the relation between d and d1 that Bd1 (x, ar) ⊂ Bd (x, r) ⊂
Bd1 (x, br) for all x ∈ M and r > 0 which implies that Bd1 [P, ar] ⊂
Bd [P, r] ⊂ Bd1 [P, br] for all P ⊂M and r > 0. Thus, we have that

Bd

[
L,

1

2a
δ1

]
⊂ Bd1

[
L,

b

2a
δ1

]
and

Bd

[
Bd1

[
L,

b

2a
δ1

]
,
b

2a2
δ1

]
⊂ Bd1

[
Bd1

[
L,

b2

2a
δ1

]
,
b2

2a2
δ1

]
which gives us that

A ⊂ Bd1
[
L,

b

2a
δ1

]
∩Bd1

[
Bd1

[
L,

b2

2a
δ1

]
,
b2

2a2
δ1

]
and therefore,

Bd1

[
L,

b

2a
δ1

]
∩Bd1

[
Bd1

[
L,

b2

2a
δ1

]
,
b2

2a2
δ1

]
6= ∅.

Finally, if
b

a
<
√

2 we have that
b2

2a2
< 1 and then, it follows from what

we have shown above that for each L ∈ Ad1 (M) with diamd1 (L) > 0 we
have that

Bd1

[
L,

b

2a
diamd1 (L)

]
∩Bd1

[
Bd1

[
L,

b

2a
diamd1 (L)

]
,
b2

2a2
diamd1 (L)

]
6= ∅.

Hence, (M,d1) has

(
b

2a
,
b2

2a2

)
-URNS.

�
Now, we can show the following stability result regarding the FPP for

nonexpansive mappings.

Corollary 2.3.1. Let (M,d) be a bounded hyperconvex metric space and let
d1 be a metric equivalent to d such that ad (x, y) ≤ d1 (x, y) ≤ bd (x, y) for

all x, y ∈M and
b

a
<
√

2. If the family Ad1 (M) is compact then the metric

space (M,d1) has the FPP for nonexpasive mappings.
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Proof: It follows straight from Theorem 2.3.1 and Theorem 2.3.2.
�

Even though the compactness of Ad1 (M) must be required in Corol-
lary 2.3.1, in the next section we will present several examples where this
condition comes for free.

2.4 More examples of sets with the FPP for non-
expansive mappings

Example 2.4.1. Let I be a nonempty index set and consider the hyperconvex
metric space (`∞ (I) , d∞). Let τ be the product topology on `∞ (I), which is
the topology of the coordinatewise convergence.

Observe that given a τ -closed and bounded set A, there exists a cartesian
product of closed intervals B such that A ⊂ B. Moreover, it follows from
Tychonoff’s theorem that B is τ -compact and then, since A is τ -closed, we
have that A is τ -compact. In resume, every τ -closed and bounded set is
τ -compact.

Thus, if we let M be a τ -closed and bounded subset of `∞ (I) and consider
the metric space (M,d∞) then, by considering a metric d1 on M which is
equivalent to d∞ and such that the closed balls of (M,d1) are τ -closed we
have that Ad1 (M) is compact.

Now, taking (ai)i∈I , (bi)i∈I ∈ `∞ (I) with ai ≤ bi for all i ∈ I and letting

M =
∏
i∈I

[ai, bi], since M is an admissible subset of (`∞, d∞), it follows from

Proposition 1.5.3 that (M,d∞) is a hyperconvex metric space.
Thus, for any metric d1 on M for which it is true that

ad∞ (x, y) ≤ d1 (x, y) ≤ bd∞ (x, y)

for all x, y ∈ M and such
b

a
<
√

2 and whose closed balls are coordi-

natewise closed, it follows from Corollary 2.3.1 that (M,d1) has the FPP
for nonexpansive mappings.

If we particularize to the case I = N, then the coordinatewise topology
on `∞ coincides with the σ (`∞, `1)-topology for bounded sets of `∞. In case
that a metric on `∞ comes from an equivalent norm ‖·‖, it is also worth
noting that the the closed balls for the ‖·‖ norm are σ(`∞, `1)-closed if and
only if ‖·‖ is a dual norm, that is, there exists an equivalent norm ‖·‖′ on `1
for which the dual

(
`1, ‖·‖′

)∗
is isometric to (`∞, ‖·‖) (see for instance [21,

Lemma 8.8]). This leads us to the following corollary.

Corollary 2.4.1. Let M be a bounded subset of `∞. Assume that M is
coordinatewise closed and (M, ‖·‖∞) is hyperconvex. Let ‖·‖ be a dual norm
on `∞ such that
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‖x‖∞ ≤ ‖x‖ ≤ b ‖x‖∞ for all x ∈M .

Then (M, ‖·‖) has the FPP for nonexpansive mappings if b <
√

2.

We next apply the above stability result to deduce the fulfillment of
the FPP for some closed convex bounded subsets of `∞ endowed with a
Luxemburg norm.

In case the sequence (pn)n∈N is unbounded,
(
`pn , ‖·‖pn

)
contains an

isometric copy of `∞ so, once more, every failure of the FPP has its own

isometric reflection in
(
`pn , ‖·‖pn

)
(see for instance [13, Theorem 2.3]). We

will next prove that, under some additional restriction over the divergence
of the sequence (pn)n∈N, we can still prove that there are some closed convex
bounded sets with the FPP for the Luxemburg norm.

Example 2.4.2. Let (pn)n∈N be an unbounded sequence in [1,+∞) such

that there exists b ∈
(
1,
√

2
)

for which
∞∑
n=1

(
1

b

)pn
≤ 1. Let M be a bounded

subset of `∞ with (M, ‖·‖∞) hyperconvex. Then
(
M, ‖·‖pn

)
has the FPP.

Proof: Let x = (xn)n∈N ∈ `∞. If x is the sequence whose all entries are 0
we have that ‖x‖pn = 0 = ‖x‖∞. If x is not that sequence then, under the
assumptions on b, we have that

∞∑
n=1

∣∣∣∣ xn
b ‖x‖∞

∣∣∣∣pn ≤ ∞∑
n=1

(
1

b

)pn
≤ 1.

Thus, it follows from the definition of ‖·‖pn that ‖x‖pn ≤ b ‖x‖∞.
Moreover, since (pn)n∈N is unbounded, it follows that the identity map-

ping is an isomorphism from `∞ into `pn , which implies that ‖x‖∞ ≤ ‖x‖pn
for all x ∈ `∞. Therefore,

‖x‖∞ ≤ ‖x‖pn ≤ b ‖x‖∞
for all x ∈ `∞.
Furthermore, the closed unit balls for the norm ‖·‖pn are σ (`∞, `1)-

closed, since ‖·‖pn is the dual norm of the corresponding Orlicz space `qn

with
1

pn
+

1

qn
= 1 endowed with the Luxemburg norm. Applying Corollary

2.4.1 we obtain the result.
�

From what we have previously seen, we can go further in the study of
the FPP for bounded non-weakly compact subsets of c as we can see below
in the final example of this chapter.
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Example 2.4.3. Consider again the set below which was introduced in [22]

W = {x = (xn) ∈ `∞ : 1 ≥ x1 ≥ x2 ≥ . . . ≥ 0} .

From Corollary 2.3.1 and Example 2.4.1, we know that given a metric d
for which there exists 1 < a <

√
2 such that

d∞ (x, y) ≤ d (x, y) ≤ ad∞ (x, y)

for all x, y ∈W and for which the closed d-balls are coordinatewise closed in

`∞, then (W,d) has the FPP. In particular,
(
W, ‖·‖pn

)
has the FPP where

(pn)n∈N satisfies the assumptions of Example 2.4.2.
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Chapter 3

Fixed points and common
fixed for orbit-nonexpansive
mappings in metric spaces

In this chapter we will present some recent results revolving around the
FPP for orbit-nonexpansive mappings and common fixed points for fami-
lies of mappings which satisfy some kind of orbit-nonexpansivity condition.
Most of the results presented in this chapter can be found in the article [20]
by Rafael Esṕınola Garćıa, Maŕıa Japón and myself.

In the first section we will present the concept of orbit of a self-mapping
and the class of orbit-nonexpansive mappings over a metric space which will
be shown to contain the class of nonexpansive mappings. Some properties
of orbit-nonexpansive mappings and examples of such mappings will be pre-
sented. From the examples we will see that, unlike nonexpansive mappings,
orbit-nonexpansive mappings need not be continuous.

In the second section we introduce the notion of a family of interlaced
orbit-nonexpansive mappings and study how the notion of normal struc-
ture leads us to the existence of common fixed points for such families. We
also define what it means for a group of self-mappings to act on a met-
ric space. Moreover, we will show that our result applies to the class of
orbit-nonexpansive mappings and to a group of orbit-nonexpansive map-
pings acting on a metric space therefore, extending previous results found
in the literature.

In the third section we will study how the concept of (p, q)-URNS intro-
duced in Section 2.3 implies the existence of fixed points for families of in-
terlaced orbit-nonexpansive mappings and therefore, for orbit-nonexpansive
mappings. Once more we will show that our result extends previous results
found in the literature.
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3.1 Orbit-nonexpasive mappings

Definition 3.1.1. Let T be a self-mapping on a metric space (M,d). Given
x ∈M we define the orbit of x with respect to T as the set

OT (x) := {x} ∪ {Tnx : n ≥ 1} = {Tnx : n ≥ 0}

where we consider T 0 to be the identity mapping on M .

The following definition was first introduced by A. Nicolae in [42] under
the name of nonexpansive with respect to orbits, (see [1] for example).

Definition 3.1.2. A self-mapping T : M → M defined on a metric space
(M,d) is said to be orbit-nonexpansive if

d (Tx, Ty) ≤ D (x,OT (y)) for all x, y ∈M.

We chose the name orbit-nonexpansive because it is shorter which implies
in shorter statements. It is clear that every nonexpansive mapping defined
over a metric space (M,d) is orbit-nonexpasive since y ∈ OT (y) for all
y ∈M . The following proposition shows us an interesting property of orbit-
nonexpansive mappings.

Proposition 3.1.1. Let T : M → M be an orbit-nonexpansive mapping
over a metric space (M,d). Then, for every n ∈ N we have that

d (Tnx, Tny) ≤ D (x,OT (y)) for all x, y ∈M. (∗)

Proof: Let T be as above. Since T is orbit-nonexpansive we have that

d (Tx, Ty) ≤ D (x,OT (y)) for all x, y ∈M

that is, (∗) holds for n = 1.
Now, suppose that for some integer k ≥ 1 we have that

d
(
T kx, T ky

)
≤ D (x,OT (y)) for all x, y ∈M.

Observe first that

d
(
T k+1x, T k+1y

)
= d

(
TT kx, TT ky

)
≤ D

(
T kx,OT

(
T ky

))
=

sup
m∈N∪{0}

{
d
(
T kx, TmT ky

)}
= sup
m∈N∪{0}

{
d
(
T kx, T kTmy

)}
for all x, y ∈M .

Now, given x, y ∈ M and m ∈ N ∪ {0} it follows from our hypothesis
that

d
(
T kx, T kTmy

)
≤ D (x,OT (Tmy)) .
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Moreoever, we have that

D (x,OT (Tmy)) = sup
n∈N∪{0}

{d (x, TnTmy)} = sup
n≥m
{d (x, Tny)} ≤ D (x,OT (y)) .

Thus, sup
m∈N∪{0}

{
d
(
T kx, T kTmy

)}
≤ D (x,OT (y)) for all x, y ∈ M and

for all m ∈ N ∪ {0} and therefore, d
(
T k+1x, T k+1y

)
≤ D (x,OT (y)) for all

x, y ∈M .
Hence, (∗) holds for all n ∈ N.

�
Given a bounded metric space (M,d) and T a nonexpansive mapping

with respect to orbits over M , it is obvious that the orbits of all points under
T are bounded. The following proposition tells us that on a generic metric
space (possibly unbounded), given a mapping T which is orbit-nonexpansive,
either the orbits of all points under T are bounded or the orbits of all points
under T are unbounded.

Proposition 3.1.2. Let T be an orbit-nonexpansive mapping over a metric
space (M,d). Then, OT (x) is bounded for some x ∈M if and only if OT (y)
is bounded for all y ∈M .

Proof: Let T be as above.

(=⇒) Suppose there exists x ∈ M such that OT (x) is bounded and let
δ = diam (OT (x)). Given y ∈M , we have that

d (x, Tny) ≤ d (x, Tnx) + d (Tnx, Tny) for all n ∈ N ∪ {0} .

Since Tnx ∈ OT (x) for all n ∈ N ∪ {0} we have that

d (x, Tnx) ≤ δ and d (y, Tnx) ≤ d (y, x) + d (x, Tnx) ≤ d (y, x) + δ

for all n ∈ N ∪ {0}. In particular, we have that D (y,OT (x)) ≤ d (y, x) + δ.
Also, we know that d (x, y) ≤ D (y,OT (x)) and it follows from Proposition
3.1 that d (Tnx, Tny) = d (Tny, Tnx) ≤ D (y,OT (x)) for all n ∈ N. So, it
follows from what we have seen above, that d (Tnx, Tny) ≤ d (y, x) + δ.

Therefore, d (x, Tny) ≤ δ+D (y,OT (x)) ≤ d (y, x)+δ for all n ∈ N∪{0}
which implies that OT (y) ⊂ B (x, d (y, x) + δ).

Hence, OT (y) is bounded for all y ∈M .

(⇐=) If OT (y) is bounded for all y ∈ M then, in particular OT (x) is
bounded for some x ∈M .

�
It is worth noticing that if (M,d) is an unbounded metric space and

T is a self-mapping over M such that OT (x) is unbounded for all x ∈ M
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then, given any x, y ∈ M we have that D (x,OT (y)) = +∞ which implies
that d (Tx, Ty) ≤ D (x,OT (y)) and therefore, T is orbit-nonexpansive. In
this case, T might not have any fixed point as we can see looking at the
translations in Rn presented in Example 1.2.3.

The next example, due to S.Prus, shows that even if T is an orbit-
nonexpansive mapping whose all orbits are bounded, the existence of fixed
points is not guaranteed.

Example 3.1.1. Consider the mapping T : (`∞, d∞)→ (`∞, d∞) given by

Tx = (1 + lim supxn, x1, x2, . . . , xn, . . .) for all x = (xn)n∈N ∈ `∞.

First, recall that for any z = (zn)n∈N and w = (wn)n∈N we have that

lim sup zn + lim inf wn ≤ lim sup (zn + wn)

which tells us that for any x = (xn)n∈N and y = (yn)n∈N in `∞ we have that

lim supxn − lim sup yn = lim supxn + lim inf (−yn) ≤ lim sup (xn − yn) ≤

sup
n∈N
{|xn − yn|} = d∞ (x, y) = ‖x− y‖∞

and

lim sup yn − lim supxn = lim sup yn + lim inf (−xn) ≤ lim sup (yn − xn) ≤

sup
n∈N
{|xn − yn|} = d∞ (x, y) = ‖x− y‖∞

which implies that

|1 + lim supxn − (1 + lim sup yn)| = |lim supxn − lim sup yn| ≤ d∞ (x, y) =

‖x− y‖∞
Hence,

d∞ (Tx, Ty) = ‖Tx− Ty‖∞ =

sup ({|lim supxn − lim sup yn|} ∪ {|xm − ym| : m ∈ N}) =

sup
m∈N
{|xm − ym|} = d∞ (x, y) = ‖x− y‖∞

for all x = (xn)n∈N and y = (yn)n∈N in `∞ and therefore, T is an isometry
which tells us in particular that T is orbit-nonexpansive.

Since T is an isometry, given x, y ∈ `∞ we have that ‖Tmx− Tmy‖∞ =
‖x− y‖∞ for all m ∈ N. In particular, if we let 0 denote the zero vector of
`∞ we have that ‖Tmx− Tm (0)‖∞ = ‖x− 0‖∞ = ‖x‖∞ for all x ∈ `∞ and
for all m ∈ N which implies that
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‖Tmx− T (0)‖∞ ≤ ‖T
mx− Tm (0)‖∞ + ‖Tm (0)− T (0)‖∞ =

‖x‖∞ + ‖Tm (0)− T (0)‖∞
for all x ∈ `∞ and for all m ∈ N.

Now, observe that T (0) = (1, 0, 0, 0, . . .) which implies that

T 2 (0) = TT (0) = T (1, 0, 0, . . .) = (1, 1, 0, 0 . . .)

which implies that

T 3 (0) = TT 2 (0) = T (1, 1, 0, 0 . . .) = (1, 1, 1, 0 . . .) .

Proceeding inductively, we can show that Tm (0) =

1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
first m coordinates

, 0, 0, . . . ,


for all m ∈ N and therefore,

‖Tm (0)− T (0)‖∞ =

∥∥∥∥∥∥∥
0, 1, 1, 1, . . . , 1︸ ︷︷ ︸

first m coordinates

, 0, 0, . . . ,


∥∥∥∥∥∥∥
∞

= 1

for all m ∈ N.
Thus,

‖Tmx− T (0)‖∞ ≤ ‖x‖∞ + 1

for all x ∈ `∞ and for all m ∈ N and then, since∥∥T 0x
∥∥
∞ = ‖x‖∞ ≤ ‖x‖∞ + 1,

it follows that OT (x) ⊂ B (T (0) , ‖x‖∞ + 1) for all x ∈ `∞.
Hence, OT (x) is bounded for all x ∈ `∞.

Now, observe that if there were x = (xn)n∈N ∈ `∞ such that

(1 + lim supxn, x1, x2, . . . , xn, . . .) = (x1, x2, x3, . . . , xn, . . .)

then, on one hand we would have x1 = 1 + lim supxn and on the other hand
we would have x1 = x2 = x3 = . . . = xn = . . . The previous sequence of
equalities implies that lim supxn = x1. Thus, since the equation x1 = 1 +x1

has no real solution, we obtain a contradiction. Therefore, T has no fixed
points.
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Since having all orbits bounded is not enough to ensure the existence of
fixed points for orbit-nonexpansive mappings, we will need to look for other
properties which we can impose on the metric space in order to guarantee
the existence of such points. This will be done in the next section.

It is easy to see that nonexpansivity implies (uniform) continuity. The
following two examples show that being orbit-nonexpansive does not require
continuity. The first example can be found in [42] (Example 5.2) and the
second one can be found [20] (Example 2.2). Both examples will be defined
over a closed interval where the metric considered is the one induced by the
standard metric of R.

Example 3.1.2. Let T : [0, 1]→ [0, 1] be the mapping defined by

Tx =


x

4
if x ∈

[
0,

1

2

)
,

x

2
if x ∈

[
1

2
, 1

]
.

The proof that the mapping in the previous example is orbit-nonexpansive
can be found in [42]. In the next example we present a mapping that is orbit-
nonexpansive and for which it is not possible to find a nondegenerate closed
T -invariant interval upon which the mapping T is continuous. The proof
below follows the same ideas the one we have just mentioned.

Example 3.1.3. Let T : [−1, 1]→ [−1, 1] be the mapping defined by

Tx =


x

3
if x ∈ [−1, 1] \Q,

−x
3

if x ∈ Q ∩ [−1, 1] .

There are several cases to study.
Case 1: x, y ∈ [−1, 1] \Q. In this case we have that

d (Tx, Ty) =
∣∣∣x
3
− y

3

∣∣∣ =
1

3
|x− y| ≤ |x− y| ≤ D (x,OT (y)) .

Case 2: x, y ∈ Q ∩ [−1, 1]. In this case we have that

d (Tx, Ty) =
∣∣∣−x

3
−
(
−y

3

)∣∣∣ =
1

3
|x− y| ≤ |x− y| ≤ D (x,OT (y)) .

Case 3: x ∈ [−1, 1] \Q and y ∈ Q ∩ [−1, 1]. In this case we have that

d (Tx, Ty) =
∣∣∣x
3
−
(
−y

3

)∣∣∣ =
∣∣∣x
3

+
y

3

∣∣∣ and

D (x,OT (y)) = sup
{
|x− y| ,

∣∣∣x+
y

3

∣∣∣ , ∣∣∣x− y

9

∣∣∣ , ∣∣∣x+
y

27

∣∣∣ , . . .} .
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If x > 0 and y ≥ 0 or x < 0 and y ≤ 0 then,∣∣∣x
3

+
y

3

∣∣∣ ≤ ∣∣∣x+
y

3

∣∣∣ ≤ D (x,OT (y)) .

If y < 0 < x or x < 0 ≤ y then,∣∣∣x
3

+
y

3

∣∣∣ ≤ |x− y| ≤ D (x,OT (y)) .

Case 4: x ∈ Q ∩ [−1, 1] and y ∈ [−1, 1] \Q. In this case we have that

d (Tx, Ty) =
∣∣∣−x

3
− y

3

∣∣∣ =
∣∣∣x
3

+
y

3

∣∣∣ and

D (x,OT (y)) = sup
{
|x− y| ,

∣∣∣x− y

3

∣∣∣ , ∣∣∣x− y

9

∣∣∣ , ∣∣∣x− y

27

∣∣∣ , . . .} .
If x = 0 then, for all y ∈ [−1, 1] we have that∣∣∣x

3
+
y

3

∣∣∣ ≤ |y| = D (x,OT (y)) .

If 0 < y ≤ 2x or 2x ≤ y < 0 then,∣∣∣x
3

+
y

3

∣∣∣ ≤ |x| = D (x,OT (y)) .

If 0 < 2x ≤ y or y ≤ 2x < 0 then,∣∣∣x
3

+
y

3

∣∣∣ ≤ |x− y| = D (x,OT (y)) .

If y < 0 < x or x < 0 < y then,∣∣∣x
3

+
y

3

∣∣∣ ≤ ∣∣∣x− y

3

∣∣∣ ≤ D (x,OT (y)) .

Hence, d (Tx, Ty) ≤ D (x,OT (y)) for all x, y ∈ [−1, 1] and therefore,
T is orbit-nonexpansive. Moreover, T fails to be nonexpansive on any T -
invariant nondegenerate closed interval of [−1, 1], what easily follows from
the fact that T is discontinuous everywhere except for the origin, which is
fixed for T .

Even though orbit-nonexpansive mappings need not be continuous, we
still have the following proposition.

Proposition 3.1.3. Let T be an orbit-nonexpansive mapping over a metric
space (M,d) such that Fix (T ) 6= ∅. Then, T is continuous at every x ∈
Fix (T ).
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Proof: Let T be as above and take x0 ∈ Fix (T ).
Since Tx0 = x0 it follows that Tnx0 = x0 for all n ∈ N which implies

that OT (x0) = {x0} and therefore, D (x,OT (x0)) = d (x, x0) for all x ∈M .
In particular, since T is orbit-nonexpansive, we have that

d (Tx, Tx0) ≤ D (x,OT (x0)) = d (x, x0)

for all x ∈M .
Thus, for any given ε > 0 if x ∈ M is such that d (x, x0) < ε then, it

follows that d (Tx, Tx0) < ε and therefore, T is continuous at x0.
Hence, T is continuous at every x ∈ Fix (T ).

�
Given a metric space (M,d), it is easy to see that besides containing the

class of nonexpansive mappings, the class of orbit-nonexpansive also contains
the class of self-mappings which satisfy d (Tx, Ty) ≤ max {d (x, y) , d (x, Ty)}
for all x, y ∈M . We finish this section by presenting the widely studied class
of mean nonexpansive mappings (introduced in [47]) and showing that this
class is also contained in the class of orbit-nonexpasive mappings. For more
on this class of mappings see also [46] and [48].

Definition 3.1.3. A self-mapping T : M → M defined on a metric space
(M,d) is said to be mean nonexpansive if there exist a ≥ 0 and b ≥ 0
with a+ b ≤ 1 such that

d (Tx, Ty) ≤ ad (x, y) + bd (x, Ty) for all x, y ∈M.

Proposition 3.1.4. If T is a mean nonexpansive mapping over a metric
space (M,d) then T is orbit-nonexpansive.

Proof: Let T be as above. Then, there exist a ≥ 0 and b ≥ 0 with a+ b ≤ 1
such that

d (Tx, Ty) ≤ ad (x, y) + bd (x, Ty) for all x, y ∈M

which implies that

d (Tx, Ty) ≤ ad (x, y) + bd (x, Ty) ≤ aD (x,OT (y)) + bD (x,OT (y)) =

(a+ b)D (x,OT (y)) ≤ D (x,OT (y))

for all x, y ∈M and therefore, T is orbit-nonexpansive.
�
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3.2 Common fixed points of families of interlaced
orbit-nonexpansive mappings

In this section we introduce the notion of a family of interlaced orbit-
nonexpansive mappings and study how the notion of normal structure intro-
duced in Definition 1.3.1 leads us to achieve positive results concerning the
existence of common fixed points for such families. We will then show that
our fixed point result not only applies to the class of orbit-nonexpansive
mappings but also to a group of orbit-nonexpansive mappings acting on
a metric space. Common fixed point results for a commutative family of
orbit-nonexpansive mappings will also be obtained.

Definition 3.2.1. Let (M,d) be a metric space and let F be a family of
self-mappings on M . We say that F is a family of interlaced orbit-
nonexpansive mappings if

d (Tx, Sy) ≤ sup {D (x,OR (y)) : R ∈ F}

for all S, T ∈ F and for all x, y ∈M .

The next proposition shows us that orbit-nonexpansive mappings are
closely related to the previous definition.

Proposition 3.2.1. Let T be an orbit-nonexpansive mapping over a metric
space (M,d). Then, F = {T} is a family of interlaced orbit-nonexpansive
mappings.

Proof: Let T be as above and let F = {T}. Since T is orbit-nonexpansive,
we have that

d (Tx, Ty) ≤ D (x,OT (y))

for all x, y ∈M .
Now, since F has T as its single element, given x, y ∈M it follows that

sup {D (x,OR (y)) : R ∈ F} = D (x,OT (y))

Hence, F is a family of interlaced orbit-nonexpansive mappings.
�

Before we present our next proposition we will need a few definitions.

Definition 3.2.2. A set G together with a binary operation ∗ is said to be
group if the following requirements are satisfied:

i) For all f, g, h ∈ G, we have that (f ∗ g) ∗ h = f ∗ (g ∗ h);

ii) There exists a unique e ∈ G such that e ∗ g = g = g ∗ e for all g ∈ G
and this unique e is called the identity element of the group.
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iii) For every g ∈ G there exists a unique h ∈ G such that g ∗h = e = h ∗ g
and for each g this unique h is denoted by g−1 and it is called the
inverse of g.

Example 3.2.1. Let M be a set and let G be the set of all bijections defined
on M . Then, the set (G, ◦) is a group where ◦ is the composition of mappings.
The identity element of this group is the identity mapping on M and for each
g ∈ G the inverse of g is the inverse mapping of g.

Next we define the action of a group over a set.

Definition 3.2.3. Let M be a set and (G, ∗) a group. A mapping ϕ :
G ×M → M is said to be a (left) group action on M if it satisfies the
following requirements:

i) ϕ (e, x) = x for all x ∈M , where e is the identity element of (G, ∗);

ii) ϕ (f, ϕ (g, x)) = ϕ (f ∗ g, x) for all f, g ∈ G and for all x ∈M .

When we have M , (G, ∗) and ϕ as above we say simply say that (G, ∗)
acts on M .

Whenever there is no risk of confusion, we will drop the symbol of the
binary operation and write ab instead of a∗ b. We will also write f (x) or fx
to denote ϕ (f, x). This is precisely what we have been doing when working
with iterates of a self-mapping T .

Observe that if a group (G, ∗) acts on a set M then, for each fixed g ∈ G
the mapping

ϕg :M → M
x 7→ gx

is a bijection. Also, ϕfg = ϕf ◦ϕg for all f, g ∈ G and if e is the identity
element of (G, ∗) then, ϕe is the identity mapping on M .

Example 3.2.2. Let M be a set and let (G, ◦) be a group of mappings defined
on M , where again ◦ is the composition of mappings. Then,

ϕ :G ×M → M
(g, x) 7→ g (x)

is an action of (G, ◦) on M . Moreover, for each g ∈ G we have that
ϕg = g.

Whenever we say that a group (G, ◦) of mappings defined on a set M
acts on M , we mean the action presented in the previous example.

Now, we can finally present our next proposition.
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Proposition 3.2.2. Let (M,d) be a bounded metric space and let (G, ◦) be
a group of self-mappings acting on M , each of which is orbit-nonexpansive.
Then, the family G is interlaced orbit-nonexpansive.

Proof: Let (M,d) and (G, ◦) be as above.
Given f, g ∈ G, since (G, ◦) is a group we have that

g = eg =
(
ff−1

)
g = f

(
f−1g

)
and then since f is orbit-nonexpansive it follows that

d (fx, gy) = d
(
fx, f

(
f−1g

)
y
)
≤ D

(
x,Of

(
f−1gy

))
for all x, y ∈M .
Once more, since (G, ◦) is a group it follows that f−1g ∈ G which implies

that for any x, y ∈M we have that

D
(
x,Of

(
f−1gy

))
≤ sup {D (x,Oh (y)) : h ∈ G} .

Hence, G is a family of interlaced orbit-nonexpansive mappings.
�

Before we present the main result of this section we must recall the
definition of a one-local retract of a metric space.

Definition 3.2.4. A subset D of a metric space (M,d) is a one-local re-
tract of M if, for any family of closed balls B = {B (xi, ri)}i∈I whose centers

are in D and such that
⋂
i∈I

B (xi, ri) 6= ∅ it is the case that

D ∩
⋂
i∈I

B (xi, ri) 6= ∅.

More details about one-local retracts can be found in [31], where it is
shown that they can be considered as a generalization of nonexpansive re-
tracts, enjoying some structural properties of great interest.

Theorem 3.2.1. Let (M,d) be a bounded metric space which has normal
structure and such that A (M) is compact. Let F be a family of interlaced
orbit-nonexpansive self-mappings on M . Then, there exists a common fixed
point to all mappings in F . Moreover, the common fixed point set of F ,
Fix (F), is a one-local retract of M .

Proof: Let (M,d) and F be as above.
Since A (M) is compact, it follows from Lemma 1.1.3 that we can take

a minimal element A0 of AF (M) with respect to set inclusion.
Since T (A0) ⊂ A0 for all T ∈ F and A0 ∈ A (M) we have that

cov

( ⋃
T∈F

T (A0)

)
⊂ A0
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which gives us that S

(
cov

( ⋃
T∈F

T (A0)

))
⊂ S (A0) ⊂ cov

( ⋃
T∈F

T (A0)

)

for all S ∈ F and therefore, cov

( ⋃
T∈F

T (A0)

)
∈ AF (M). Thus, it follows

from the minimality of A0 that

A0 = cov

( ⋃
T∈F

T (A0)

)
.

Since A0 6= ∅, there exists x0 ∈ A0. We affirm that A0 = {x0}. Suppose that
A0 has more than one element. Then, it follows that 0 < diam (A0) < +∞
and therefore, since (M,d) has normal structure, it follows from Proposition
1.3.2 that there exists 0 < r < diam (A0) such that A0∩B [A0, r] 6= ∅. Now,
take a0 ∈ A0∩B [A0, r] and fix S ∈ F . Since T (A0) ⊂ A0 for all T ∈ F and
a0 ∈ B [A0, r], we have that d (a0, a) ≤ r and d (a0, T

na) ≤ r for all a ∈ A0,
for all T ∈ F and for all n ∈ N which gives us that

D (a0, OT (a)) = sup
n∈N∪{0}

{d (a0, T
na)} ≤ r

for all a ∈ A0 and for all T ∈ F .
Hence, since F is a family of interlaced orbit-nonexpansive self-mappings

on M , it follows that for all a ∈ A0 and for all T ∈ F we have that

d (Sa0, Ta) ≤ sup {D (a0, OT (a)) : T ∈ F} ≤ r.

Thus, for every fixed T ∈ F we have that Ta ∈ B (Sa0, r) for all a ∈
A0 which implies that T (A0) ⊂ B (Sa0, r) for all T ∈ F and therefore,⋃
T∈F

T (A0) ⊂ B (Sa0, r). Since B (Sa0, r) ∈ A (M), what we have just

shown implies that

A0 = cov

( ⋃
T∈F

T (A0)

)
⊂ B (Sa0, r) .

Since S was an arbitrary element of F we have that A0 ⊂ B (Sa0, r) for
all S ∈ F which implies that Sa0 ∈ B [A0, r] for all S ∈ F . Also, since
S (A0) ⊂ A0 for all S ∈ F and a0 ∈ A0, we have that Sa0 ∈ A0 ∩ B [A0, r]
for all S ∈ F . Thus, since a0 was an arbitrary element in A0 ∩B [A0, r], we
have that

S (A0 ∩B [A0, r]) ⊂ A0 ∩B [A0, r]

for all S ∈ F and therefore, A0 ∩B [A0, r] ∈ AF (M).
Finally, observe that given any two elements x, y ∈ A0 ∩B [A0, r], since

x ∈ A0 and y ∈ B [A0, r] we have that d (x, y) ≤ r < diam (A0) which
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implies that diam (A0 ∩B [A0, r]) < diam (A0) and therefore, A0 ∩B [A0, r]
is a proper subset of A0 which contradicts the minimality of A0.

Thus, A0 = {x0} and therefore, since T (A0) ⊂ A0 for all T ∈ F , if
follows that x0 is a common fixed point for all T ∈ F .

In order to complete the proof, we next show that Fix (F) is a one-local
retract of M . Indeed, let {B (xi, ri)}i∈I be a family of closed balls where

xi ∈ Fix (F) for all i ∈ I and such that B =
⋂
i∈I

B (xi, ri) 6= ∅.

Since B is admissible, Proposition 1.1.4 tells us that A (B) is compact
and Proposition 1.3.1 tell us that

(
B, d|B

)
has normal structure.

Now, observe that given y ∈ B, for each i ∈ I and for each T ∈ F we
have that

d (Ty, xi) = d (Ty, Txi) ≤ sup {D (y,OS (xi)) : S ∈ F} = d (y, xi) ≤ ri.

which implies that T (B) ⊂ B for all T ∈ F .
Applying the first part of this proof to the metric space

(
B, d|B

)
we have

that there exists x0 ∈ B such that T (x0) = x0 for all T ∈ F , which shows
that Fix (F) ∩B 6= ∅.

Hence, F ∩B 6= ∅ and therefore, F is a one-local retract of M .
�

If we put Theorem 3.2.1 together with Proposition 3.2.2, we obtain the
next common fixed point result for the action of a group. The result seems
to be unknown even for the case of nonexpansivity.

Corollary 3.2.1. Let (M,d) be a bounded metric space with normal struc-
ture such that A (M) is compact. Let G be a group of orbit-nonexpansive
mappings acting over M . Then, there exists x ∈ M such that g (x) = x for
all g ∈ G.

Observe that Corollary 3.2.1 clearly extends the common fixed point
results given for onto isometries defined on a convex weakly compact subset
of a Banach space with normal structure proved by Brodskĭi and Mil’man
in [9] (see also [25]), and on a bounded hyperconvex metric space stated in
[37, Proposition 1.2].

When only a single mapping is considered, we obtain the following result.

Corollary 3.2.2. Let (M,d) be a bounded metric space with normal struc-
ture and such that A (M) is compact. Let T : M → M be an orbit-
nonexpansive mapping. Then, T has a fixed point. Moreover, the fixed
point set of T , Fix (T ), is a one-local retract of M .

In the proof of Theorem 3.2.1, the boundedness of the metric space was
used to assure that M belongs to the family of admissible sets. We could
ask whether the boundedness of the metric space could be replaced by the
boundedness of the orbits of the mapping T . Example 3.1.1 in the previous
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section tells us that this is not the case since the mapping T presented there is
a fixed-point free orbit-nonexpansive mapping, defined over (`∞, d∞), whose
all orbits are bounded. But, we know that (`∞, d∞) is a hyperconvex metric
space and therefore, it follows from Proposition 1.5.6 and Proposition 1.5.5
it has (uniform) normal structure and A (`∞) is compact.

The theorem below was proved by Khamsi in [31].

Theorem 3.2.2. [31, Theorem 8] Let (M,d) be a bounded metric space
with normal structure and such that A (M) is compact. Then any commut-
ing family of nonexpansive self-mappings on M has a common fixed point.
Moreover, the set of common fixed points is a one-local retract of M .

Following the same arguments as in [31] and by using the fact that the
set of all fixed points is a one-local retract of M , we can derive the next
common fixed point theorem which is a strict generalization of the previous
theorem (see also [16, Theorem 6.2] for the particular case of hyperconvex
metric spaces).

Corollary 3.2.3. Let (M,d) be a bounded metric space with normal struc-
ture such that A (M) is compact. Then any commutative family F of orbit-
nonexpansive self-mappings on M has a common fixed point. Moreover, the
set Fix (F) of the common fixed points of F is a one-local retract of M .

Proof: The proof of this corollary follows in the same way as those of
Theorems 7 and 8 in [31].

�
Corollary 3.2.3 also extends the theorem below.

Theorem 3.2.3. [1, Theorem 2.2] Let M be a convex weakly compact subset
of a Banach space X with weak normal structure and T : M →M an orbit-
nonexpansive mapping. Then T has a fixed point.

Also, since Lemma 1.4.1 and Theorem 1.6.3 imply that for every bounded
complete CAT(0) space the family of admissible sets is compact, we obtain
that Corollary 3.2.3 also extends the following theorem.

Theorem 3.2.4. [42, Theorem 5.1] Let (M,d) be a bounded complete CAT(0)
metric space and T : M →M an orbit-nonexpansive mapping. Then T has
a fixed point.

It is worth mentioning that the more general class of uniformly convex
metric spaces studied in [18] satisfies the conditions of Corollary 3.2.3.

We finish this section with some applications to the Banach space setting:

Corollary 3.2.4. Let M be a convex closed bounded set of a Banach space
X satisfying one of the following conditions:

i) X has weak normal structure and M is a weakly compact set,
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ii) X is a dual space with weak∗ normal structure and M is a weak∗

compact set,

iii) X = L1 [0, 1] and M is a compact in measure set.

Then every commuting family F of orbit-nonexpansive self-mappings on
M has a common fixed point. Additionally, the set Fix (F) of common fixed
points of this family of mappings is a one-local retract of M . Furthermore,
if G is a group of orbit-nonexpansive mappings defined on M , there exists
x ∈M such that g (x) = x for all g ∈ G.

3.3 Uniform relative normal structure and fixed
points for orbit-nonexpansive mappings

In this section we prove that, under standard assumptions, the (p, q)-
uniform relative normal structure, defined in Section 1.7 implies the exis-
tence of fixed points for orbit-nonexpansive mappings. In fact, we will, in
the orbit-nonexpansive setting, extend for a single mapping and for the ac-
tion of groups, Soardi’s Theorem in [44], its metric version given in [29,
Theorem 5.6] and its corresponding generalization obtained in [19, Section
4]. Since we have already observed in Section 3.1, orbit-nonexpansivity does
not imply continuity and therefore, some arguments need to be modified in
order to show the existence of fixed points.

The main result of the section is an extension of Theorem 2.3.1 (which
is the main theorem of [19, Section 4]). The result will be proved for the
case of a general interlaced orbit-nonexpansive family and we will obtain, as
particular cases, a fixed point result for a single orbit-nonexpansive mapping
and a common fixed point result for the action of a group of such mappings.
Before we can proceed, we will extend lemmas 2.3.1, 2.3.2 and 2.3.3 to the
context of families of interlaced orbit-nonexpansive mappings.

In the following lemmas, (M,d) is a bounded metric space and F is a
familiy of interlaced orbit-nonexpansive mappings.

Lemma 3.3.1. Let A ∈ AF (M) and let s > 0 such that A ∩ B [A, s] 6= ∅.
If we set

Ã := covF (A ∩B [A, s]),

it holds that diam(Ã) ≤ s.

Proof: If we manage to show that Ã ⊂ Ã ∩ B[Ã, s], we will automatically
obtain that diam(Ã) ≤ s. So, we will show that

i) A ∩B [A, s] ⊂ Ã ∩B[Ã, s] and

ii) Ã ∩B[Ã, s] is T -invariant for all T ∈ F .

69



Fixed points and common fixed for orbit-nonexpansive mappings in metric
spaces

Since Ã ∩B[Ã, s] ∈ A (M), the conclusion follows.

i) From the definition, A ∩ B [A, s] ⊂ Ã. Since A is T -invariant for all
T ∈ F and admissible and also A ∩ B [A, s] ⊂ A, we have Ã ⊂ A and
then it follows from item iii) of Lemma 1.1.1 that B [A, s] ⊂ B[Ã, s].

Thus, A ∩B [A, s] ⊂ B[Ã, s] and so

A ∩B [A, s] ⊂ Ã ∩B[Ã, s].

ii) Let z ∈ Ã ∩ B[Ã, s]. Since Ã is T -invariant for all T ∈ F , we have
that Tz ∈ Ã for all T ∈ F . It remains to be shown that Tz ∈ B[Ã, s]
for all T ∈ F which is equivalent to the fact that Ã ⊂ B (Tz, s) for all
T ∈ F . Thus, it suffices to show that for each T ∈ F ,

Ã ∩B (Tz, s) ∈ {L ∈ AF (M) : L ⊃ A ∩B [A, s]}.

It is obvious that for each T ∈ F , Ã ∩ B (Tz, s) ∈ A (M). Since
B [A, s] ⊂ B[Ã, s] and Tz ∈ Ã for all T ∈ F , given x ∈ A ∩B [A, s], it
follows that d (x, Tz) ≤ s, which implies that A ∩B [A, s] ⊂ B (Tz, s)
for all T ∈ F and therefore,

A ∩B [A, s] ⊂ Ã ∩B (Tz, s)

for all T ∈ F .

Now, fix T ∈ F . For any given y ∈ Ã∩B (Tz, s), since Ã is R-invariant
for all R ∈ F , it follows that Rny ∈ Ã for all R ∈ F and for all n ∈ N.
Then, since z ∈ B[Ã, s] we have that

d (z,Rny) ≤ s for all R ∈ F and for all n ∈ N ∪ {0}

and therefore, D (z,OR (y)) = sup
n∈N∪{0}

{d (z,Rny)} ≤ s for all R ∈ F .

Since F is a family of interlaced orbit-nonexpansive mappings we have
that

d (Sy, Tz) ≤ sup {D (z,OR (y)) : R ∈ F} ≤ s for all S ∈ F

which implies that Sy ∈ B (Tz, s) for all S ∈ F . Thus, for each

T ∈ F , we have that S
(
Ã ∩B (Tz, s)

)
⊂ Ã ∩ B (Tz, s) for all S ∈ F

and therefore, Ã ∩B (Tz, s) ∈ AF (M).

From the above, we conclude that Ã ∩ B[Ã, s] ∈ AF (M) and contains
A ∩B [A, s]. Thus, Ã ⊂ Ã ∩B[Ã, s] and diam(Ã) ≤ s.

�
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Lemma 3.3.2. If A (M) is compact and A ∈ AF (M). Then, there exists
A0 ⊂ A such that:

i) A0 ∈ AF (M) and

ii) B [A0, r] ∈ AF (M) whenever B [A0, r] is nonempty.

Proof: Let LA := {L ∈ AF (M) : L ⊂ A}. Since A ∈ AF (M) we have
that LA 6= ∅. Since, A (M) is compact, by proceeding as in the proof of
Lemma 1.1.3 we can find a minimal element A0 of LA and therefore, i) is
proven.

Since A0 ∈ AF (M) we have that T (A0) ⊂ A0 for all T ∈ F and so,

cov

( ⋃
T∈F

T (A0)

)
⊂ A0

which gives us that S

(
cov

( ⋃
T∈F

T (A0)

))
⊂ S (A0) ⊂ cov

( ⋃
T∈F

T (A0)

)

for all S ∈ F and therefore, cov

( ⋃
T∈F

T (A0)

)
∈ AF (M). Thus, it follows

from the minimality of A0 that

A0 = cov

( ⋃
T∈F

T (A0)

)
.

Now, let r > 0 be such that B [A0, r] 6= ∅. Fix T ∈ F . Given x ∈
B [A0, r], since R (A0) ⊂ A0 for all R ∈ F it follows that for any y ∈ A0 it
is true that Rny ∈ A0 for all R ∈ F and for all n ∈ N which implies that for
any y ∈ A0 we have that

d (x,Rny) ≤ r for all R ∈ F and for all n ∈ N ∪ {0}

and therefore, D (x,OR (y)) = sup
n∈N∪{0}

{d (x,Rny)} ≤ r for all R ∈ F .

Then, since F is a family of interlaced orbit-nonexpansive mappings, it
follows that

d (Tx, Sy) ≤ sup {D (x,OR (y)) : R ∈ F} ≤ r for all y ∈ A0

Thus, Tx ∈ B (Sy, r) for all y ∈ A0 and for all S ∈ F which implies that

Tx ∈ B

[ ⋃
S∈F

S (A0) , r

]
and therefore,

T (B [A0, r]) ⊂ B

[ ⋃
S∈F

S (A0) , r

]
for all T ∈ F .
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Item iii) of Proposition 1.1.1 tell us that

B

[ ⋃
S∈F

S (A0) , r

]
= B

[
cov

(⋃
S∈F

S (A0)

)
, r

]

and then since, A0 = cov

(⋃
S∈F

S (A0)

)
we have that

B

[ ⋃
S∈F

S (A0) , r

]
= B [A0, r] .

Hence, T (B [A0, r]) ⊂ B [A0, r] for all T ∈ F which implies thatB [A0, r] ∈
AF (M) and therefore, ii) is proven.

�

Lemma 3.3.3. If A (M) is compact and A ∈ AT (M). Given A0 ⊂ A as in
Lemma 3.3.2, if B [A0, r] ∩B [B [A0, r] , s] 6= ∅, then the set

Ã0 := covF (B [A0, r] ∩B [B [A0, r] , s])

satisfies:

i) Ã0 is T -invariant.

ii) Ã0 ⊂ B [A0, r].

iii) diam(Ã0) ≤ s.

Proof: Assertion i) follows from item ii) of Proposition 1.1.1. Assertion ii)
follows from the definition of Ã0 and from item ii) of 3.3.2. Assertion iii)
follows from the definition of Ã0 and Lemma 3.3.1.

�
With the previous lemmas in hand we are now ready to show the main

result of this section. Although the proof below has the same structure as the
one of Theorem 2.3.1, it is important to highlight that since the continuity of
the mappings involved is no longer assured, we need to use a more laborious
argument in order to show that the point we construct is indeed a commom
fixed point for the family of mappings.

Theorem 3.3.1. Let (M,d) be a bounded metric space with (p, q)-URNS
for some 0 < q < 1 and such that A (M) is compact. Let F be a family
of interlaced orbit-nonexpansive self-mappings on M . Then, there exists a
common fixed point for all mappings in F .

Proof: In order to make the proof clearer, we will denote diam (An) and
diam(Ãn) by δn and δ̃n respectively.

Now, take A0 ∈ AF (M) resulting from letting A = M in Lemma 3.3.2.
If A0 is a singleton then, we already have a common fixed point for all
mappings in F .
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If A0 is not a singleton, since (M,d) has (p, q)-URNS we have that

B [A0, pδ0] ∩B [B [A0, pδ0] , qδ0] 6= ∅.

Thus, defining Ã0 := covF (B [A0, pδ0] ∩B [B [A0, pδ0] , qδ0]) as in Lemma
3.3.3, we have that

Ã0 ∈ AF (M), Ã0 ⊂ B [A0, pδ0] and δ̃0 ≤ qδ0.

Now, taking A = Ã0 and applying Lemma 3.3.2, we find A1 ∈ AF (M)
such that A1 ⊂ Ã0 which implies that

A1 ⊂ B [A0, pδ0] and δ1 ≤ qδ0.

If A1 is a singleton then, we already have a common fixed point for all
mappings in F .

If A1 is not a singleton, since (M,d) has (p, q)-URNS we have that

B [A1, pδ1] ∩B [B [A1, pδ1] , qδ0] 6= ∅.

Thus, defining Ã1 := covF (B [A1, pδ1] ∩B [B [A1, pδ1] , qδ1]) as in Lemma
3.3.3, we have that

Ã1 ∈ AF (M), Ã1 ⊂ B [A1, pδ1] and δ̃1 ≤ qδ1.

Now, taking A = Ã1 and applying Lemma 3.3.2, we find A2 ∈ AF (M)
such that A2 ⊂ Ã1 which implies that

A2 ⊂ B [A1, pδ1] and δ2 ≤ qδ1.

Proceeding inductively, if there exists n0 such that An0 is a singleton
then, we already have a common fixed point for all mappings in F . Other-
wise, we can construct a sequence (An)n∈N in AF (M) having the following
properties for every n ∈ N:

(1) An ⊂ B [An−1, pδn−1];

(2) δn ≤ qδn−1.

Assuming we have a sequence as above, for each n ∈ N we can choose
xn ∈ An and consider the sequence (xn)n∈N. Then, given n ∈ N, it follows
from (2) that δn ≤ qnδ0. Since (1) tells us that An+1 ⊂ B [An, pδn], we have
that d (xn, xn+1) ≤ pδn ≤ pqnδ0.

Thus, since q ∈ (0, 1), it follows that (xn)n∈N is a Cauchy sequence in
(M,d). Moreover, since A (M) is compact it follows from Lemma 1.1.3 that
(M,d) is complete and therefore, (xn)n∈N is convergent. Let x = lim

n→∞
xn.

Now, for each T ∈ F , since T (An) ⊂ An for all n ∈ N, we have
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D (xn, OT (xn)) = sup
m∈N∪{0}

{d (xn, T
mxn)} ≤ δn

and
D (x,OT (xn)) = sup

m∈N∪{0}
{d (x, Tmxn)} ≤

sup
m∈N∪{0}

{d (x, xn) + d (xn, T
mxn)} =

d (x, xn) + sup
m∈N∪{0}

{d (xn, T
mxn)} =

d (x, xn) +D (xn, OT (xn)) ≤ d (x, xn) + δn

for all n ∈ N which implies

sup {D (x,OT (xn)) : T ∈ F} ≤ d (x, xn) + δn for all n ∈ N.

Since F is a family of interlaced orbit-nonexpansive mappings, for every
S ∈ F we have that

d (Sx, Sxn) ≤ sup {D (x,OT (xn)) : T ∈ F} ≤ d (x, xn) + δn

for all n ∈ N
which implies that

d (x, Sx) ≤ d (x, xn) + d (xn, Sxn) + d (Sxn, Sx) ≤ 2d (x, xn) + 2δn

for all n ∈ N.
Thus, since lim

n→
(2d (x, xn) + 2δn) = 0 we obtain that Sx = x for all

S ∈ F , that is, x is a common fixed point for all mappings in F .
�

Corollary 3.3.1. Let (M,d) be a bounded metric space with uniform relative
normal structure and such that A (M) is compact. Let T : M → M be an
orbit-nonexpansive mapping. Then, T has a fixed point.

Corollary 3.3.2. Let (M,d) be a bounded metric space with uniform relative
normal structure and such that A (M) is compact. Let G be a group of orbit-
nonexpansive on M . Then, there exists some x ∈M such that g (x) = x for
all g ∈ G.

We end this section by showing the following stability result regarding
the FPP for a family of interlaced orbit-nonexpansive self-mappings on M .
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Corollary 3.3.3. Let (M,d) be a bounded hyperconvex metric space and let
d1 be a metric equivalent to d such that ad (x, y) ≤ d1 (x, y) ≤ bd (x, y) for

all x, y ∈M and
b

a
<
√

2. If the family Ad1 (M) is compact then, the metric

space (M,d1) any family of interlaced orbit-nonexpansive self-mappings on
M has a common fixed point.

Proof: It follows straight from Theorem 3.3.1 and Theorem 2.3.2.
�

3.4 Some open questions

In this final section we leave some open questions which arose from our
research.

Throughout this work, the compactness of the family of admissible sets
has been assumed in many of our results in order to guarantee the existence
of minimal invariant sets. As we had already mentioned, in many occasions
this assumption arises from intrinsic conditions of the metric space, as we
can see in the examples presented in Section 2.4. In particular, this holds for
weak compact or weak∗-compact domains in Banach spaces. Additionally, as
it was mentioned before, the uniform normal structure implies compactness
of the family of admissible sets (see [30] or [29, Theorem 5.4]) for complete
metric spaces. Whether the compactness of the family of admissible sets can
be deduced from the URNS in complete metric spaces is still an open prob-
lem. We also don’t know either whether the hypothesis of the compactness
of Ad1 (M) in Corollaries 2.3.1 and 3.3.3 can be dropped.

The examples of non-weakly compact closed convex subsets of c with
the FPP given in [22] and in Section 2.2 of our work are all coordinatewise
closed. We wonder whether there is a convex closed subset C of c with the
FPP for nonexpansive mappings, which additionally fails to be closed for
the coordinatewise topology. In the particular case that C is a subset of
c0 with the FPP, we know that C is weakly compact (see [12, 14, 15]) and
therefore, closed coordinatewise. If C is a convex weakly compact subset of
c, it has the FPP but it is also compact for the coordinatewise topology.

Finally, we don’t know whether or not the thesis of Corollary 2.4.1 would
hold without the assumption of ‖·‖ being an equivalent dual norm.
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[9] M. Brodskĭi and D. Mil’man. On the center of a convex set. Dokl.
Akad. Nauk SSSR, 59, 01 1948.

[10] Felix E. Browder. Fixed-point theorems for noncompact mappings
in Hilbert space. Proceedings of the National Academy of Sciences,
53(6):1272–1276, 1965.

76



BIBLIOGRAPHY

[11] Felix E. Browder. Nonlinear mappings of nonexpansive and accretive
type in Banach spaces. Bulletin of the American Mathematical Society,
73(6):875 – 882, 1967.

[12] T. Domı́nguez-Benavides. The failure of the fixed point property for
unbounded sets in c0. Proc. Amer. Math. Soc., 140(2):645–650, 2012.

[13] T. Domı́nguez-Benavides and M. Japón. Fixed point properties and
reflexivity in variable Lebesgue spaces. J. Funct. Anal., 280(6):1–22,
2021.

[14] P. N. Dowling, C. J. Lennard, and B. Turett. Characterizations of
weakly compact sets and new fixed point free maps in c0. Studia Math.,
154(3):277–293, 2003.

[15] P. N. Dowling, C. J. Lennard, and B. Turett. Weak compactness is
equivalent to the fixed point property in c0. Proc. Amer. Math. Soc.,
132(6):1659–1666, 2004.
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[19] Rafael Esṕınola, Maria Japón, and Daniel Souza. New examples of
subsets of c with the FPP and stability of the FPP in hyperconvex
spaces. Journal of Fixed Point Theory and Applications, 23, 08 2021.
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