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A B S T R A C T

Detecting and isolating faults in collector fields of solar thermal power plants is a crucial and challenging task.
The system variables in the collector area are highly coupled, which can lead to a high misclassification rate.
For this reason, it becomes necessary to combine knowledge of systems engineering with machine learning
techniques that unravel the complex dynamics that govern the systems using historical data. Furthermore, the
performance of a solar thermal plant is highly dependent on solar irradiance which changes during the day
and is subject to perturbations caused by clouds and other atmospheric conditions. Detecting the fault requires
using techniques that cope with the disturbances in solar irradiance.

In this work, real irradiance profiles with many types of clouds are used. First, a model-based fault
detector is applied, obtaining an accuracy of over 89% for all test irradiances. Then, different machine
learning techniques are compared: static neural networks with and without decoupling strategy, dynamic
neural networks, dynamic neural networks in cascade, classification trees, random forests, radial basis function
networks, and self-organizing maps. The combination of neural networks was the only method that obtained
a total accuracy of over 73% and F1-scores over 50% for all the test irradiance profiles.
1. Introduction

For some years now, there has been a growing preoccupation with
the environment and the reduction of emissions of polluting gases
into the atmosphere. Consequently, the main concerns of the 21st
century are climate change and energy security [1]. Currently, there is
a constant development and expansion of clean and renewable energy
sources, which play a very important role in curbing global warming
and climate change, as well as in promoting economic growth [2].
Among renewable energy sources, solar energy is considered to be the
cleanest [3].

This work focuses on solar thermal energy, which harnesses the
thermal energy of the Sun to heat fluids. More specifically, parabolic
trough collectors (PTCs) are a type of solar thermal device composed of
parabolic mirrors that concentrate solar irradiance onto a tube to heat
a fluid and then produce steam, generally to drive a turbine generator.

In addition to temperature regulation [4], a very important task
in this type of plant is the correct detection of any type of failure
and its characterization. This allows the application of any necessary
mitigation, reconfiguration, and correction tasks [5], and facilitates
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maintenance operations. Fault detection and diagnosis (FDD) [6] en-
compasses the set of techniques destined for these tasks. It is divided
into fault detection, which consists of alarming about the appearance
of a fault, and diagnosis, which provides certain information about it.
Within the diagnosis techniques, one can find fault isolation, which
provides information on the type and location of the fault, and fault
identification, which determines its magnitude.

Machine learning (ML) is a research field dedicated to providing
systems with the ability to learn in order to generate models and
solve problems [7]. The use of ML techniques, and more specifically,
artificial neural networks (ANNs), has been extended to a wide range
of applications. One of them is FDD, where the ability to learn from
historical records or to find relationships between data is exploited.

Numerous examples of ML algorithms applied to FDD can be found
in the literature. For instance, Ahmadipour et al. [8] propose a fault
detection and classification method for microgrids combining support
vector machines with augmented Lagrangian particle swarm optimiza-
tion and signal processing. Brown et al. [9] apply a k-nearest neighbors
classifier for detecting faults and decision trees to classify them. In
the work by Fuming et al. [10], deep neural networks are applied
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to wind turbines to detect multiple faults based on improved triplet
loss. The work by Hussain et al. [11] uses radial basis functions
for fault detection integrating two bidirectional input parameters in
photovoltaics.

In the energy field, great advances are being made lately by apply-
ing FDD techniques to microgrids. It is worth mentioning the works
by Bernardi et al. [12], which proposes a fault estimator with a fault-
tolerant model predictive controller, or Marquez et al. [13], aimed
at quantifying and mitigating faults with model predictive control
reconfiguration. Concerning thermal solar plants, there are not many
FDD applications, focusing mainly on detection or considering the col-
lectors as a single subsystem, instead of distinguishing faults inside the
collector. For example, Georgii et al. [14] present a software framework
that selects the best fault detection method in solar heating systems
based on previous data, and Faure et al. [15] propose a methodology
for analyzing the effect of faults in solar thermal systems. An example of
detection is the work by Correa-Jullian et al. [16], which uses a neural
network to predict the temperature of the system and detect faults.
Considering fault diagnosis, Zahra et al. [17] use a Takagi–Sugeno fuzzy
model to estimate the state and generate residuals for diagnosis in a
simplified solar field. An ML approach is made by Jiang et al. [18], who
apply support vector machines to classify faults in solar water heaters.
Finally, Gao and Su [19] implement an active disturbance rejection
control in a PTC plant considering flow rate fluctuations and changes
in collector parameters.

A previous work [20] proposed a methodology based on artificial
neural networks and two decoupling strategies to detect and isolate
three types of faults in PTCs: faults in the optical efficiency –associated
with breakage, degradation, corrosion and coating of the mirror and the
receiver–, flow rate –related to imbalances of flow-rate in the loop–,
and thermal losses –related to dirt, wear, insulation and breakage of
the pipes–. Lately, the neural networks were improved by introducing
information from past inputs to detect faults in days with high vari-
ations in the irradiance due to clouds passing by [21]. The method
detects sudden faults in the same day they appear, or incipient faults
when the magnitude exceeds about 10%. The main contribution of
this work is threefold. First, a model-based fault detection technique
is developed by using the concentrated parameter model. Then, this
work proposes a new technique to distinguish the three types of faults
in days with clouds by means of a combination of neural networks. This
is performed by implementing a neural selector acting as a weighter
in cascade with the classification neural networks to give them more
generalizability. In addition, this paper provides a comparison be-
tween the proposed method and traditional classification techniques
under different circumstances, which validates the effectiveness of the
proposed method.

This paper is organized as follows. Section 2 describes the PTC
plant and provides the models of the system, as well as the flow rate
controller. Then, Section 3 describes the proposed methodology with
artificial neural networks. First, the challenge of isolating faults is
illustrated, then the classification neural networks are described, and
finally, the neural network combination is explained. A description of
the rest of the classification techniques that were implemented is also
provided. Section 4 presents the simulation results and comparative
analysis, and finally, Sections 5 and 6 draw some discussion and
conclusions.

2. System description

This section describes the solar plant and the physical models used
to simulate and control it. Next, the controller used to regulate the flow
rate is also presented.

PTC plants are composed of parabolic mirrors in series that form
loops, as shown in Fig. 1. Each mirror receives the solar direct normal
irradiance (DNI) and reflects it towards a pipe located at the focal line
of its parabola. A heat transfer fluid (HTF) that circulates through the
77
Table 1
Description of parameters and variables.

Symbol Description Units

𝐺 Collector aperture m
𝐻𝑡(𝑇 ) Convective heat transfer coefficient W/(m2 ◦C)
𝐴 Cross-sectional area m2

𝜌(𝑇 ) Density kg/m3

𝐼(𝑡) Direct solar irradiance W/m2

𝜇 Dynamic viscosity mPa s
𝜖 Effective roughness m
𝑞(𝑡) Flow rate l∕s
𝑛𝑜(𝑡) Geometric efficiency –
𝑔 Gravity of Earth m/s2
𝐾𝑜𝑝𝑡 Optical efficiency –
𝐿𝑝 Pipe length m
𝜂𝑝𝑢𝑚𝑝 Pump efficiency –
𝐶(𝑇 ) Specific heat capacity J/(kg ◦C)
𝑣 Speed m/s
𝑇 (𝑡) Temperature ◦C
𝐻𝑙(𝑇 ) Thermal loss coefficient W/(m2 ◦C)
𝑡 Time s
𝑆 Total area of the field m2

𝐿 Tube diameter m

Table 2
Description of subscripts.

Symbol Description

𝑎 Ambient
𝑓 Fluid
𝑚 Metal
𝑖𝑛 Input
𝑜𝑢𝑡 Output
𝑚𝑒𝑎𝑛 Mean between input and output
𝑙𝑜𝑜𝑝 Mean for the entire loop
𝑟𝑒𝑓 Reference
𝑒𝑠𝑡 Estimated
𝑚𝑒𝑎 Measured

pipe is heated with solar rays. The fluid is then fed to a heat exchanger
to produce steam and drive a turbine generator.

For simulation purposes, this work uses a model of the ACU-REX
plant, which was located at the Plataforma Solar de Almería before
dismantling and operated for more than 30 years [22]. It was a plant of
1 MW composed of 10 loops of 12 modules of 4 single-axis east–west
aligned solar collectors. Each loop is 172 m long and has an active part
of 142 m that receives solar irradiance and a passive part of 30 m.
In this work, only one loop is considered, and the methodologies can
be extended to more loops independently. The heat transfer fluid is
Therminol 55 thermal oil, with density 𝜌𝑓 and specific heat capacity
𝐶𝑓 given by Eqs. (1) and (2). Tables 1 and 2 give the notation used in
this document.

𝜌𝑓 = 903 − 0.672𝑇𝑓 (1)

𝐶𝑓 = 1820 − 3.478𝑇𝑓 (2)

2.1. Distributed parameter model

The system is simulated by computing the distributed parameter
model. It is given by the partial differential Eqs. (3) and (4), which
describe the energy balances in the pipe and the HTF with spatially
distributed variables [4,23]. The model is discretized into 172 segments
and an integration time of 0.25 s is used. The faults are modeled as
multiplicators. Three types of faults are taken into account, each for
a term of the equations: 𝛼𝐾𝑜𝑝𝑡

< 1 for faults in the optical efficiency,
𝛼𝑞 ≠ 1 for faults in the flow rate, and 𝛼𝐻𝑙 > 1 for faults in the thermal
losses. Values of these parameters equal to 1 indicate that the system
is working without failure.

𝜌 𝐶 𝐴
𝜕𝑇𝑚 = 𝛼 𝐼𝐾 𝑛 𝐺 − 𝛼 𝐻 𝐺(𝑇 − 𝑇 ) − 𝐿𝐻 (𝑇 − 𝑇 ) (3)
𝑚 𝑚 𝑚 𝜕𝑡 𝐾𝑜𝑝𝑡 𝑜𝑝𝑡 𝑜 𝐻𝑙 𝑙 𝑚 𝑎 𝑡 𝑚 𝑓
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Fig. 1. Scheme of a parabolic-trough collector field.
Table 3
Parameters of the ACUREX plant.

Parameter Value

𝜌𝑚 7800 kg/m3

𝐶𝑚 550 J/kg ◦C
𝐴𝑚 2.4806 ⋅ 10−4 m2

𝐺 1.82 m
𝐿 7.98 ⋅ 10−2 m
𝐴𝑓 5.0671 ⋅ 10−4 m2

𝑆 2672 m2

𝜌𝑓𝐶𝑓𝐴𝑓
𝜕𝑇𝑓
𝜕𝑡

+ 𝛼𝑞𝜌𝑓𝐶𝑓 𝑞
𝜕𝑇𝑓
𝜕𝑥

= 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓 ) (4)

The parameters of the system are collected in Table 3, and the
coefficients of thermal loss 𝐻𝑙 and convective heat transfer of the inner
tube 𝐻𝑡 are obtained with Eqs. (5) and (6), respectively.

𝐻𝑙 = 0.00249
(

𝑇𝑓 − 𝑇𝑎
)

− 0.06133 (5)

𝐻𝑡 = 𝑞0.8(2.17 ⋅106−5.01 ⋅104𝑇𝑓 +4.53 ⋅102𝑇 2
𝑓 −1.64𝑇 3

𝑓 +2.1 ⋅10−3𝑇 4
𝑓 ) (6)

The geometric efficiency 𝑛𝑜, also known as 𝑐𝑜𝑠(𝜃), is obtained with
the relation between the radiation beam vector and the normal vector
of the mirror. It depends on the collector dimensions, declination,
hourly angle, Julian day, latitude, and solar hour [24,25]. The other
type of efficiency considered in the collectors is optical efficiency
𝐾𝑜𝑝𝑡, which takes into account factors such as reflectivity and soiling
of the mirrors, tube absorptance or interception factor. Defects and
dirt on the mirrors can lower the optical efficiency of the collectors,
which is considered a plant fault. As Azouzoute et al. point out, dust
accumulation alone can already decrease the optical efficiency of solar
power plants by more than 30% in just one week [26,27].

2.2. Concentrated parameter model

A simpler description of the plant is provided by the concentrated
parameter model – sometimes referred to as lumped parameter model –,
which represents the internal energy variation of the fluid and is given
by Eq. (7). The thermal capacity of the loop is 𝐶 = 𝐿 𝜌 𝐶 𝐴 ,
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𝑙𝑜𝑜𝑝 𝑙𝑜𝑜𝑝 𝑓 𝑓 𝑓
and 𝑃𝑐𝑝 = 𝜌𝑓𝐶𝑓 . This model is used to implement a flow controller,
described in Section 2.3.

𝐶𝑙𝑜𝑜𝑝
𝑑𝑇𝑜𝑢𝑡
𝑑𝑡

= 𝛼𝐾𝑜𝑝𝑡
𝑛𝑜𝐾𝑜𝑝𝑡𝑆𝐼 − 𝛼𝑞𝑞𝑃𝑐𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) − 𝛼𝐻𝑙

𝐻𝑙𝐴(𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑎) (7)

2.3. Flow control

The flow rate that circulates through the pumps is manipulated to
maintain the outlet temperature around a reference temperature. A
feedforward controller is implemented with a sample time of 39 s [28]
and assuming that there are no faults in the system. The controller
equation derives from the concentrated parameter model in steady-
state, as shown in Eq. (8). The flow rate is kept between 0.2 l/s and
1.2 l/s.

𝑞 =
𝑛𝑜𝐾𝑜𝑝𝑡𝑆𝐼 −𝐻𝑙𝐴(𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑎)

𝑃𝑐𝑝(𝑇𝑟𝑒𝑓 − 𝑇𝑖𝑛)
(8)

3. Proposed methodologies for FDD

In this work, an FDD methodology is implemented starting from the
results obtained in previous works [21]. Three types of faults in the
collector area of a PTC plant are detected and isolated (𝐾𝑜𝑝𝑡, 𝑞 and 𝐻𝑙
faults) using only the information from the available sensors. The inputs
are the variables that the concentrated parameter model uses and are
obtained from the following elements: inlet and outlet temperature
sensors, ambient temperature sensor, pyrheliometer, flowmeter, and
geometric efficiency estimation. This section describes the different
classification techniques that were tested as FDD modules.

3.1. Residuals from model

The concentrated parameter model from Eq. (7) can be used to
estimate the outlet temperature of the collector. This measurement can
be used as a residual when compared to the temperature read by the
thermometer (in this case, simulated using the distributed parameter
model of Eqs. (3) and (4)). The estimated and read temperatures
are filtered with a low-pass filter and the resulting residual is given
by Eq. (9), where 𝑇 is the filtered estimated outlet temperature
𝑜𝑢𝑡,𝑒𝑠𝑡
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and 𝑇𝑜𝑢𝑡,𝑚𝑒𝑎 is the filtered measured outlet temperature. Whenever the
residual 𝑟𝑇 surpasses a given threshold, the system triggers an alarm.

𝑟𝑇 =
|𝑇𝑜𝑢𝑡,𝑒𝑠𝑡 − 𝑇𝑜𝑢𝑡,𝑚𝑒𝑎|

𝑇𝑜𝑢𝑡,𝑚𝑒𝑎
(9)

In these types of systems, the faults are strongly coupled [20] and it
is a hard task to isolate them, but using residuals helps to detect them.
Based on the concentrated parameter model, the next step is the use
of artificial neural networks to isolate faults with the same inputs as
variables there are in the concentrated parameter model.

3.2. Artificial neural networks

An artificial neural network [29] is a function approximator that is
worldwide used to solve linear and nonlinear problems in which the so-
lution is too complex or costly. An ANN is composed of different nodes
that solve internally a linear regression problem, and the combination
of nodes results in the resolution of a nonlinear regression problem. One
of the most known ANNs is the multilayer perceptron (MLP), where the
nodes (also referred to as neurons) are disposed in layers. There are
three types of layers: inputs layers, hidden layers that transform the
data, and output layers.

The output of each neuron is generally transformed into an active/
non-active state using activation functions, being the most common
ones the relay, sigmoid and hyperbolic tangent [30,31]. The ANNs in
this work contain hyperbolic tangent sigmoid functions in all layers,
except for the output, where a softmax function is used to scale the
data in the range [0, 1].

Each node is characterized by some weights that are obtained dur-
ing the training of the ANN with backpropagation [32]. This algorithm
adapts the weights by computing the error of each neuron iteratively
from the output to the input. In this work, the scaled conjugate gradient
algorithm [33] is used. To train the neural network, it performs a
search along conjugate directions for fast, low memory convergence.
The structure and the parameters of the neural networks are selected
by trial and error in an iterative process until obtaining the desired
results.

The inputs to the neural network are scaled in the range [−1,+1]
and divided into three subsets: training set (for adjusting the parame-
ters), validation set (for readjusting hyperparameters) and test set (for
estimating the performance with new data). The outputs are codified
with one-hot encoding. There are four outputs: one for the nonfaulty
case and the rest of each type of fault: 𝑌 (𝑘) = [𝑦0(𝑘), 𝑦1(𝑘), 𝑦2(𝑘), 𝑦3(𝑘)]
for each sample 𝑘, where 𝑦𝑖 ∈ {Faultless, 𝐾𝑜𝑝𝑡 fault, 𝑞 fault, 𝐻𝑙 fault}.
The classifications are made by high values in the output corresponding
to the winning class.

Initially, in the previous work [20], static neural networks were
employed, using the values of 𝑋(𝑘) = [𝑇𝑖𝑛(𝑘), 𝑇𝑜𝑢𝑡(𝑘), 𝑑𝑇𝑜𝑢𝑡(𝑘)∕𝑑𝑇 , 𝑇𝑎(𝑘),
𝐼(𝑘), 𝑞(𝑘), 𝑛𝑜(𝑘)] as inputs. These ANNs were tested by simulation in
clear days, obtaining an accuracy over 87% and over 95% with a
decoupling strategy. This strategy consisted of analyzing the flow rate
dynamics or defocusing the first collector when necessary. When taking
into account days with large clouds, the results worsen significantly
to less than 50%. For this reason, [21] considers the dynamics of the
system by introducing delays at the inputs and the accuracy augments
to more than 73%.

3.3. Neural network combination

The previous work [21] did not take into account that each neural
network performs better for one type of irradiance profile. This is
because on days with many clouds it is more convenient to apply a
different delay to the inputs than when the day has very little variation.

This paper proposes a methodology based on two levels of neural
networks in cascade, as shown in Fig. 2. There are several dynamic
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ANNs trained with the same dataset, but each one with different inputs.
Fig. 2. Scheme of the cascade neural network with two levels. The score of each
class is the weighted sum of the scores given by each classifier ANN, with the weights
provided by the selector ANN.

An external ANN reads the current and past irradiance values and
decides the best combination of neural networks to apply at each
instant. The signal that corresponds to each fault is the weighted sum of
the outputs of the classifier ANNs with the weights given by the selector
ANNs.

The selected classification neural networks have the following in-
puts for every instant 𝑘, where �̄�(𝑘 − 𝑗 ∶ 𝑘 − 𝑖) is the mean value of
𝑥 between 𝑘 − 𝑖 and 𝑘 − 𝑗 and �̄�𝑤(𝑘 − 𝑗 ∶ 𝑘 − 𝑖) is the weighted mean
between 𝑘 − 𝑖 and 𝑘 − 𝑗.

• Inputs to classifier 1: 𝑋𝑐1(𝑘) = [𝑇𝑖𝑛(𝑘), 𝑇𝑜𝑢𝑡(𝑘), 𝑑𝑇𝑜𝑢𝑡(𝑘)∕𝑑𝑇 , 𝑇𝑎(𝑘),
𝐼(𝑘), 𝑞(𝑘), 𝑛𝑜(𝑘)]

• Inputs to classifier 2: 𝑋𝑐2(𝑘) = [�̄�𝑖𝑛(𝑘−5 ∶ 𝑘−1), �̄�𝑖𝑛(𝑘−20 ∶ 𝑘−6),
�̄�𝑜𝑢𝑡(𝑘 − 5 ∶ 𝑘 − 1), �̄�𝑜𝑢𝑡(𝑘 − 15 ∶ 𝑘 − 6), �̄�𝑜𝑢𝑡(𝑘 − 30 ∶ 𝑘 − 16),
�̄�𝑎(𝑘− 5 ∶ 𝑘− 1), 𝐼(𝑘− 5 ∶ 𝑘− 1), 𝐼(𝑘− 20 ∶ 𝑘− 6), 𝑞(𝑘− 3 ∶ 𝑘− 1),
𝑞(𝑘 − 10 ∶ 𝑘 − 4), 𝑛𝑜(𝑘)]

• Inputs to classifier 3: 𝑋𝑐3(𝑘) = [𝑇𝑖𝑛(𝑘), 𝑇𝑜𝑢𝑡(𝑘), 𝑇𝑜𝑢𝑡(𝑘 − 1), 𝑇𝑜𝑢𝑡(𝑘 −
15), 𝑇𝑜𝑢𝑡(𝑘 − 30), 𝑇𝑎(𝑘), 𝐼(𝑘), 𝑞(𝑘), 𝑞(𝑘 − 1), 𝑞(𝑘 − 15), 𝑛𝑜(𝑘)]

• Inputs to classifier 4: 𝑋𝑐4(𝑘) = [𝑇𝑖𝑛(𝑘), 𝑇𝑜𝑢𝑡(𝑘), �̄�𝑜𝑢𝑡(𝑘 − 5 ∶ 𝑘 − 1),
�̄�𝑜𝑢𝑡(𝑘−15 ∶ 𝑘−6), �̄�𝑜𝑢𝑡(𝑘−30 ∶ 𝑘−16), 𝑇𝑎(𝑘), 𝐼(𝑘), 𝐼(𝑘−5 ∶ 𝑘−1),
𝐼(𝑘 − 20 ∶ 𝑘 − 6), 𝑞(𝑘), 𝑞(𝑘 − 3 ∶ 𝑘 − 1), 𝑞(𝑘 − 10 ∶ 𝑘 − 4), 𝑛𝑜(𝑘)]

• Inputs to classifier 5: 𝑋𝑐5(𝑘) = [𝑇𝑖𝑛(𝑘), �̄�𝑖𝑛(𝑘−5 ∶ 𝑘−1), �̄�𝑖𝑛(𝑘−20 ∶
𝑘−6), 𝑇𝑜𝑢𝑡(𝑘), �̄�𝑜𝑢𝑡(𝑘−5 ∶ 𝑘−1), �̄�𝑜𝑢𝑡(𝑘−15 ∶ 𝑘−6), �̄�𝑜𝑢𝑡(𝑘−30 ∶ 𝑘−16),
𝑇𝑎(𝑘), 𝐼(𝑘), 𝐼(𝑘− 5 ∶ 𝑘− 1), 𝐼(𝑘− 20 ∶ 𝑘− 6), 𝑞(𝑘), 𝑞(𝑘− 3 ∶ 𝑘− 1),
𝑞(𝑘 − 10 ∶ 𝑘 − 4), 𝑛𝑜(𝑘)]

• Inputs to classifier 6: 𝑋𝑐6(𝑘) = [𝑇𝑖𝑛(𝑘), �̄�𝑖𝑛(𝑘−5 ∶ 𝑘−1), �̄�𝑖𝑛(𝑘−20 ∶
𝑘−6), �̄�𝑖𝑛(𝑘−20 ∶ 𝑘−1), 𝑇𝑜𝑢𝑡(𝑘), �̄�𝑜𝑢𝑡(𝑘−5 ∶ 𝑘−1), �̄�𝑜𝑢𝑡(𝑘−15 ∶ 𝑘−6),
�̄�𝑜𝑢𝑡(𝑘−30 ∶ 𝑘−16), �̄�𝑜𝑢𝑡(𝑘−30 ∶ 𝑘−1), 𝑇𝑎(𝑘), 𝐼(𝑘), 𝐼(𝑘−5 ∶ 𝑘−1),
𝐼(𝑘−20 ∶ 𝑘−6), 𝐼(𝑘−20 ∶ 𝑘−1), 𝑞(𝑘), 𝑞(𝑘−3 ∶ 𝑘−1), 𝑞(𝑘−10 ∶ 𝑘−4),
𝑞(𝑘 − 10 ∶ 𝑘 − 1), 𝑛𝑜(𝑘)]

With regard to the selector ANN, different experiments were carried
out by combining the output of the classifier ANNs. Based on the
previous experiments [21], different combinations were tested. The
most relevant experiments are the following, selected on the basis of
which obtained the best metric results in each type of test irradiance
profile. The main idea was to combine the best properties of the static
ANN (classifier 1) and other dynamic ANNs.:
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• Combination 1: classifiers 1 and 2.
• Combination 2: classifiers 1, 2, 3 and 4.
• Combination 3: classifiers 1 and 6.

The selector neural network receives present and past values of the
rradiance and outputs a weight to apply at the output of each classifier
eural network. This way, it tries to predict the reliability of every
lassifier ANN. The following criteria were followed:

• Type 1: The inputs are 𝑋𝑠1(𝑘) = [𝐼(𝑘), 𝜎(𝐼(𝑘 − 2 ∶ 𝑘)), 𝜎(𝐼(𝑘 −
7 ∶ 𝑘)), 𝜎(𝐼(𝑘 − 22 ∶ 𝑘))]. It has an output for each associated
classifier. For the outputs, it takes the output of the classifier that
corresponds to the real fault and divides it over the sum of all
classifier outputs corresponding to that fault.

• Type 2: The inputs are 𝑋𝑠2(𝑘) = [𝐼(𝑘), 𝜎(𝐼(𝑘 − 2 ∶ 𝑘)), 𝜎(𝐼(𝑘 − 7 ∶
𝑘)), 𝜎(𝐼(𝑘 − 22 ∶ 𝑘))]. It has an output for each associated clas-
sifier. The output is 1 whenever the output of the corresponding
classifier gives more than 0.75 to the correct fault.

• Type 3: The inputs are 𝑋𝑠3(𝑘) = [𝐼(𝑘), 𝜎(𝐼(𝑘 − 2 ∶ 𝑘)), 𝜎(𝐼(𝑘 − 7 ∶
𝑘)), 𝜎(𝐼(𝑘−22 ∶ 𝑘))]. It has an output for each associated classifier.
The output is 1 if the corresponding classifier gave the highest
value to the correct fault.

• Type 4: The inputs are 𝑋𝑠4(𝑘) = [𝐼(𝑘), 𝐼(𝑘−2), 𝐼(𝑘−7), 𝐼(𝑘−22)].
It has an output for each associated classifier. The output is 1
whenever the output of the corresponding classifier gives more
than 0.75 to the correct fault.

The activation functions are tangent sigmoid functions, except for
a softmax in the last layer. The neural networks are trained until
achieving a minimum gradient of 10−6, 6 validation checks, or 4000
epochs.

3.4. Classification trees

A classification and regression tree (CART) is an algorithm that pre-
dicts the values of a variable. It is based on a decision tree constructed
from historical data [34]. CARTs are widely used in the literature.
For example, Sánchez et al. [35] use a regression tree to estimate
solar radiation in a solar plant, and Said et al. [36] optimizes the
performance of a solar flat plate collector with bayesian optimization
and regression trees.

A CART is a combination of if-else rules. First, the root node is
defined, together with the explanatory variables of the model. Also,
impurity, which is a measure of the ability of a variable to lead to the
correct final prediction, must be selected. Each variable is divided into
all its possible split points. If the data is continuous, different thresholds
must be tested. For each split point, two child nodes are created, the
impurity is calculated and the best branch is selected. The process is
repeated until completing the tree.

In this work, different classification trees were created to detect and
diagnose faults in the solar plant. The inputs to the CARTs are the same
ones as to the ANNs. The following hyperparameters are optimized to
minimize the cross-validation loss with bayesian optimization: maxi-
mum number of splits, minimum number of leaf node observations,
the split criterion and the number of predictors to select at random for
each split. For all the classifiers trained, the best slip criterion was the
deviance or cross-entropy, given by Eq. (10).

𝑑𝑒𝑣 = −
∑

𝑖
𝑝(𝑖) log2 𝑝(𝑖) (10)

where 𝑝(𝑖) is the observed fraction of classes with class 𝑖 that reach the
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analyzed node.
3.5. Random forests

Random forests (RF) is another technique based on decision trees
[37]. It combines multiple individual CARTs to obtain different non-
correlated models. Each tree votes for a classification for the incoming
data and the most voted class is selected. The trees are constructed
randomly and each one is trained with a random subset of the data
(with repetition) and with a random subset of features. Some recent
examples are the works by Chai and Zhao [38], which apply them for
fault classification in chemical processes, and Dhibi et al. [39] use them
for fault classification in PV systems.

The training process is similar to that of the classification tree, with
the difference of the bootstrap: first, a random subset is selected. Then,
a few random variables are taken to select the one that separates the
data further. That one is used as a root. Then, the process is repeated
for the rest of the variables, creating a new branch at the time. Once a
tree is obtained, a new subset is created and all the steps are repeated.
This is performed until obtaining hundreds of trees, which is called a
forest.

The process followed for training the RF is analogous to that for the
CARTs, making tests with different numbers of trees. In this case, the
split criterion was the Gini’s diversity index, given by Eq. (11).

𝑔𝑑𝑖 = 1 −
∑

𝑖
𝑝2(𝑖) (11)

3.6. Radial basis functions

The radial basis function (RBF) network is a type of feedforward
neural network. It is a function whose value depends on the distance
to a center, and the transfer functions are different from those of
the multilayer perceptron, usually with the normal distribution. Their
value depends on the distances between a vector associated with each
neuron and the input vectors. The output neurons have purelin transfer
functions. These neural networks have one hidden layer with a high
number of neurons. Chouhan et al. [40] use RBF to identify and
classify plant leaf diseases, and Hussain et al. [11] apply them for fault
detection.

In an iterative process, a neuron is added to the network until
reaching the desired mean squared error goal. In this type of neural
network, the input to the radial basis neuron is the distance between
its weight vector 𝑤 and the input vector 𝑥 multiplied by the bias 𝑏, as
in Eq. (12).

𝑎 = 𝑒𝑥𝑝
(

−(‖𝑤 − 𝑥‖𝑏)2
)

(12)

The spread must be selected, which measures how much the neu-
rons span. It is given by Eq. (13).

𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑏
− log (0.5)

(13)

As these neural networks compute the distance between input vec-
tors and weight vectors, to speed up the learning process, the training
is performed on a subset of the original dataset. Two tests were per-
formed: a random selection and a set based on the self-organizing map
(SOM) as a data reduction technique.

3.6.1. Self organizing maps
The self-organizing map [41] is a type of neural network that

reorganizes high-dimensional data into a low-dimensional matrix. Each
neuron constitutes a node of the SOM topology and has an associated
weight. The SOM weights constitute new prototypes that represent the
input space.

In this work, a SOM is used for generating a small dataset to train
the RBF. The SOMs were trained in batches of 10 000 data and using

hexagonal and squared topologies with a maximum of 200 epochs.
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4. Results

This section presents the results obtained which the residuals and
each one of the classifiers. The training of the classifiers and the simula-
tions were carried out in Matlab® R2020b with Intel® Core™ i7-9700F
CPU at 3.00 GHz and 16 GB RAM using the distributed parameter
model. The classifiers for FDD are trained with the Deep Learning
Toolbox and Statistics and Machine Learning Toolbox. To
compare the results, the following measures are obtained:

• Accuracy: the rate of correct classes over true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(14)

• Precision: the rate of correct positives over all positive-assigned
instances.

𝑃𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(15)

• Recall: the rate of correct positives over all positive instances.

𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(16)

• F1-score: the harmonic mean of precision and recall.

𝐹1 = 2 ⋅ 𝑅𝑒𝑐 ⋅ 𝑃𝑟𝑒
𝑅𝑒𝑐 + 𝑃𝑟𝑒

(17)

To train the neural network, a dataset with different clouds was used
except for the static ANNs, which were trained with static data [20]).
he dataset contains 13 462 h of simulations between hours 10:00 and
7:59 h, a total of 1 259 256 instances, without control and controlling
ith temperature references between 220 ◦C and 300 ◦C. The faults
alues are as follows: optical efficiency faults in the range [0.1, 0.9],
egative and positive additive flow rate faults in the range [0.1, 0.5],

and thermal loss faults in the range [1.1, 2]. For each fault type, eight
different fault values homogeneously selected inside the range were
used to obtain a comprehensive sampling. The number of data of each
type of fault has been selected to balance the data so that each class
has the same amount of data. Although the dataset is obtained from
simulations, real values of irradiance, ambient temperature and inlet
temperature were used. The ambient temperature range is [17, 44] ◦C
and the inlet temperature range is [44, 218] ◦C (although the lowest inlet
temperature values are later removed, since they correspond to start-
ups). The irradiance values obtained by the pyrheliometer are in the
range [0, 988] W∕m2. The information from the sensors is taken every
39 s and the data is subsequently interpolated. Measurement noise is
not taken into account, as it is considered an existing disturbance in
the real system that the neural networks must cope with when they are
implemented. If there were missing data during operation, an estimator
could be used [42]. The training profiles are those of Fig. 3. To obtain
the accuracies in real time, the three new profiles of Fig. 4 were used
and different simulations were performed with faults (in the same range
as with the training dataset, but with different magnitudes) appearing
at different times. The tests profiles correspond to a sunny day (profile
1), a day with many clouds (profile 4), and a medium-irradiance day
with one medium cloud (profile 9).

By using the concentrated parameter model to detect faults in
different simulations, the F1-scores (F1) and fault accuracies (ACC)
have been obtained. A low-pass filter was used at the output of the
temperature estimator. A time constant of 30 min in the filter and
a threshold of 1% in the residuals were set after different tests with
the training dataset, where an F1-score of 80.85% and an accuracy of
93.35% were obtained, as shown in Table 4. Once selected the time
constant and threshold, the results for each validation profile are shown
in Table 5, together with the average time to compute the residual. The
overall F1-score and accuracy are both over 88%. Analyzing the results
for each profile individually, in cloudy days reductions of less than 2%
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Table 4
Training results of the detection with the concentrated parameter model for different
thresholds and time constants.

Threshold (%) Filter (min) F1 (%) ACC (%)

2 60 5.78 80.02
1 60 70.52 90.63
0.5 60 43.69 52.45
2 30 15.64 81.16
1 30 80.85 93.35
0.5 30 42.34 46.75
2 10 50.16 85.32
1 10 65.33 82.54
0.5 10 37.15 33.03

Table 5
Results of the detection with the concentrated parameter model.

Profile F1 (%) ACC (%) Time (s)

1,4,9 88.06 89.29 1.091⋅10−5
1 87.72 89.06 1.072⋅10−5
4 86.77 88.19 1.202⋅10−5
9 89.66 90.63 9.982⋅10−6

are observed, even reaching an accuracy of 90% for profile 9. Profile 4
is the one that obtains slightly lower results since it is the one with the
largest amount of clouds.

The training parameters and results of the classification neural
networks are detailed in [20,21]. To train the selector neural networks,
the dataset was divided into training (70%), validation (15%) and test
subsets (15%). Note that the test subset is different from the test irradi-
ance profiles, as the first is a subset of the training dataset and the latter
contains data from completely different days. For each combination of
classifiers, different architectures of selector ANN were tested by trial
and error. Table 6 gathers the training times and accuracies of the
best architecture for each selector ANN, described with the number
of neurons in each layer separated by a dash. The highest accuracies
for every combination are obtained with the first selector type, which
uses the weighted sum of the classifiers. The best combination takes
classifiers 1, 2, 3 and 4.

To train the CARTs, the datasets are divided into a training subset
(85%) and a test subset (15%). The inputs to the trees are the same as
to the classifier ANNs described earlier with coinciding identifiers (tree
1 has the same inputs as ANN classifier 1). The resulting trees use a
minimum leaf size of 1 and the deviance criterium. Table 7 shows the
training results of the most relevant trees. The dynamic trees (trees 2–6)
have similar values of accuracy, whereas the accuracy of the static one
(tree 1) is expectedly lower. To apply the trees in real-time, the output
is codified with one-hot encoding to obtain four variables in the range
[0,1], each one corresponding to a type of situation (no fault, 𝐾𝑜𝑝𝑡 fault,
𝑞 fault and 𝐻𝑙 fault).

Analogously to the training of classification trees, random forests
are trained with a minimum leaf size of 1 and a maximum size equal
to the data size. The split criterion is the mean squared error. Table 8
shows the training results for the different forests trained. Forests of
25, 50, 100 and 200 trees are used. All trees obtain similar accuracies
greater than 99%, which could mean that the models are overfitting.
Although in random forests many trees are trained at the same time,
training times are shorter than with classification trees, because in this
case no parameter optimization is performed. Even so, the times and
accuracies increase as the number of trees in each forest increases.

To train the RBF networks, two tests are carried out: using random
subsets of 10 000 obtained from the training data, and training a SOM
to represent the training data. Table 9 gathers the parameters used to
train the different SOMs. The column Dim. indicates the number of
nodes in each dimension (only bidimensional SOMs are trained), the
column Neig. refers to the initial number of neighbors used to adapt the

weights, and the topology can be hexagonal (Hex) or squared (Grid).



Renewable Energy 211 (2023) 76–86S. Ruiz-Moreno et al.

a
s
T

s
t
p
a

Fig. 3. Irradiance profiles used for training.
Fig. 4. Irradiance profiles used for testing.
Table 6
Training accuracies of the selector neural networks.
Combination Type Neurons ACC train (%) ACC valid. (%) ACC test (%) Tr. time (min)

1 1 400-200 73.76 73.80 74.20 15.84
1 2 400-200 69.84 69.81 70.19 19.88
1 3 400-200 68.10 68.13 68.23 18.38
1 4 80-40-20 61.17 61.39 61.08 21.00
2 1 200-100-40 75.00 74.85 75.17 44.66
2 2 200-100-40 73.99 73.98 74.07 67.24
2 3 80-40-20 45.08 45.25 45.12 22.24
2 4 200-100-40 62.82 62.66 62.54 130.02
3 1 200-100-40 73.19 73.48 73.15 4.62
3 2 80-40-20 72.92 72.10 72.82 8.51
3 3 400-200 68.21 68.33 68.35 15.43
3 4 200-100-40 72.99 72.97 73.04 7.83
The datasets for the RBF networks are divided into training (85%)
nd test (15%) subsets. The goal is set to 0.001. Different values of
pread were tested. The training parameters and results are shown in
able 10. Low accuracies are obtained for all the classifiers.

All classifiers are applied following the same methodology. The FDD
ystem is constantly reading data from the sensors with a sampling
ime of 39 s (the same as the controller). All the time, the system is
erforming classifications (which are filtered to avoid misclassifications
82

nd reject disturbances) and only alarms when the established limits
are exceeded. The alarm is only turned off at the end of each day, when
the failure is assumed to be repaired.

For each of the classifiers, different tests are performed. 1152 one-
day simulations are carried out using the irradiance profiles of Fig. 4,
reference temperatures between 200 ◦C and 300 ◦C, and faults occur-
ring at different times. The accuracies, F1-scores and mean computation
times of the best classifiers of each type are presented in Table 11.
To analyze their performance in different situations, the results are

shown for the entire set of simulations and for each validation profile
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Table 7
Training accuracies of the classification trees.

Tree Data Max. splits ACC train (%) ACC test (%) Tr. time (min)

1 1 192 343 96.96 94.43 16.45
2 2 240 524 98.25 96.82 13.92
3 3 230 011 98.28 96.61 14.53
4 4 1 131 933 98.45 97.13 14.39
5 5 319 493 98.44 97.13 11.14
6 6 610 629 98.59 97.41 11.13

Table 8
Training accuracies of the random forests.

Forest Data Trees ACC train (%) ACC test (%) Tr. time (min)

1 1 25 99.79 92.40 3.04
2 1 50 99.88 99.69 3.27
3 1 100 99.91 99.69 6.61
4 1 200 99.92 99.69 13.08
5 2 25 99.97 95.36 2.78
6 2 50 99.99 99.99 2.96
7 2 100 100.0 99.99 5.91
8 2 200 100.0 99.99 11.55
9 3 25 99.98 95.64 2.01
10 3 50 100.0 99.99 2.88
11 3 100 100.0 99.99 5.73
12 3 200 100.0 99.99 11.46
13 4 25 99.97 95.64 2.26
14 4 50 100.0 99.99 2.85
15 4 100 100.0 99.99 5.66
16 4 200 100.0 99.99 11.29
17 5 25 99.96 95.33 2.14
18 5 50 99.99 99.98 2.80
19 5 100 100.0 99.98 5.55
20 5 200 100.0 99.98 11.16
21 6 25 99.97 95.72 1.72
22 6 50 100.0 99.99 3.02
23 6 100 100.0 99.99 6.00
24 6 200 100.0 99.99 11.98

Table 9
Parameters of the SOMs.

SOM Data Dim. Neig. Topology Tr. time (h)

1 1 32,32 3 Hex 12.90
2 1 32,32 3 Grid 12.61
3 1 32,32 1 Hex 13.17
4 1 32,32 1 Grid 3.72
5 1 100,100 3 Hex 55.09
6 1 100,100 3 Grid 55.04
7 1 100,100 1 Hex 55.12
8 1 100,100 1 Grid 55.35
9 2 100,100 3 Grid 9.79
10 3 100,100 3 Grid 9.77
11 4 100,100 3 Grid 10.34
12 5 100,100 3 Grid 10.85
13 6 100,100 3 Grid 12.01

individually. All classifiers are trained with the same data except for
the static ANN, which only used sunny days. For the neural network
combination, the classifications are filtered with a time constant of 60
min and the alarm is triggered when an output exceeds 0.5. The trees
and forests use a time constant of 90 min and a threshold of 0.5 and,
finally, the RBF networks use a time constant of 60 min and a limit of
1.

The accuracies obtained in the simulations are much lower than
the ones obtained when training the classifier. This is because the
training was offline and only the instantaneous value of the fault was
taken (which is not admissible in the actual application because it is
preferable to take longer to detect a failure than to get many false
alarms), while in simulation the faults are read at the end of each day.
In addition, even if the classifications are filtered, it is very difficult
to decouple the failures, especially on cloudy days, when the system is
very unstable. In general, the classifiers obtain higher accuracies on a
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Table 10
Training accuracies of the RBFs.

RBF Data Spread ACC train (%) ACC test (%) Tr. time (min)

1 1 10 56.02 53.87 21.71
2 1 25 53.80 51.09 191.08
3 1 50 51.51 48.18 20.56
4 1 75 53.03 50.92 17.98
5 1 100 53.57 51.82 17.90
6 1 150 51.58 50.05 17.99
7 2 100 53.13 51.05 20.53
8 3 100 52.01 51.01 19.41
9 4 100 52.54 51.06 21.01
10 5 100 54.11 52.91 23.47
11 6 100 54.01 52.89 24.99
12 (SOM 1) 1 10 47.28 43.24 0.77
13 (SOM 1) 1 25 46.63 41.30 0.66
14 (SOM 1) 1 50 45.01 41.28 0.64
15 (SOM 2) 1 10 47.25 42.41 0.61
16 (SOM 2) 1 25 46.86 41.94 0.65
17 (SOM 2) 1 50 45.28 42.30 0.63
18 (SOM 3) 1 10 25.64 28.49 0.08
19 (SOM 3) 1 25 26.13 29.34 0.06
20 (SOM 3) 1 50 25.64 28.49 0.08
21 (SOM 4) 1 10 42.90 41.67 0.61
22 (SOM 4) 1 25 40.52 42.23 0.65
23 (SOM 4) 1 50 38.37 40.76 0.63
24 (SOM 5) 1 75 52.22 46.30 19.88
25 (SOM 5) 1 100 52.17 46.25 18.42
26 (SOM 5) 1 150 50.85 45.19 18.00
27 (SOM 6) 1 75 50.85 44.91 18.07
28 (SOM 6) 1 100 50.87 44.96 17.94
29 (SOM 6) 1 150 50.87 44.95 17.94
30 (SOM 7) 1 75 42.29 41.60 18.17
31 (SOM 7) 1 100 42.18 41.52 17.95
32 (SOM 7) 1 150 41.84 41.24 17.99
33 (SOM 8) 1 75 48.56 48.61 18.26
34 (SOM 8) 1 100 48.56 48.61 19.04
35 (SOM 8) 1 150 48.14 48.23 18.45
36 (SOM 9) 2 75 51.51 48.89 2.25
37 (SOM 10) 3 75 53.53 53.00 2.18
38 (SOM 11) 4 75 50.03 46.83 2.24
30 (SOM 12) 5 75 52.36 50.63 2.30
40 (SOM 13) 6 75 51.41 49.52 2.33

sunny day without clouds (profile 1) since the system is more stable.
The methodologies that perform best are the dynamic ANN and the
combination of ANNs. Although dynamic ANN achieves slightly higher
accuracy, the ANN combination allows to improve the results on cloudy
days, achieving F1-scores of over 50% for the three profiles.

As an example, Fig. 5 shows the temperatures, irradiance and flow
rate obtained with profile 9 and a reference temperature of 250 ◦C
when causing a 0.7 fault in the optical efficiency at 12:00. The dashed
line shows the output temperature that would be obtained if there was
no fault. The FDD results with the selected ANN combination are shown
in Fig. 6, where the alarm is triggered before 13:00.

5. Discussion

A model-based fault detector and eight different classifiers have
been compared for fault detection and isolation: a static neural net-
work, a static neural network with a decoupling strategy, a dynamic
neural network, a 2-layer combination of dynamic neural networks, a
classification tree, a random forest, a radial basis function network, and
a combination of radial basis function network with a self-organizing
map. The static ANN is trained on sunny days, while the rest are trained
with real irradiance profiles corresponding to days with different types
of clouds. From the results in Table 11, the following observations can
be extracted:

• The concentrated parameter model obtains accuracies and F1-
scores near 90% for all irradiance profiles and requires a negli-
gible time compared to the sampling time.
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Table 11
Simulation results of the selected classifiers.

Profile Classifier F1-score (%) Acc (%) Time (s)

Faultless 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault

1,4,9 Static ANN [20] 48.82 55.18 47.34 47.58 49.57 2.19⋅10−3
1,4,9 Static ANN + decoupling [20] 49.61 51.26 47.58 53.33 50.35 7.48⋅10−4
1,4,9 Dynamic ANN [21] 88.21 82.56 65.53 55.17 73.35 2.24⋅10−4
1,4,9 ANN combination 2, 200-100-40, type 1 77.24 84.71 62.15 69.65 73.09 7.58⋅10−4
1,4,9 Tree 4 44.41 76.95 55.52 38.21 53.39 5.82⋅10−3
1,4,9 Forest 1 45.63 76.55 33.86 33.86 51.13 1.25
1,4,9 RBF 5 24.44 80.36 42.56 53.69 52.52 4.88⋅10−3
1,4,9 RBF 30 (SOM 12) 37.69 77.56 41.61 32.52 48.44 5.03⋅10−3

1 Static ANN 98.41 88.77 76.57 88.48 88.28 2.30⋅10−4
1 Static ANN + decoupling 98.46 91.8 75.43 86.51 88.28 2.87⋅10−4
1 Dynamic ANN 85.11 81.21 62.20 55.26 71.88 2.50⋅10−4
1 ANN combination 2, 200-100-40, type 1 71.14 84.26 68.42 68.89 73.18 8.14⋅10−4
1 Tree 4 60.65 80.90 59.70 58.97 64.58 5.88⋅10−3
1 Forest 1 65.79 82.98 66.67 59.76 68.23 1.24
1 RBF 5 46.89 83.24 22.22 49.62 53.13 5.09⋅10−3
1 RBF 30 (SOM 12) 50.26 80.45 27.03 – 47.66 5.29⋅10−3

4 Static ANN – 49.11 40.00 10.81 34.11 2.11⋅10−4
4 Static ANN + decoupling – 38.42 13.59 29.63 28.13 1.48⋅10−3
4 Dynamic ANN 84.97 82.21 63.60 38.76 68.75 2.02⋅10−4
4 ANN combination 2, 200-100-40, type 1 59.85 80.70 50.94 74.19 66.67 7.01⋅10−4
4 Tree 4 27.64 72.36 50.83 35.92 48.70 5.54⋅10−3
4 Forest 1 – 68.39 42.76 – 37.24 1.26
4 RBF 5 – 73.14 48.83 52.11 49.48 4.75⋅10−3
4 RBF 30 (SOM 12) – 71.05 42.9 – 40.36 4.74⋅10−3

9 Static ANN – 9.90 40.77 1.90 26.30 2.16⋅10−4
9 Static ANN + decoupling – 28.57 44.34 33.82 34.64 4.77⋅10−4
9 Dynamic ANN 94.12 84.26 73.55 65.09 79.43 2.20⋅10−4
9 ANN combination 2, 200-100-40, type 1 93.20 89.14 70.66 65.45 79.43 7.60⋅10−4
9 Tree 4 43.03 78.26 57.32 1.67 46.88 5.96⋅10−3
9 Forest 1 48.98 76.92 45.16 – 47.92 1.25
9 RBF 5 – 84.00 46.67 59.54 54.95 4.82⋅10−3
9 RBF 30 (SOM 12) 27.03 82.41 46.47 61.75 57.29 5.05⋅10−3
Fig. 5. Temperatures, irradiance and flow rate evolution from the experiment with test profile 9 and a fault of 0.7 in the efficiency of the collectors after hour 12:00 using the
selected cascade ANN (ANN combination 2200-100-40, type 1).
• As the static ANN – with and without decoupling strategy – was
only trained with sunny days, it is the one that obtains higher
accuracy and F1-scores for profile 1. Moreover, this shows that
in days with low dynamics, it is not necessary to use past data
to isolate the faults. However, the performance worsens when
testing it on cloudy days (profiles 4 and 9) and it confuses clouds
with some type of failure.

• The results with the decoupling strategy are better than with only
the ANN, but the decoupling is also dependent on the weather
conditions since the dynamic of the irradiance produces changes
in the residence time of the fluid in the collectors and false
positives.
84
• The dynamic ANN is the one with the highest accuracy (73.35%),
but the F1-score for the 𝐻𝑙 fault is lower than 40% with profile
4. This is the most challenging day, as it contains large and fast
clouds during the whole simulation. For a sunny day (profile 1),
the accuracy is lower than with the previous classifiers, but the
improvement is substantial in general terms. This highlights the
difficulty of detecting faults when clouds are present and the need
to take past data into account.

• Although the total accuracy with the ANN combination is slightly
lower than with only one dynamic network, this decrease is

practically negligible, and it succeeds in obtaining no F1-scores
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below 50% for any profile. This makes this method the best option
if the sky is not expected to be completely sunny.

• The tree shown in the table was the one that performed better in
training and also in the online simulations. The results are much
worse than with dynamic ANNs because it is much more difficult
to represent nonlinear relationships with these methods, and
increasing the number of trees can lead to overfitting. However,
a tree with dynamic data obtains higher accuracy than a static
ANN.

• The results with the random forests are similar to those with the
trees since the methodology is an extension of the CART. How-
ever, in days with clouds, it loses the ability to distinguish days
without clouds and its capabilities to isolate 𝐻𝑙 faults worsen.

• The RBF networks are not good for representing nonlinear data
too, and there is not much difference in using dynamic data,
obtaining the best online results with RBF 5, which used static
information. The results are similar to those with the trees and
forests. The results do not improve when combining it with a
SOM. The best results are obtained with dynamic data and a
medium spread, but the obtained accuracy is the lowest one.

• Regarding computation times, all of them are suitable for the sam-
pling time of 39 s, being the random forest the most demanding,
as it contains 50 models in 1.

. Conclusions

This work has analyzed different approaches for fault detection
nd isolation in parabolic through collectors. First, the use of the
oncentrated parameter model is proposed to generate residuals and
etect faults in the plant. Then, eight different classifiers are compared
o detect and isolate three types of faults: optical efficiency, flow rate,
nd thermal losses.

The challenge in the application of FDD techniques in thermal plants
ies in two main facts: first, the system variables are highly coupled in
he collector area, and then, the system performance depends strongly
n the weather conditions. This study highlights the difficulty of de-
oupling faults, especially on cloudy days, when most classifiers obtain
ccuracies under 50%. The model-based detector obtained accuracies
ear 90% for sunny and cloudy days. Among the classifiers tested, the
ynamic neural networks are the ones that provide the best results,
ith accuracies over 70%. Moreover, the combination of ANNs in two

ayers, one for classifying the fault and the other for combining the
nformation given by several classifiers, allows not only to obtain high
ccuracy but to augment the true positives for each type, with all the
85

1-scores over 50%.
Given the great FDD performance of the static ANN with the irradi-
ance profile 1, a possible improvement of the results might come from
the use of this ANN on days when weather forecasts predict a complete
absence of medium and large clouds. For all other weather conditions,
the best option is to apply the combination of the selector network with
the classifier network.

Future lines of research come from the application of the methodol-
ogy to large-scale plants, extending the FDD system to all loops in the
plant. In addition, it is intended to extend fault detection to the rest of
the solar field subsystems and to analyze the effect of defocusing the
collectors on false alarms in the optical efficiency.
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