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A B S T R A C T

Machine learning and deep learning have become the most useful and powerful tools in the last years to
mine information from large datasets. Despite the successful application to many research fields, it is widely
known that some of these solutions based on artificial intelligence are considered black-box models, meaning
that most experts find difficult to explain and interpret the models and why they generate such outputs. In
this context, explainable artificial intelligence is emerging with the aim of providing black-box models with
sufficient interpretability. Thus, models could be easily understood and further applied. This work proposes
a novel method to explain black-box models, by using numeric association rules to explain and interpret
multi-step time series forecasting models. Thus, a multi-objective algorithm is used to discover quantitative
association rules from the target model. Then, visual explanation techniques are applied to make the rules
more interpretable. Data from Spanish electricity energy consumption has been used to assess the suitability
of the proposal.
. Introduction

Machine learning (ML) and deep learning (DL) algorithms are es-
ential tools that are used to make predictions and classify large and
eterogeneous data in different fields, such as medicine [1]. They are
he technology behind artificial intelligence applications in industries
uch as object recognition, natural language processing, or self-driving
ars. One of their most serious disadvantages is that they are considered
lack-box models, meaning that it is impossible to know how the model
btains the outputs by applying inner nonlinear operations to the
nputs.

Explainability for artificial intelligence (XAI) is focused on explain-
ng artificial intelligence (AI) models themselves. Explainability also
oncerns predictions generated by the AI models, clarifying the model’s
ehavior to reticent humans.

First, what a good explanation is must be defined. The spotlight
s on the human ability to understand the model. XAI is a human-
odel interaction, where the model is producing a certain output and
umans want to know how and why these outputs are computed [2].
n that way, XAI is an extensive research field, becoming crucial as
I models are used today to make high-stakes decisions in essential
ectors, namely health, security, or economy [3].
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Interpretability could be defined as the transparency of the model,
specifically related to humans’ ability to understand it [4]. Some ML
models are considered interpretable, such as decision trees or rule-
based models, whereas others, such as neural networks, are not [5].
In addition, explainability could be seen as a relation between input
data and the prediction of a model, in such a way that the model’s
decisions can be easily understood by humans [6]. There is also a
huge set of associated concepts such as comprehension, trustability or
transparency. Comprehension could be defined as the action of grasping
with the intellect, in other words, the ability of understanding, whereas
trustability is about the reliance on the truth or ability of the model.
Finally, transparency is defined as the state of being transparent, having
the property of showing through [7].

Time series are a special type of data where there is a sequence of
data points indexed in time order. Data have been collected from the
same source at different points in time, usually over a time interval.
They differ from other kinds such as tabular data, images or textual
description. Time series forecasting is a kind of regression problem
where numerical data are predicted. Predictions are made based on
historical time-stamped data. Traditional ML and DL models are usually
specifically adapted for time series forecasting [8,9].
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This paper carries out a study to explore the explainability of ML
and DL methods specifically for time series forecasting. Preexisting
methods are used for data prediction. Then association rules (ARs) are
extracted to find connections between input data and predicted values.
Finally, explainability is added towards visual representations of the
rules. Summarizing, the main contributions are:

1. A new methodology focused on visual explainability for time
series forecasting is created.

2. The use of association rules as an agnostic approach for adding
explainability to ML and DL methods is proposed. The perfor-
mance of the rules is tested by three different methods using the
same time series dataset.

3. Visual representation of the rules is presented to clarify the
explanation of the models’ predictions.

The remainder of the article is structured as follows. In Section 2,
ecent advances in interpretability through ARs are reviewed. Section 3
escribes and details the experiments carried out and Section 4 presents
he results that have been obtained. Section 5 concludes the paper.

. Related work

Interpretability techniques are grouped with respect to the phase
f experimentation and prediction in which they are used [10]. Pre-
odel interpretability is related to data interpretability and exploratory

nd data visualization. Then, in-model interpretability is focused on
reating models that could explain themselves, for example, decision
ree algorithms. More complex models are specifically designed for
his purpose. In-model interpretability is created by adding explainable
ayers to make models transparent. Finally, post-model interpretability
efers to the interpretation of the outputs according to the inputs, and
t is independent of the model that has been used to obtain the outputs
r predictions [11].

In the literature, explainability is generally reached by two different
pproaches: on the one hand, in-model, in other words, by design. The
oncept of creating an interpretable model is supported by the concept
f transparency. On the other hand, explainability could be reached in a
ost-model scenario by applying XAI techniques to existent ML models.
his is also called post-hoc explainability [12].

Traditionally, certain ML models have been considered interpretable,
uch as linear or logistic regression, decision trees, k-nearest neighbors,
ayesian models and rule-based models whereas DL approaches like
eural networks are not [3]. In this paper, the focus is on adding
xplainability to existing ML and DL models for time series forecasting.

.1. Post-hoc XAI

Post-hoc techniques are focused on increasing the interpretability
f preexisting ML and DL solutions by adding certain explainable
ayers to the models. One of their main advantages is the fact that
hey are independent of the model; in other words, they are model-
gnostic methods. Explainable techniques are applied to the results or
redictions that have been obtained after training the model. In the case
f time series forecasting, where specific algorithms are used, post-hoc
AI techniques have high level of interest [13].

There are several techniques for post-hoc explainability and they
re usually classified in the following categories: text, visual, local,
nd feature relevance explanations. In general, local explanations and
eature relevance techniques are the most representative in the liter-
ture [3]. There is no better technique than the other. One or more
f these techniques could be more suitable depending on the nature
f data that the model is predicting. Here, as the goal is time series
170

orecasting, the most essential aspects are discussed as follows.
• Text explanations. Explanations are generated as textual descrip-
tion. Although time series data could be translated into a set
of numerical intervals, textual description could not be really
understandable in time series scope [14].

• Visual explanations. Explanations are presented in a certain graph-
ical representation, which makes it easier to have a mental im-
age of the predictions [15]. Concerning time series data, which
could be easily represented in two-dimensional axes, a graphical
explanation could be particularly useful.

• Local explanations. These explanations refer not to obtain expla-
nations of the complete dataset but for a specific instance of
the data. It could be useful to explain concrete examples of the
data [16].

• Feature relevance explanations. It aims to get information about
which attributes or features are more important for the predic-
tions [17]. In time series data the attributes are past events. This
kind of explanation could lead to misunderstanding. However, it
could be complemented with alternative representations of the set
of attributes, as it is proposed in this paper.

In conclusion, the most useful explanations for the explainability of
time series forecasting are, at first sight, visual and feature relevance
explanations.

Several approaches for adding post-hoc interpretability, achieving
an explainable result for an initial non-explainable model, can be found
in the literature.

First, Local Interpretable Model-Agnostic (LIME) technique is re-
vised. LIME is one popular technique for adding explainability to
preexisting ML models. LIME can be used as a library for Python.
LIME is widely used due to simplicity. LIME explains the behavior
of black box methods based on linear models around one instance of
interest [18], meaning that LIME is giving local explanations. Explana-
tions are generated by perturbing a chosen point in the input data and
making new predictions with the perturbed data as input. Thus, the
critical attributes to make predictions are detected. LIME explainable
ability is evaluated in [19]. A LIME use case is presented in [20], where
LIME is applied as a way of adding explainability to a sleep apnea
prediction method. A similar approach is SHapely Additive exPlanation
(SHAP) [21]. This method calculates the contribution of each aspect
for a concrete prediction based on game theory. This contribution is
called SHAP value. SHAP also calculates the global influence of each
feature. For example, in [22] SHAP is applied to understand and verify
AI models for concrete fire-induced spalling. However, both LIME and
SHAP have a limitation: LIME and SHAP introduce perturbation to
data and recalculate the predictions. Because of that, predictions need
to be made by pre-existing models (such as Scikit-Learn library in
Python). LIME and SHAP application to big data or streaming systems
is problematic.

Concerning XAI for demand forecasting, which is the initial problem
in this paper, there are some examples in literature. The work pre-
sented in [23] adds an explainable layer to several machine learning
regression models in electric vehicle load demand forecasting problem.
In addition, an agnostic architecture based on semantic technologies is
proposed in the field of manufacturing demand forecasting [24].

Furthermore, in [25] an interactive web browser system, Summit, is
put on. The system can create understandable explanations for neural
networks’ internal behavior, showing activation levels and relationships
between neurons inside a neural network. It summarized and visualized
the data for human comprehension. In [26], graph neural networks are
explored as a tool for increase explainability in an automated medical
decision pipeline. Additionally, the research to create a correspondence
between clinical text with diagnoses and the corresponding graphic
output of the ICD-10 code is presented in [27]. They achieved the
goal of an interpretable result through various visualizations that show
the correspondence between each code and the piece of text. It has
been tested in a real medical setting and clinicians found it very

advantageous.
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The estimation of the performance of the tools that add inter-
pretability is ambiguous. A model is considered interpretable when
final users could understand in certain way how the model is work-
ing or when users could explain how the predictions are made. For
example, the research in [28] is to create a bias for evaluating XAI in
computer vision field. However, post-hoc XAI methods in other scopes
must be evaluated by people. If the end users are able to understand the
computations made by ML and DL algorithms, the model is explainable
and post-hoc XAI techniques are achieving their goal [29].

2.2. Association rules for XAI

Association rules learning is a kind of unsupervised machine learn-
ing method. An association rule is a ’if-them’ statement where a combi-
nation of conditions (called antecedent) of the input data maps into a
certain aspect of the output values (called consequent). A set of ARs is
generated to explain the relationship between the main aspects of the
input and output data. Traditional rule-based models are considered
explainable themselves [30].

Having said that, examples about the creation of explainable models
by using ARs have been found in the literature. In the major cases,
explainable models are applied to essential areas, such as disease
detection in health care [11]. For example, in [31], a model based on
rules and Bayesian analysis is built and tested in personalized medicine
and health. In [32] a multi-objective optimization for multiple ARs
is developed for interpretable classification. At first, they generated
a set of ARs and classify them according to the interestingness score
and support measure. Prioritized rules are studied using a two-layer
neural network. Experiments showed that the model obtains better
performance and better execution time than other AR mining models.
Finally, interpretability is added to an existing model known as the
Takagi–Sugeno–Kang fuzzy model in [33] by generating ARs.

On the other hand, rule-based approaches could be used as a post-
hoc method for adding explainability to more complex and higher
accuracy models such as neural networks. For example, on the basis
of already commented LIME tool, the same authors have developed
a new approach called Anchors. Anchors generates ’if-then’ rules in
order to increase the explainability of the results obtained by local
perturbations [34]. In [35], ARs are extracted using a model based
on the well-known Apriori algorithm for explainability in an omic-
data neural network. ARs are evaluated regarding a set of quantitative
quality measures such as confidence, support, lift or conviction. Then, the
explainable model is validated by human experts. Another example is
shown in [36], where ARs are extracted from a decision tree model with
high accuracy values. In [37] ARs are used to explain the predictions
produced using a tabular classification dataset. Experimentation is
carried out by building a neighborhood of similar instances and making
predictions for those perturbed instances. Then, ARs are generated and
the k-optimal ones are selected. The focus is on rules that cover more
instances rather than the highest predictive ones. Lastly, in the survey
carried out in [38] several methods using ARs are also presented.

3. Methodology

The main goal of this work is to create visual explanations by
exploring the ability of ARs to interpret the predictions of a time series
made by ML and DL models. The general process is illustrated in Fig. 1.

First, the target time series is acquired and pre-processed so it can
feed the time series forecasting model that is wanted to be explained.
More specifically, several time windows w are used for predicting a
certain number of future horizons h.

Later, the outputs generated by the model are used to feed the
association rule extraction module, which is in charge of discovering
rules. ARs are shown as a reliable way to understand the internal
behavior of the model and the connections between input data and
predictions. In particular, the target time series are used as antecedent
171
Fig. 1. Diagram showing the proposed methodology.

and the forecasts by the model are used as consequent, thus that this
module can extract ARs, meaning the module can find relationships
between the actual time series and the predicted values.

Such ARs are used as input of the visual explanation process,
a technique of model-agnostic explainability. The visual explanation
process is able to explain the time series forecasting model by visually
depicting the values of the time series. Graphical representations are
colorized according to the values of time series that influence the most
when making predictions for each particular prediction horizon.

3.1. Main steps description

3.1.1. Time series forecasting formulation
The proposed methodology is tested using the predictions of three

different ML methods, all using the same time series input data.
Given a time series with previous values up to time t, [𝑋1,… , 𝑋𝑡],

the task is to predict the h next values of the time series, from a window
of w past values. This multi-step forecasting problem can be formulated
as follows, where 𝑓 is the model to be learned by the machine learning
model in the training phase:
[

𝑋𝑡+1, 𝑋𝑡+2,… , 𝑋𝑡+ℎ
]

= 𝑓
(

𝑋𝑡, 𝑋𝑡−1,… , 𝑋𝑡−(𝑤−1)
)

(1)

Therefore, the input data are used to train the ML and DL models,
obtaining the prediction model 𝑓 . In an ordinary machine learning
experiment, we would test the model with different input data and mea-
sure the performance of the algorithm. However, we aim at learning
how and why the model 𝑓 makes a prediction. Consequently, we use
the model 𝑓 to make predictions for the same data that have been used
to train it. That is:
[

�̂�𝑡+1,… , �̂�𝑡+ℎ
]

= 𝑓
(

𝑋𝑡,… , 𝑋𝑡−(𝑤−1)
)

(2)

where [�̂�𝑡+1,… , �̂�𝑡+ℎ] are the values predicted by the machine learning
model 𝑓 .

3.1.2. Association rules
In the field of data mining, association rule learning is a popu-

lar and well-known method to discover interesting relations among
variables in large databases. They are considered an interpretable ML
method [3], because of their simplicity and similarities to the human
way of reasoning. ARs are also providing high-accuracy results.

Let 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛} be a set of features or attributes, with values
in R. Let 𝑆 and 𝑇 be two disjoint subsets of 𝐴, that is, 𝑆 ⊂ 𝐴, 𝑇 ⊂ 𝐴
and 𝑆 ∩ 𝑇 = ∅. An AR is known as a quantitative association rule
(hereinafter referred as QAR) when the domain is continuous. A QAR
is a rule 𝑋 ⇒ 𝑌 , in which features in 𝑆 belong to the antecedent 𝑋,
and features in 𝑇 belong to the consequent 𝑌 , such that 𝑋 and 𝑌 are
formed by a conjunction of multiple Boolean expressions of the form 𝑎𝑖
∈ [𝑙, 𝑢], (with 𝑙, 𝑢 ∈ R). Thus, in a QAR, the features or attributes of the
antecedent are related to the features of the consequent, establishing an
interval of membership values for each attribute involved in the rule.
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Many measures could be found in the literature to assess the quality
of QARs. Definition and mathematical equations of the main quality
measures can be found in [39]. In particular, support (Eq. (3)), con-
fidence (Eq. (4)), and gain (Eq. (5)) have been the objectives to be
optimized by the association rule extraction model in order to assess the
generality, reliability and information gain of the rules, respectively.

The support of the rule 𝑋 ⟹ 𝑌 is the percentage of records in
the dataset that contain X and Y simultaneously. Note that 𝑛(𝑋 ∩ 𝑌 ) is
the number of instances that satisfy the conditions for the antecedent 𝑋
and 𝑌 in the dataset simultaneously. 𝑁 is the total number of instances
in the dataset. Support values are ranged in the interval [0, 1].

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⟹ 𝑌 ) =
𝑛(𝑋 ∩ 𝑌 )

𝑁
(3)

The confidence is the probability that instances containing 𝑋, also
contain 𝑌 . The confidence values range in the interval [0, 1].

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⟹ 𝑌 ) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⟹ 𝑌 )

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
(4)

Support and confidence are the most used measures for QAR opti-
mization. However, optimization of the support may not be enough,
since very general QARs could be obtained, and the amplitude of
the intervals could be increased to reach the whole domain of each
attribute. Additionally, if the confidence is only optimized may present
some drawbacks because this measure does not consider the support of
the consequent of the rule, therefore it is not able to detect negative de-
pendence among items. To overcome these issues, other measures such
as gain, can be optimized due to the antecedent and the consequent of
the rule are considered.

Gain is calculated from the difference between the confidence of the
rule and consequent support. It is also known as added value or change
of support. Gain values range in the interval [−0.5, 1].

𝐺𝑎𝑖𝑛(𝑋 ⟹ 𝑌 ) = 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⟹ 𝑌 ) − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌 ) (5)

The input dataset 𝐷 for the rule extraction algorithm is constructed
as follows:

𝐷 = {(𝑋(𝑖), 𝑌 (𝑖)) ∶ 𝑖 = 1, 2,… , 𝑁} (6)

where 𝑁 is the number of instances, 𝑋(𝑖) and 𝑌 (𝑖) are the character-
istics that belong to the antecedent and the consequent of the rule,
respectively. These features are defined as follows:

𝑋(𝑖) = [𝑋𝑡−(𝑤−1),… , 𝑋𝑡−1, 𝑋𝑡] (7)

𝑌 (𝑖) = [�̂�𝑡+1, �̂�𝑡+2,… , �̂�𝑡+ℎ] (8)

where 𝑡 = 𝑤 + (𝑖 − 1) ∗ ℎ.
In order to ensure that rules with all prediction horizons in the

onsequent are obtained, the input dataset 𝐷 is divided into subsets
𝑗 with 𝑗 = 1,… , ℎ.

𝑗 = {(𝑋(𝑖), 𝑌 (𝑖)
𝑗 ) ∶ 𝑖 = 1, 2,… , 𝑁} (9)

here the attributes forming the consequent of the rule are made up
f a single attribute:
(𝑖)
𝑗 = �̂�𝑡+𝑗 (10)

.1.3. Visual explanations
The set of QARs obtained previously are used as an input for the

reation of graphical representations. The objective is to show visually
he importance of each item in the input data to predict the target
alues.

Association rules are well known for being ’if-then’ statements,
here the if clause or antecedent is explaining the results that are
n the then one, also called consequent. QARs are usually intuitive,
nd they are considered an interpretable ML method [40]. Here, the
ntecedent has data from the 𝑋 past values that have been used
172

𝑡−(𝑖)
or making predictions whereas the consequent contains the 𝑋𝑡+𝑗 next
alues that the models are predicting.

However, regarding time series data, the understandability of QARs
ould be reduced. In the field of time series, data are quantitative
ariables concerning the area in which they are measured. Due to this,
oth the antecedent and the consequent of the QARs that are obtained
sing an association rule extraction algorithm show the variable and
he numerical interval that makes true each certain association, that is:

𝑡−(𝑤−1) ∈ [𝑙𝑤−1, 𝑢𝑤−1] ∧ ...∧

∧𝑋𝑡−1 ∈ [𝑙1, 𝑢1] ∧𝑋𝑡 ∈ [𝑙0, 𝑢0] ⇒ �̂�𝑡+𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ] (11)

being j = 1, . . . , h and where w is the length of the windows
composed of the past values used to predict the h next values.

The main idea here concerns gaining knowledge of the attributes
that appeared more frequently in the antecedent. This means that these
attributes are more important for the predictive model when making
predictions. Thus, visual representations are created by computing the
antecedent of each rule in the set of rules. This process is made for all
prediction horizons. In this work, 24 prediction horizons are considered
and there are 168 attributes (see Eqs. (7) and (8) in Section 3.1.2).

For each rule, the number of times that attributes appear is counted.
This process is called occurrence calculation. The pseudocode is pre-
sented in Algorithm 1.

Previously, given a set of QARs, the information contained in the
antecedent of each of the rules is saved. This information is composed
by both the name of the attribute (𝑋𝑡) and the range that makes true the
rule statement. Then, something similar to a counter is implemented.
The amount of times that each attribute appears is computed. Thus,
the summation of the amount of times that each attribute 𝑋𝑡 appears
in the set of QARs is made. As a result, a list of 168 elements is
generated. Each item of the list contains the number of times that the
corresponding attribute appears in the set of rules. This is executed for
the 24 sets of rules, meaning that there is one list for each prediction
horizon. Finally, a matrix with 168 columns and 24 rows is obtained.
The size of the matrix depends on the number of attributes that could
be in the antecedent of the QARs and the number of prediction horizons
that are evaluated. As a final step, the resulting matrix is normalized
meaning that all the possible values are between 0 and 1.

At the end, these calculations make possible a visual representation
of the information shown by the QARs. For each of the 24 prediction
horizons, the attributes are graded according to their influence on
the predictions. The more a variable appears on the antecedent, the
more they are used as an essential tool for time series forecasting.
This information could be graphically represented by translating the
numbers into a graded color range. For example, using a heatmap. It
could also be used for coloring a graphical representation of time series,
as it will be reported and shown in Section 4.

Algorithm 1 Algorithm for representing rules
Require: a list of antecedent elements 𝐴, number of features 𝑤
1: 𝐶 ← [] ⊳ List with size = w
2: for 𝑎 in 𝐴 do
3: ⊳ each element a contains the name of the 𝑋𝑡−𝑖 attribute, where i

is a number between 0, and 167 and the associated interval [𝑙𝑖, 𝑢𝑖]
4: 𝑗 ← 𝑖 ⊳ name of the variable that will work as index
5: 𝐶[𝑗] = 𝐶[𝑗] + 1
6: end for
7: return 𝐶

3.1.4. Comparison with alternative methods
This methodology is tested and compared with an existing explain-

able method: LIME [18]. LIME has been previously described as a
post-hoc explainable method.
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LIME has a local behavior. Meaning that the explanations are ob-
tained locally, specifically for one instance. The proposed methodology
tries to explain the predictions in a general way. Thus, LIME has been
here adapted to explain the whole of the predictions. Then, LIME has
been executed randomly a certain number of times, identifying the 10
most relevant features to make predictions for each iteration. Then,
these features are computed and the important features for LIME are
obtained. Attributes counting is done in a similar way as the antecedent
of the rules in Section 3.1.3. LIME results are used as a baseline
to compare the explanations provided after applying the proposed
methodology. Results are presented in Section 4.

3.2. Fundamentals of the methods chosen for the proposed methodology

In the previous section, the methodology was described in a general
way. However, every step requires the selection of particular methods
to perform each of the tasks involved in the flowchart. In this section,
fundamentals of the selected methods are described.

3.2.1. Time series forecasting models description
Three specific ML or DL models have been used to test this method-

ology. The models are not tested or compared because they have
already been widely applied to several time series datasets and have
been proved to be accurate and powerful methods for time series
forecasting by other authors [41–47]. The models used to make the
predictions are commented as follows.

• Wk-NN (Weighted k-Nearest Neighbors algorithm) [41,42,44,45].
The algorithm is a generalization of the well-known k-nearest
neighbors (kNN) method. In this case, the algorithm achieves
more accuracy by adding weights according to the distance with
the concrete point. That means that the closer elements are more
important (translated into the fact that they have a higher weight)
than the further ones. The prediction is computed by a weighted
average of the ℎ next values to the k-nearest neighbors of the 𝑤
past values.

• bigPSF (Pattern Sequence based Forecasting algorithm for big
data) [43]. This algorithm is the extension and adaption of the
original PSF algorithm [48,49] which also has a version for
handling with functional time series [50]. It is a multi-output
approach specifically adequate for time series forecasting. It is
scalable thanks to distributed computation using Apache Spark
framework and it is also a flexible tool due to its multi-output
nature. The bigPSF makes a clustering from data as an initial step
identifying the past points belonging to the same cluster that the
point to be predicted. Thus, the prediction is the average of the
ℎ next values to these past points.

• LSTM (Long Short-Term Memory network) [46,47]. It is a deep
learning method widely used for time series forecasting. This
network is a recurrent neural network. It is satisfactory for time
series forecasting due to its ability to deal with sequential data.

The predictions obtained by these models are used to test the ability
f proposed methodology to explain different algorithms.

.2.2. Association rules extraction model
The approach presented in this paper uses an evolutionary-genetic

lgorithm for the extraction of QARs, hereafter referred to as MO-
AR [39].

MOQAR mines QARs in datasets with continuous attributes without
iscretizing the attributes of the dataset trying to find the best trade-off
mong all the measures optimized. A detailed description of MOQAR
an be found in [39]. The main features of the algorithm are described
elow:
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• An individual in the population represents a rule that codes
the membership of the attributes in the rules (antecedent or
consequent) and their interval bounds. Let 𝑅 be an individual
of the population that represents a rule, let 𝐾𝑅 be the subset
of attributes of the dataset, 𝐾𝑅 ⊂ A, which are expressed in the
rule 𝑅 and let 𝑎 be an attribute 𝑎 ∈ 𝐾𝑅. Let 𝐼𝑅 be a function,
𝐼𝑅 ∶ 𝐾𝑅 ⟶ R, which defines the relation between the attributes
in 𝐾𝑅 and the bounds of the intervals for such attributes. Thus,
𝐼𝑅(𝑎) = [𝑙𝑅𝑎 , 𝑢

𝑅
𝑎 ] represents the lower and upper bounds of the

attribute 𝑎, which belongs to the rule 𝑅. Let 𝑇𝑅 be a function,
𝑇𝑅 ∶ 𝐾𝑅 ⟶ 1, 2, which defines the relation between the
attributes belonging to 𝐾𝑅 and the type of membership of the
attributes. Therefore, 𝑇𝑅(𝑎) represents the membership type of
the attribute 𝑎 in rule 𝑅, that is, if 𝑎 belongs to the antecedent
or the consequent of 𝑅. Thus, 𝑇𝑅(𝑎) = 1 if 𝑎 belongs to the
antecedent of the rule 𝑅 or 𝑇𝑅(𝑎) = 2 if a belongs to the
consequent of the rule.

• MOQAR performs an evolutionary process to learn the most ap-
propriate intervals of the attributes, so that the intervals are
adjusted in a self-adaptive way to find QAR with high inter-
pretability, interestingness, and precision.

• MOQAR tries to find rules that satisfy the coverage of instances
that are still not covered. In this way, instances already covered
by the previous rules are penalized. Therefore, the samples cov-
ered by few rules have a higher priority to be selected to generate
the new population.

• The number of generations determines when the evolutionary
process ends, which is repeated until the desired number of
iterations is reached. Finally, MOQAR returns the set of QARs
discovered that satisfies the defined minimum quality thresholds.

Then, MOQAR is applied to all subsets 𝐷𝑗 defined in Section 3.1.2
eparately for the extraction of QARs. Parameters are configured to only
etrieve the rules with confidence and accuracy greater than 0.5 and
upport greater than 0.05. This step is just to minimize the number of
alid rules for each iteration.

. Results

This section analyzes the results obtained after carrying out the
ethodology detailed above. It is divided into three sections. Sec-

ion 4.1 presents the dataset used in this work. The second one,
ection 4.2 shows the QARs that have been extracted. The third one,
ection 4.3 gives information about the visual explanations that have
een created with this information.

.1. Time series data

The input data used for this experiment are a time series of electrical
nergy consumption in Spain [44]. Data have been collected with
0-minute frequency during nine years and six months, specifically
etween January 1st 2007 and June 21st 2016. It is a window of 𝑋𝑡−𝑖
ast values with 𝑖 = 0,… , 𝑤−1 that is used to estimate a future window
f 𝑋𝑡+𝑗 with 𝑗 = 1,… , ℎ values. The value of 𝑤 has been set to 168,
epresenting 1 day and 4 h, whereas the value ℎ is 24, that is, 4 h.
hat means that 24 h (1 day) has got here 144 elements.

An example of the time series data used for testing this methodology
ould be seen in Fig. 2. The blue line is the input data used for the
ntecedent of the QARs whereas the green line points (predictions) are
he consequent. The real values are also represented.

.2. Association rules

This section is presenting the QARs obtained by the rules mining
lgorithm MOQAR. Here the focus is not yet on explainability itself
hereas it is on the QARs. The reason is that QARs are used as a way
hrough explaining ML and DL models.
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Fig. 2. Example of a time series instance. Predictions made with LSTM model.

4.2.1. QARs
The MOQAR algorithm is used for obtaining QARs. A set of rules

is extracted for each of the 24 samples forming the prediction horizon.
For each one, between 12 and 20 rules are obtained, resulting in a total
of about 400 rules across all horizons (for each of the three predictions
obtained by three different ML and DL models: WkNN, bigPSF, LSTM).

QARs have been filtered by a certain query. The selected QARs
satisfy a minimum confidence threshold higher than 0.8, a minimum
support threshold higher than 0.3 and a total sum of the width of all
rule intervals less than 12000.

Then, the most representative QARs with reference to confidence
and support are presented. Tables 1–3 present an example of QAR for
each prediction horizon for each of the models. A set of rules have been
generated for each prediction horizon 𝑋𝑡+𝑗 with 𝑗 = 1,… , 24 values.
These tables contain only one example for each prediction horizon for
the three models. Each rule is part of the set of QARs that have been
obtained by the rules mining algorithm.

Tables 1–3 also show the quality measures of each corresponding
set of rules. In particular, support (Eq. (3)), confidence (Eq. (4)) and
gain (Eq. (5)) measures that assess the generality, reliability and gain
information of QARs, respectively, are presented.

It could be observed a slight decrease in confidence and gain as time
passes, above all in WkNN (Table 1) and LSTM (Table 3) results. A set
of 24 future events are predicted here using ML and DL models. When
the prediction is further from the present event (higher values of h),
predictions are worse. The same is observed concerning the quality of
the rules.

Comparing the three different methods, in general, the set of QARs
obtained for bigPSF predictions, in Table 2, have worse quality in
terms of generality, reliability and gain information than the other
two methods. Rules for WkNN and LSTM models seem to be similar
concerning the mentioned quality measures.

4.2.2. Real data ranges
After the study of the sets of rules, the range of real data covered

by the QARs is also presented.
The real range is the interval formed by the minimum electrical con-

sumption value and the maximum consumption value. Each timestamp
has a real data interval.

Then, the amount of real data explained or covered by the set of
rules obtained for each prediction horizon is computed. That means
the interval covered by the set of rules for each timestamp, from the
minimum value to the maximum value appearing in the antecedent of
the QARs.

Range covered by QARs is calculated in two ways, concerning the
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real range of each prediction horizon and the most frequent values
Fig. 3. Histogram for the best explained prediction horizon for each set of predictions.

inside that real range. Results for the three models are presented in
Tables 4–6. The Real range shows the minimum and maximum real
values for each prediction horizon. The Range covered means the range
of the data explained by each set of rules. The consequent of each rule
explains a certain interval of the prediction horizon. Thus, the range
of the data explained for a particular prediction horizon is calculated
as the union of all the intervals of the set of rules obtained for that
horizon. Then, the Percentage covered is the relation between these two
amplitudes, calculated as the covered range divided by the total real
range.

Information about ranges is also presented graphically in Fig. 3.
These histograms represent the frequency of the real values of the time
series. Red lines show the interval covered by the rules, while the
yellow lines identify the intervals with more than 50% of the frequency
of the total number of samples. They are generated in order to analyze
the distribution of the actual values of the time series in different
intervals. The Hist. range means the range of values with more than
50% of the samples, in other words, the range of values of time series
𝑋𝑡 with more than 50% of the frequency in the histogram. Then, the
percentage of range covered from histograms (Hist. range covered (%)
column) is about the relation of this interval and the Range covered by
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Table 1
A selection of QARs obtained by MOQAR and quality measures for each prediction horizon for WkNN predictions.

h Rule Support Confidence Gain

1 IF 𝑋𝑡−1 ∈ [19144, 28171] ⟹ �̂�𝑡+1 ∈ [19017.01, 28913.1] 0.44 0.99 0.49
2 IF 𝑋𝑡−2 ∈ [24681, 31386] ⟹ �̂�𝑡+2 ∈ [23969.40, 32495,10] 0.44 0.94 0.43
3 IF 𝑋𝑡−1 ∈ [23712, 31206] ⟹ �̂�𝑡+3 ∈ [23061.80, 31713.90] 0.48 0.94 0.38
4 IF 𝑋𝑡 ∈ [24278, 29659] ⟹ �̂�𝑡+4 ∈ [22952.34, 31432.35] 0.50 0.91 0.40
5 IF 𝑋𝑡−7 ∈ [21853, 34799] AND 𝑋𝑡−3 ∈ [24217, 31889] ⟹ �̂�𝑡+5 ∈ [23578.02, 33340.73] 0.49 0.91 0.34
6 IF 𝑋𝑡−137 ∈ [24123, 34045] AND 𝑋𝑡 ∈ [24228, 33258] ⟹ �̂�𝑡+6 ∈ [23522.44, 34127.99] 0.55 0.94 0.29
7 IF 𝑋𝑡−1 ∈ [19479, 29894] ⟹ �̂�𝑡+7 ∈ [20182.95, 319619.64] 0.55 0.94 0.32
8 IF 𝑋𝑡−139 ∈ [20047, 35442] AND 𝑋𝑡−3 ∈ [26766, 35500] AND 𝑋𝑡−1 ∈ [28240, 36184] ⟹ �̂�𝑡+8 ∈ [25700.28, 35917.49] 0.53 0.93 0.29
9 IF 𝑋𝑡−132 ∈ [29726, 35683] ⟹ �̂�𝑡+9 ∈ [27901.31, 36201.71] 0.38 0.82 0.37
10 IF 𝑋𝑡−1 ∈ [17833, 27315] ⟹ �̂�𝑡+10 ∈ [19250.12, 28036.68] 0.49 0.85 0.30
11 IF 𝑋𝑡−1 ∈ [17314, 27711] ⟹ �̂�𝑡+11 ∈ [19441.25, 29911.07] 0.41 0.91 0.40
12 IF 𝑋𝑡−131 ∈ [19310, 28828] AND 𝑋𝑡−2 ∈ [17828, 29448] ⟹ �̂�𝑡+12 ∈ [19542.52, 27435.63] 0.43 0.90 0.35
13 IF 𝑋𝑡−126 ∈ [26008, 39504] AND 𝑋𝑡−2 ∈ [2699, 36825] ⟹ �̂�𝑡+13 ∈ [26766.30, 36299.52] 0.41 0.91 0.40
14 IF 𝑋𝑡−128 ∈ [26085, 36854] ⟹ �̂�𝑡+14 ∈ [25842.66, 37906.29] 0.59 0.86 0.26
15 IF 𝑋𝑡−138 ∈ [27742, 35781] ⟹ �̂�𝑡+15 ∈ [24720.23, 35510.30] 0.41 0.90 0.29
16 IF 𝑋𝑡−133 ∈ [29348, 35433] ⟹ �̂�𝑡+16 ∈ [25145.03, 35422.21] 0.38 0.94 0.36
17 IF 𝑋𝑡−133 ∈ [23483, 39795] AND 𝑋𝑡−13 ∈ [25760, 42015] ⟹ �̂�𝑡+17 ∈ [26774.85, 40080.67] 0.36 0.92 0.42
18 IF 𝑋𝑡−1 ∈ [29939, 37660] ⟹ �̂�𝑡+18 ∈ [28619.09, 39431.19] 0.48 0.85 0.26
19 IF 𝑋𝑡−128 ∈ [18910, 29497] ⟹ �̂�𝑡+19 ∈ [19705.19, 29289.99] 0.51 0.82 0.30
20 IF 𝑋𝑡−1 ∈ [17314, 26914] ⟹ �̂�𝑡+20 ∈ [18925.39, 29780.93] 0.31 0.87 0.32
21 IF 𝑋𝑡−117 ∈ [17690, 27283] ⟹ �̂�𝑡+21 ∈ [18672.80, 29454.99] 0.45 0.87 0.20
22 IF 𝑋𝑡−127 ∈ [24899, 34971] ⟹ �̂�𝑡+22 ∈ [23731.33, 35017.20] 0.55 0.90 0.20
23 IF 𝑋𝑡−121 ∈ [30108, 38394] ⟹ �̂�𝑡+23 ∈ [27811.31, 38833.49] 0.40 0.89 0.33
24 IF 𝑋𝑡−121 ∈ [27204, 37072] ⟹ �̂�𝑡+24 ∈ [26002.81, 37814.75] 0.50 0.88 0.22
Table 2
A selection of QARs obtained by MOQAR and quality measures for each prediction horizon for bigPSF predictions.
h Rule Support Confidence Gain

1 IF 𝑋𝑡−3 ∈ [30257, 37092] ⟹ �̂�𝑡+1 ∈ [29453.74, 38204] 0.42 0.98 0.29
2 IF 𝑋𝑡 ∈ [22620, 28163] ⟹ �̂�𝑡+2 ∈ [21481.78, 28856.24] 0.29 0.92 0.51
3 IF 𝑋𝑡−2 ∈ [30543, 36093] ⟹ �̂�𝑡+3 ∈ [29769.89, 37712.91] 0.29 0.91 0.49
4 IF 𝑋𝑡−1 ∈ [30442, 36810] ⟹ �̂�𝑡+4 ∈ [28625.66, 38039.09] 0.33 0.97 0.47
5 IF 𝑋𝑡 ∈ [31609, 38062] ⟹ �̂�𝑡+5 ∈ [32062.35, 39097.34] 0.25 0.88 0.58
6 IF 𝑋𝑡 ∈ [17580, 25676] ⟹ �̂�𝑡+6 ∈ [18689, 25649.63] 0.27 0.92 0.58
7 IF 𝑋𝑡−142 ∈ [23692, 32399] AND 𝑋𝑡−135 ∈ [21140, 35781] ⟹ �̂�𝑡+7 ∈ [22308, 33175.12] 0.32 0.93 0.45
8 IF 𝑋𝑡 ∈ [17979, 24963] ⟹ �̂�𝑡+8 ∈ [19057.73, 26007.90] 0.23 0.93 0.57
9 IF 𝑋𝑡−135 ∈ [17328, 25184] ⟹ �̂�𝑡+9 ∈ [18313, 26017] 0.26 0.84 0.48
10 IF 𝑋𝑡−3 ∈ [17470, 27274] ⟹ �̂�𝑡+10 ∈ [18761.80, 28424] 0.32 0.85 0.38
11 IF 𝑋𝑡−136 ∈ [30946, 38959] ⟹ �̂�𝑡+11 ∈ [30906.26, 39571.81] 0.31 0.79 0.36
12 IF 𝑋𝑡−137 ∈ [26772, 37134] AND 𝑋𝑡−133 ∈ [28909, 35795] ⟹ �̂�𝑡+12 ∈ [25732.37, 35733.31] 0.37 0.92 0.38
13 IF 𝑋𝑡−134 ∈ [19183, 27744] ⟹ �̂�𝑡+13 ∈ [19079, 28437.19] 0.37 0.83 0.37
14 IF 𝑋𝑡−133 ∈ [21014, 30336] ⟹ �̂�𝑡+14 ∈ [20218.29, 29710.86] 0.39 0.78 0.28
15 IF 𝑋𝑡−131 ∈ [17753, 28053] ⟹ �̂�𝑡+15 ∈ [19140.54, 28240] 0.30 0.74 0.29
16 IF 𝑋𝑡−7 ∈ [32758, 43561] ⟹ �̂�𝑡+16 ∈ [31543.33, 42054.65] 0.19 0.76 0.40
17 IF 𝑋𝑡−1 ∈ [17701, 29841] ⟹ �̂�𝑡+17 ∈ [18916, 29526.07] 0.45 0.81 0.88
18 IF 𝑋𝑡−128 ∈ [28894, 39700] AND 𝑋𝑡−126 ∈ [29426, 28979] ⟹ �̂�𝑡+18 ∈ [26997.84, 42409.79] 0.43 0.94 0.34
19 IF 𝑋𝑡−123 ∈ [30900, 27691] ⟹ �̂�𝑡+19 ∈ [27691.11, 40420] 0.33 0.92 0.36
20 IF 𝑋𝑡−122 ∈ [23533, 32592] ⟹ �̂�𝑡+20 ∈ [21582.51, 35484.23] 0.55 0.96 0.11
21 IF 𝑋𝑡−126 ∈ [23401, 31375] AND 𝑋𝑡−125 ∈ [24196, 30367] ⟹ �̂�𝑡+21 ∈ [22382.49, 30945.97] 0.32 0.83 0.29
22 IF 𝑋𝑡−124 ∈ [33308, 42534] AND 𝑋𝑡−1 ∈ [24675, 42736] ⟹ �̂�𝑡+22 ∈ [32400.65, 41603.20] 0.16 0.84 0.58
23 IF 𝑋𝑡−119 ∈ [24894, 31978] AND 𝑋𝑡−6 ∈ [20090, 36256]⟹ �̂�𝑡+23 ∈ [22874.77, 32427.15] 0.37 0.89 0.28
24 IF 𝑋𝑡−124 ∈ [27764, 36510] AND 𝑋𝑡−118 ∈ [25175, 33831]⟹ �̂�𝑡+24 ∈ [24446.19, 34432.56] 0.37 0.93 0.28
the set of rules. With respect to the intervals defined by the maximum
and minimum values of the real values of the time series, almost all the
range (around 98%) of the prediction horizon is covered by the rules
generated after applying the prediction model.

Overall, concerning the Tables mentioned above, each set of rules
explains more than 95% on average for all the samples in the prediction
horizon. Meaning that rules cover approx 95% of the total range of the
data for each prediction horizon. However, when the range is defined
by the histograms, the focus is on a reduction of the range where the
majority number of samples are distributed. In that case it could be
observed that the rules cover 100% of these intervals since the intervals
are smaller.

The explainability reached by the three algorithms (WkNN, bigPSF
and LSTM) could be compared using the information presented in this
section.

In continuation of the comparison started in Section 4.2.1, some
methods obtain better results than others. The percentage of real data
175
range covered by the set of rules of bigPSF (Table 5) is lower than
WkNN and LSTM data. Both WkNN and LSTM have a similar level
of range covered by the generated QARs. However, the whole set of
rules for the three models cover more than 90% of the real range of
the attributes.

This section presents the QARs that have been obtained using a
mining rules algorithm, their quality measures and the range of real
data that rules are covering. These rules are then used as a way of
explaining the ML and DL models’ predictions.

Explainable results are presented in the following Section 4.3.

4.3. Visual explanations

The main goal of this paper is a rules-based approach for adding
explainability to time series forecasting models. Then, QARs have been
selected because they are widely known for being highly interpretable.
However, due to the nature of the time series data, the information
contained in the rules is better shown using graphical representations.
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Table 3
A selection of QARs obtained by MOQAR and quality measures for each prediction horizon for LSTM predictions.
h Rule Support Confidence Gain

1 IF 𝑋𝑡−1 ∈ [25122, 32611] AND 𝑋𝑡 ∈ [25618, 33561] ⟹ �̂�𝑡+1 ∈ [25230.04, 33063.40] 0.42 0.98 0.52
2 IF 𝑋𝑡−2 ∈ [29810, 39018] ⟹ �̂�𝑡+2 ∈ [28149.37, 38952.71] 0.45 0.98 0.44
3 IF 𝑋𝑡 ∈ [26833, 32630] ⟹ �̂�𝑡+3 ∈ [25947.24, 33570.65] 0.35 0.98 0.52
4 IF 𝑋𝑡−114 ∈ [23085, 39275] AND 𝑋𝑡 ∈ [26786, 36046] ⟹ �̂�𝑡+4 ∈ [26556.69, 36436.02] 0.46 0.97 0.41
5 IF 𝑋𝑡 ∈ [29971, 38813] ⟹ �̂�𝑡+5 ∈ [28089.77, 38531.58] 0.43 0.97 0.43
6 IF 𝑋𝑡−2 ∈ [22237, 29724] AND 𝑋𝑡−1 ∈ [22812, 29042] ⟹ �̂�𝑡+6 ∈ [22059.42, 30741.35] 0.32 0.93 0.46
7 IF 𝑋𝑡 ∈ [23435, 29565] ⟹ �̂�𝑡+7 ∈ [23286.75, 31999.55] 0.32 0.93 0.45
8 IF 𝑋𝑡−3 ∈ [19503, 29267] ⟹ �̂�𝑡+8 ∈ [19866.40, 31687.74] 0.44 0.94 0.34
9 IF 𝑋𝑡−4 ∈ [21948, 33583] ⟹ �̂�𝑡+9 ∈ [21678.36, 33638.91] 0.62 0.89 0.20
10 IF 𝑋𝑡−129 ∈ [29781, 40611] AND 𝑋𝑡−1 ∈ [28913, 42075] ⟹ �̂�𝑡+10 ∈ [29408.60, 40850.50] 0.37 0.98 0.47
11 IF 𝑋𝑡−1 ∈ [17846, 26748] ⟹ �̂�𝑡+11 ∈ [18447.88, 29838.03] 0.31 0.97 0.46
12 IF 𝑋𝑡−1 ∈ [20486, 28110] ⟹ �̂�𝑡+12 ∈ [20873.39, 31424.08] 0.36 0.96 0.41
13 IF 𝑋𝑡−134 ∈ [29047, 35642] AND 𝑋𝑡−8 ∈ [19893, 35062] ⟹ �̂�𝑡+13 ∈ [25787.62, 36114.02] 0.32 0.96 0.37
14 IF 𝑋𝑡−3 ∈ [19330, 29017] ⟹ �̂�𝑡+14 ∈ [19459.90, 31157.35] 0.38 0.84 0.32
15 IF 𝑋𝑡−130 ∈ [19709, 28064] ⟹ �̂�𝑡+15 ∈ [19733.12, 32743.51] 0.38 0.89 0.27
16 IF 𝑋𝑡−133 ∈ [19523, 28556] AND 𝑋𝑡−85 ∈ [25115, 41521] ⟹ �̂�𝑡+16 ∈ [19602.96, 30048.36] 0.31 0.90 0.41
17 IF 𝑋𝑡−133 ∈ [29176, 39694] AND 𝑋𝑡−128 ∈ [28498, 37063] ⟹ �̂�𝑡+17 ∈ [26667.44, 38203.40] 0.42 0.96 0.33
18 IF 𝑋𝑡−121 ∈ [26852, 36382] AND 𝑋𝑡−115 ∈ [24036, 36978] ⟹ �̂�𝑡+18 ∈ [26940.19, 37320.54] 0.45 0.81 0.20
19 IF 𝑋𝑡 ∈ [31778, 41140] ⟹ �̂�𝑡+19 ∈ [28402.35, 42863.99] 0.32 0.91 0.34
20 IF 𝑋𝑡−125 ∈ [29314, 38134] AND 𝑋𝑡−121 ∈ [30329, 37335] ⟹ �̂�𝑡+20 ∈ [24542.16, 39102.50] 0.36 0.98 0.20
21 IF 𝑋𝑡−124 ∈ [28495, 35152] ⟹ �̂�𝑡+21 ∈ [26016.44, 35727.54] 0.38 0.89 0.29
22 IF 𝑋𝑡−113 ∈ [18036, 26626] AND 𝑋𝑡−103 ∈ [18916, 30240] ⟹ �̂�𝑡+22 ∈ [18987.06, 31309.65] 0.32 0.89 0.29
23 IF 𝑋𝑡−109 ∈ [18628, 27189] ⟹ �̂�𝑡+23 ∈ [18326.44, 30991.96] 0.35 0.87 0.28
24 IF 𝑋𝑡−122 ∈ [31268, 41236] ⟹ �̂�𝑡+24 ∈ [29353.53, 42480.26] 0.34 0.88 0.37
Table 4
WkNN real data explained by the set of rules obtained for each prediction horizon.

Variable Real range Range covered Percentage covered Hist. range (+50%) Hist. range covered (%)

𝑋𝑡+1 [17353.74, 43439.52] [18349.31, 43078.56] 94.80 [20052.2, 35863.4] 100.00
𝑋𝑡+2 [17378.03, 42912.84] [18515.72, 42905.94] 95.52 [19833.8, 35774.6] 100.00
𝑋𝑡+3 [17405.38, 43056.83] [18642.72, 42994.83] 94.93 [19941.2, 35776.4] 100.00
𝑋𝑡+4 [17830.17, 42994.40] [18873.59, 42860.35] 95.32 [19787.6, 35511.2] 100.00
𝑋𝑡+5 [17266.97, 42924.54] [18970.15, 42521.59] 91.80 [19466.6, 35322.2] 100.00
𝑋𝑡+6 [18016.69, 42764.45] [19014.41, 42557.55] 95.13 [19679.1, 35519.7] 100.00
𝑋𝑡+7 [17778.78, 42686.84] [18684.15, 42429.51] 95.33 [19824.0, 35424.0] 100.00
𝑋𝑡+8 [17616.69, 42621.16] [18910.71, 42642.87] 94.91 [19685.3, 35491.1] 100.00
𝑋𝑡+9 [18148.24, 41955.98] [19189.13, 42028.16] 95.93 [19906.1, 35374.7] 100.00
𝑋𝑡+10 [18050.52, 41629.38] [18992.12, 42119.70] 98.10 [19852.4, 35250.8] 100.00
𝑋𝑡+11 [18087.15, 41318.29] [18930.70, 41506.91] 97.18 [22402.8, 35139.8] 100.00
𝑋𝑡+12 [18594.38, 41742.89] [18876.67, 40992.48] 95.54 [22467.0, 35002.0] 100.00
𝑋𝑡+13 [18268.31, 42541.82] [19082.54, 41193.65] 91.10 [20052.2, 35305.4] 100.00
𝑋𝑡+14 [18701.77, 43475.79] [19095.86, 41315.21] 89.69 [20397.4, 35603.8] 100.00
𝑋𝑡+15 [19180.59, 43548.42] [19134.17, 42318.47] 95.14 [20457.0, 35853.0] 100.00
𝑋𝑡+16 [18687.10, 44098.17] [19032.63, 41962.34] 90.24 [20426.5, 36035.5] 100.00
𝑋𝑡+17 [18656.08, 44227.79] [19197.50, 43026.00] 93.18 [20533.1, 36175.7] 100.00
𝑋𝑡+18 [18762.39, 44111.72] [18529.88, 43278.63] 97.63 [20537.0, 36077.0] 100.00
𝑋𝑡+19 [18303.98, 43753.61] [18845.82, 43181.25] 95.62 [20610.0, 36288.0] 100.00
𝑋𝑡+20 [18202.11, 43733.12] [18510.75, 43103.91] 96.33 [20476.3, 36186.1] 100.00
𝑋𝑡+21 [17908.19, 43593.15] [18267.67, 42713.28] 95.18 [20128.7, 36080.9] 100.00
𝑋𝑡+22 [18071.85, 43538.63] [18081.27, 43309.40] 99.10 [20253.0, 36009.0] 100.00
𝑋𝑡+23 [17722.50, 43503.10] [18805.80, 43111.79] 94.28 [19968.9, 35898.3] 100.00
𝑋𝑡+24 [18004.91, 43437.71] [18392.98, 43140.33] 97.30 [20218.3, 36048.1] 100.00
l
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Different models have been used for predicting 24 future values
4 h) using the time window as an input (168 past values, 1 day
nd 4 horus). For each of the 24 prediction horizons, a set of QAR is
enerated. QARs are commented in Section 4.2 and QARs are shown
n Tables 1–3. A rule is composed by the antecedent (if clause) and
he consequent (commonly then clause), after the arrow. Using the
nformation that is stored in the consequence of the rules, a graphical
epresentation is presented. The methodology used was previously
resented in the appropriate Section 3.

Visual representations explaining the three models and a LIME
aseline used for testing this methodology are shown in Fig. 4. Here
eatmaps of the influence of each variable 𝑋𝑡−𝑖 for predicting the 24
orizons are presented. The 24 prediction horizons are labeling Y axe
eanwhile the 168 features used as input are shown in X axe. The color

ode is giving purple for the less important variables and hot colors
or the most frequent ones in the QAR’s antecedent. Fig. 5 represents
176

he importance of the attributes for all the 24 prediction horizons. The F
ineal representation is calculated by summing the incidence of each
ttribute.

Regarding both Figs. 4 and 5, it could be seen that the most
mportant items are the last items, that is, the most recent time series
alues. In Fig. 4 it could also be seen a group of important values. The
roup that flows between 𝑋𝑡−148 and 𝑋𝑡−128 approximately. For the first
redicted value 𝑋𝑡+1, on the top of the heatmap, it is about 𝑋𝑡−148. As
4 h is the same as 144 items in the time series data, that means exact
he 24 before. For the last one time series value, 𝑋𝑡+24, the exact 24 h
efore is in 𝑋𝑡−128. This hot-colors pattern moves as the horizons are
oving forward in time from 𝑋𝑡+1 to 𝑋𝑡+24. This ‘line’ of attributes has
bigger impact in WkNN and bigPSF predictions, whereas slightly less

n LSTM. The ‘line’ means that the elements of the day before are also
mportant for calculating the predictions.

Then, regarding the baseline in (d) in both Figs. 4 and 5, LIME
xperiences difficulties to obtain a pattern in feature’s importance. In

ig. 4, the heatmap is more or less completed colorized whereas the
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Table 5
BigPSF real data explained by the set of rules obtained for each prediction horizon.

Variable Real range Range covered Percentage covered Hist. range (+50%) Hist. range covered (%)

𝑋𝑡+1 [18146.0, 43686.0] [18434.764, 42514.098] 94.28 [20052.2, 35863.40] 100.00
𝑋𝑡+2 [18385.68, 43586.0] [18523.0, 42856.77] 96.56 [19833.8, 35774.60] 100.00
𝑋𝑡+3 [18363.15, 43694.0] [18543.91, 42666.41] 95.23 [19941.2, 35776.40] 100.00
𝑋𝑡+4 [18288.97, 43373.0] [18507.0, 42628.01] 96.16 [19787.6, 35511.2] 100.00
𝑋𝑡+5 [18308.21, 43200.0] [18454.0, 42574.99] 96.90 [19466.6, 37964.8] 100.00
𝑋𝑡+6 [18215.0, 42997.0] [18395.0, 42418.85] 96.95 [19679.1, 35519.7] 100.00
𝑋𝑡+7 [18176.0, 42583.0] [18417.93, 42117.74] 97.01 [19824.0, 35424.0] 100.00
𝑋𝑡+8 [18291.66, 42983.0] [18291.655, 42983.0] 100.00 [19685.30, 35491.10] 100.00
𝑋𝑡+9 [18313.0, 42692.0] [18313.0, 42290.33] 98.35 [19906.1, 35374.7] 100.00
𝑋𝑡+10 [18247.0, 42208.0] [18622.0, 41743.97] 96.50 [19852.4, 35250.8] 100.00
𝑋𝑡+11 [18263.0, 41966.0] [18263.0, 41530.38] 98.16 [22402.8, 35139.8] 100.00
𝑋𝑡+12 [18195.0, 41579.52] [18195.0, 41260.55] 98.64 [22467.0, 35002.0] 100.00
𝑋𝑡+13 [18270.00, 41817.18] [18500.0, 41008.49] 95.56 [20052.20, 35305.40] 100.00
𝑋𝑡+14 [18370.00, 42434.06] [18370.0, 42434.05] 97.63 [20397.4, 35603.8] 100.00
𝑋𝑡+15 [18387.0, 42651.57] [18627.0, 41713.47] 95.14 [20457.0, 35853.0] 100.00
𝑋𝑡+16 [18414.0, 42922.93] [18980.0, 42054.65] 94.15 [20426.5, 36035.5] 100.00
𝑋𝑡+17 [18493.0, 43015.96] [18916.0, 42288.44] 95.31 [20533.1, 36175.7] 100.00
𝑋𝑡+18 [18528.26, 43089.86] [19023.82, 42409.76] 95.21 [20537.0, 36077.0] 100.00
𝑋𝑡+19 [18238.58, 43124.62] [18652.38, 42137.85] 94.37 [20610.0, 36288.0] 100.00
𝑋𝑡+20 [18319.21, 43323.32] [18637.0, 43197.42] 98.23 [20476.30, 36186.10] 100.00
𝑋𝑡+21 [18022.0, 43433.92] [18272.0, 43284.04] 98.43 [20128.7, 36080.9] 100.00
𝑋𝑡+22 [17860.0, 43486.55] [18661.0, 42910.5] 94.63 [20253.0, 36009.0] 100.00
𝑋𝑡+23 [17955.0, 43439.34] [18231.32, 42939.35] 96.95 [19968.9, 35898.3] 100.00
𝑋𝑡+24 [17894.0, 43540.49] [18635.0, 43298.0] 96.17 [20218.3, 36048.1] 100.00
Table 6
LSTM real data explained by the set of rules obtained for each prediction horizon.

Variable Real range Range covered Percentage covered Hist. range (+50%) Hist. range covered (%)

𝑋𝑡+1 [17353.74, 43439.52] [17591.27, 43439.52] 99.09 [20581.6, 36647.2] 100.00
𝑋𝑡+2 [17378.03, 42912.84] [17378.03, 42814.29] 99.61 [20591.8, 36340.6] 100.00
𝑋𝑡+3 [17405.38, 43056.83] [17643.35, 42960.25] 98.70 [20648.4, 36304.8] 100.00
𝑋𝑡+4 [17830.17, 42994.40] [17991.74, 42894.74] 98.96 [20715.9, 38915.2] 100.00
𝑋𝑡+5 [17266.97, 42924.54] [17403.38, 42800.99] 98.99 [20713.8, 38870.4] 100.00
𝑋𝑡+6 [18016.69, 42764.45] [18280.22, 42599.07] 98.27 [20637.9, 38627.2] 100.00
𝑋𝑡+7 [17778.78, 42686.84] [17921.82, 42483.08] 98.61 [20569.0, 38433.0] 100.00
𝑋𝑡+8 [17616.69, 42621.16] [17930.54, 42489.67] 98.22 [20673.3, 38567.4] 100.00
𝑋𝑡+9 [18148.24, 41955.98] [18296.10, 41799.98] 98.72 [20680.8, 38284.4] 100.00
𝑋𝑡+10 [18050.52, 41629.38] [18050.52, 41568.63] 99.74 [20558.6, 38069.8] 100.00
𝑋𝑡+11 [18087.15, 41318.29] [18087.15, 40789.47] 97.72 [20573.6, 37846.8] 100.00
𝑋𝑡+12 [18594.38, 41742.89] [18968.43, 41425.71] 97.01 [20591.1, 37993.8] 100.00
𝑋𝑡+13 [18268.31, 42541.82] [18377.28, 42366.73] 98.83 [20780.2, 36087.4] 100.00
𝑋𝑡+14 [18701.77, 43475.79] [18809.41, 43022.84] 97.74 [20880.6, 36448.2] 100.00
𝑋𝑡+15 [19180.59, 43548.42] [19184.77, 43487.88] 99.73 [20896.0, 36652.0] 100.00
𝑋𝑡+16 [18687.10, 44098.17] [19062.02, 44098.17] 98.52 [20970.9, 36984.3] 100.00
𝑋𝑡+17 [18656.08, 44227.79] [19097.35, 43654.17] 96.03 [20838.3, 37130.1] 100.00
𝑋𝑡+18 [18762.39, 44111.72] [19040.67, 43545.99] 96.67 [20689.9, 37093.3] 100.00
𝑋𝑡+19 [18303.98, 43753.61] [18623.58, 43156.52] 96.40 [20364.5, 36837.5] 100.00
𝑋𝑡+20 [18202.11, 43733.12] [18346.94, 43668.80] 99.18 [20426.5, 36755.5] 100.00
𝑋𝑡+21 [17908.19, 43593.15] [18207.39, 43384.63] 98.02 [20454.9, 36762.3] 100.00
𝑋𝑡+22 [18071.85, 43538.63] [18099.44, 43538.63] 99.89 [20513.4, 36763.8] 100.00
𝑋𝑡+23 [17722.50, 43503.10] [17935.50, 43223.04] 98.09 [20415.8, 36704.6] 100.00
𝑋𝑡+24 [18004.91, 43437.71] [18197.69, 43344.63] 98.88 [20479.6, 36635.2] 100.00
lineal representation in Fig. 5 is chaotic. Comparing the results with the
baseline leads us to think that LIME is not really accurate with regard
to time series data.

Finally, concrete examples of local explanations are also presented
in Fig. 6. A random element of the input data have been chosen and
graphically represented. The same element is represented for the three
models (a), (b), (c) and the LIME baseline (d). The color code is ob-
tained from the matrix previously used for the heatmap in Fig. 4. Thus,
the purple points are less important in order to get prediction whereas
the blue, green, yellow and red ones have an increasing importance.
It could be seen again that the 24 h before and the most recent items
are in hot colors, that is, most important. The LIME baseline shows the
time series example completely colorized.

The conclusions that could be extracted for these representations
are: the most important items to predict the present moment are the
same moment the day before and the moment that have just happened.
In Fig. 4, this importance is seen in green or light blue whereas less
177
important values are in purple. In Fig. 5 the importance is seen in the
top values of the lineal representation. Comparing the results of the
methodology applied to the three methods and the LIME baseline in
Figures 4–6, it could be observed that LIME does not find a pattern.
LIME is chaotic when explains time series forecasting. By contrast, the
proposed methodology based on QARs traces a clear pattern, providing
more interpretable results. Previously discussed in this section, the
pattern is that the most important features are the recent moments and
the moment 24 before.

5. Conclusions

Achieving explainable models, high accurate but also transparent
to the user, is a promising research scope in artificial intelligence
and computer science nowadays. In that way, post-hoc explainability
techniques are widely used as they are not generating new models

but adding explainable layers or visual and local explanations. These
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Fig. 4. Heatmap showing the importance of each time window item for each of the
24 prediction horizons.

explainability techniques are really useful as they are independent of

the model. Post-hoc models could be used to explain the forecasts

in a wide range of scopes. However, performance issues are found

when general techniques as LIME are applied to big data or time series

forecasting problems.
178
Fig. 5. Lineal graph showing the importance of each time window item for obtaining
all the predictions.

Here, a novel methodology specially designed to increase inter-
pretability of time series forecasting is proposed. Visual representations
have been used to explain how different predictive models (both deep
learning and machine learning) are obtaining their forecasts. The main
idea is to compute the importance of the input values in order to
generate the predictions.
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Fig. 6. A random instance colorized depending on the importance of the time window.

The initial idea is based on the well-known ability of association
rules to predict and being interpretable themselves. Methodology is
tested using a real-world time series data on electrical consumption in
Spain, and three different predictive models. Trained and already tested
models have been used to obtain predictions. As a result, three datasets
with real data and predicted values are generated.
179
Then, QARs have been obtained using the evolutionary algorithm
MOQAR. Rule’s antecedent is formed by the input, that is, the past
values of the time series, and whose consequent is formed by the
output, i.e. the predictions obtained by the models.

The key layer of the methodology uses QARs to obtain explainable
visual representations. Visual representations clarify and make the
results interpretable. The diagrams are generated using the information
of the QARs. The higher frequency of appearance in the antecedent of
the rule, the more impact on predicting future values. That fact creates
a color code. The color code shows graphically the importance of each
variable or timestamp in making predictions.

In general, the explanations extracted after seeing the heatmap
images and the local examples in Figs. 4 and 6 are logical concerning
the kind of data that have been used: past values timestamp is 1 day
and 4 h and future values are 4 h. The methodology finds that the
most important items to predict are the present moment are the same
moment the day before (24 h before) and the recent events.

Overall, the results obtained show that useful and interesting and
interpretable visual representations could be generated from QARs.
These diagrams could explain how predictions are obtained and which
attributes have a great importance in time series forecasting.

This is an initial approach to this methodology applications. Future
lines of research will continue in several ways. For instance, testing
the methodology with different time series datasets and with more DL
models. The objective is validate the methodology in wider scopes.
In addition, comparisons with other model agnostic explainable tech-
niques as is done here with LIME. The methodology could be extended,
and more graphical representations could be generated.
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