
Searching for Rules to find Defective Modules in Unbalanced Data Sets

D. Rodrı́guez
Dept. of Computer Science

University of Alcalá
Alcalá de Henares, Madrid, Spain
e-mail: daniel.rodriguezg@uah.es

J.C. Riquelme
Dept. of Computer Science

University of Seville
Seville, Spain

e-mail: riquelme@us.es

R. Ruiz, J.S. Aguilar-Ruiz
Dept. of Computer Science

Pablo de Olavide University
Seville, Spain

e-mail: {robertoruiz, aguilar}@upo.es

Abstract

The characterisation of defective modules in software
engineering remains a challenge. In this work, we use
data mining techniques to search for rules that indicate
modules with a high probability of being defective. Using
data sets from the PROMISE repository1, we first applied
feature selection (attribute selection) to work only with those
attributes from the data sets capable of predicting defective
modules. With the reduced data set, a genetic algorithm is
used to search for rules characterising modules with a high
probability of being defective. This algorithm overcomes the
problem of unbalanced data sets where the number of non-
defective samples in the data set highly outnumbers the
defective ones.

1. Introduction

The characterization of defective software modules, which
has been addressed from different perspectives, remains a
challenge in the software engineering field. Recently there
is an increasing interest in applying search-based techniques
to relevant aspects, such as effort estimation, defect pre-
diction and maintainability [3]. With the availability of
repositories with actual data from software projects, such
as the PROMISE repository [2], it is now possible to apply
data mining techniques to learn from real data. In this
work, we use a genetic algorithm as subgroup discovery
technique to characterise defective modules from data sets
contained in such repository. However, for this problem,
we need to tackle two problems: (i) data sets are highly
unbalanced and (ii) there are attributes (metrics) that are not
relevant for predicting defective modules. The background
is summarised as follows:

Feature Selection. A large number of attributes can
also interfere in the data mining learning process. In the-
ory the more attributes, the more information capable of
discriminate defective modules. In practice, however, this
does not hold as many attributes are redundant or irrelevant
degrading the accuracy rate. The problem of feature selection

1. http://promisedata.org/

received a thorough treatment in pattern recognition and data
mining [7]. As stated previously, feature selection is used
to identify the most relevant attributes from a data set and
to remove those redundant and/or irrelevant attributes that
have negative effect on the data mining learning algorithm.
Feature selection is part of the data preparation phase (pre-
processing) to generate a reduced data set which can be
useful in different aspects:

• A reduced volume of data facilitates the application
of different data mining or searching techniques to be
applied. Furthermore, data mining algorithms can be
executed faster with smaller data sets.

• Irrelevant and redundant attributes can generate less
accurate and more complex models which are harder
to understand.

• Knowing which data is redundant or irrelevant can be
used to avoid data collection of those attributes in the
future so that the data collection becomes more efficient
and less costly.

Unbalanced Data Sets. Most data sets in defect pre-
diction are highly unbalanced, i.e., samples of non-defective
modules vastly outnumber the cases of defective modules.
This is a problem that affects most data mining learning
algorithms which aim at classifying correctly the maximum
number of instances assuming that data are balanced. For
example, a model which always selects the majority class
when, for example this class represents 90% of the samples,
already produces very good results so modifications to the
algorithm to improve the accuracy results are generally
discarded. With unbalanced data sets, data mining learning
algorithms produce degenerated models that do not take into
account the minority class as most data mining algorithms
assume balanced data sets. When this happens, there are two
alternatives, either (i) to apply algorithms that are robust to
unbalanced data sets or (ii) balance the data using sampling
techniques before applying the data mining algorithm .

Subgroup Discovery. Initially proposed by Klösgen [6]
and Wrobel [9], [10], subgroup discovery are a set of algo-
rithms that extract rules or patterns for subsets of the data
of a previously specified the concept, for example defective
modules in this work. The idea is to search for properties of

2009 International Symposium on Search Based Software Engineering

89

2009 International Symposium on Search Based Software Engineering

89

1st International Symposium on Search Based Software Engineering

89



Figure 1. Examples of Rules with 2 Dimensions

subgroups with different behaviour in relation to the rest
of the data. Rules for subgroup discovery have also the
”Condition → Class” where the condition is the conjunction
of a set of selected variables (pairs attribute–value) among
all variables. In this work, we have used an evolutionary
algorithm for subgroup discovery adapted from an algorithm
to discover hierarchical rules [1]. This algorithm generates
rules covering samples representing defective modules (the
minority class). In this way, the algorithm is able to handle
unbalanced data sets. Figure 1 shows an example of rules
generated in this work with 2 dimensions. With the condition
x1 ≤ X ≤ x2 AND y3 ≤ Y ≤ y4, we can consider the inner
rectangle or the outer one. Also, instead of having too many
rules covering perfect areas with no errors, we need a trade-
off between the number of rules and number of erroneous
instances included in those rules.

2. Experimental Work

In this paper, we have used the CM1, KC1, KC2, and PC1
data sets available in the PROMISE repository [2], to gen-
erate models for defect classification. These data sets were
created from projects carried out at NASA and collected
under their metrics2. Table 1 shows the number of instances
(modules) for each data set together with the number of
defective, non-defective and their percentage showing that
all data sets are highly unbalanced varying from 7% to 20%.
According to their Web site, the term module is applied to
the lowest level functional unit from which metrics can b
collected such as (functions, modules, or subroutines). The
last attribute is the programming language used to develop
those modules.

All data sets contain the same 22 attributes composed of
5 different lines of code measure, 3 McCabe metrics [8], 4

2. http://mdp.ivv.nasa.gov/

Table 1. Data Sets used in this Work

instances Non-def Def % def Lang

CM1 498 449 49 9.83 C
KC1 2,109 1,783 326 15.45 C++
KC2 522 415 107 20.49 C++
PC1 1,109 1,032 77 6.94 C

base Halstead measures [5], 8 derived Halstead measures [5],
a branch-count, and the last attribute is ’problems’ with
2 classes (false or true, wether the module has reported
defects). Table 2 summarizes the metrics collected from the
data sets.

These sets of metrics (both McCabe and Halstead) have
been used for quality assurance during (i) development to
obtain quality measures, code reviews, etc., (ii) testing to fo-
cus and prioritize testing effort, improve efficiency, etc. and
(iii) and maintenance as indicators such as comprehensibility
of the modules or to detect error prone modules.

As stated previously, we are interested in rules for char-
acterizing error prone modules. Generally, the developers or
maintainers use rules of thumb or threshold values to keep
modules, methods, etc within certain ranges. For example,
if the cyclomatic complexity of a module is between 1 and
10, it is considered to have a very low risk; however, any
value greater than 50 is considered to have an unmanageable
complexity and risk. For the essential complexity (ev(g)),
the threshold is 4, etc. Although these metrics have been
used for long time, there are no clear thresholds for most of
them and furthermore, they are open to interpretation. For
example, although McCabe suggest a threshold of 10 for
v(g), NASA in-house studies of this metric concluded that
a threshold of 20 is a better predictor of defective modules.
Table 3 shows the number of times an attribute was selected
by the feature selection algorithm as well as the range of the
attribute and typical thresholds suggested in the literature.

As stated previously, the aim of this work is to search
for rules that provide an indication of defective modules.
To do so, we first performed a feature selection process to
the data sets in order to simplify the input before applying
the subgroup discovery algorithm (searching rule algorithm).
In this work, we have used the Correlation-based Filter
Selection [4] (CFS) as feature selection technique. The
CFS is applied to the data before any other data mining
algorithm and independently of them. This algorithm is
in turn another searching algorithm that selects a set of
attributes highly correlated with the class attribute and a low
grade of redundancy between them. The CFS filter applied
to the original CM1, KC1, KC2 and PC1 data sets are shown
in Table 4.

Then, rules were generated using a genetic algorithm
capable of handling unbalanced data sets. As a result, there
is no need of applying any sampling techniques by either

909090



Table 2. Attribute Definition Summary

Metric Definition

McCabe loc McCabe’s Lines of code
v(g) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity

Halstead uniq Op Unique operators, n1
base uniq Opnd Unique operands, n2

total Op Total operators, N1
total Opnd Total operands N2

Halstead n Vocabulary
derived l Program length

v Volume
d Difficulty
i Intelligence
e Effort
b Error Estimate
t Time estimator
loCode Count of statements
loComment Count of lines of comments
loBlank Count of blank lines
loCodeAndComment Code and comments

Branch branchCount No. branches
Class false, true Reported defects

Table 3. No. of Times Selected Attributes were Used
by the Rules and Thresholds Suggested in the

Literature

Attribute # of times Range Threshold
loc 2 0-∞ 60
iv(g) 4 1-v(g) 7
i 13 0-∞ 120
loBlank 12 0-∞ 10
uniq op 3 0-∞ 20
uniq opnd 12 0-∞ 20
v 1 0-∞ 1,500
d 8 0-∞ 30
loCode 8 0-∞ 30
loComment 13 0-∞ 10
branchCount 7 0-∞ 19
ev(g) 3 1-v(g) 4
b 3 0-∞ 0.60

Table 4. Attributes Selected for each Data Set

CM1 KC1 KC2 PC1

loc v ev(g) v(g)
iv(g) d b i

i i uniq Opnd loComment
loComment loCode loCodeAndComment

loBlank loComment loBlank
uniq Op loBlank uniq Opnd

uniq Opnd uniq Opnd
branchCount

increasing artificially the number of instances of the minority
class artificially (in our case, number of cases with defective
samples) or removing samples form the majority class. Also,
the generated rules are simpler than the ones generated by
other data mining techniques such as C4.5. This algorithm
is a variant of another algorithm called HIDER [1]. The
difference is that while HIDER generates rules for all the
values of the class and those rules have to be applied
hierarchically (rules have to be applied in order), the variant
used in this work focuses only on one value of the class,
i.e., the minority class3.

The generated rules combine a set of attributes (metrics) to
provide better estimation and explanation of defective mod-
ules. As it can be expected, most of the selected attributes
were used by the rules and only in the case of the PC1 data
set, the v(g) attribute was selected by the feature selection
algorithm but not included in any of the generated rules.
Table 3 shows the number of times that selected attributes
were used in the condition of the rules to cover defective data
sets as well as their possible range and thresholds suggested
in the literature. The number of times an attributes are used
reveals some interesting outcomes that need further research.
For example, it seems quite natural that the intelligence of a
module (i) or the number of unique operands influence the
possibility of error prone modules, however it is less obvious
that attributes such as loBlank or loComment (lines of
blanks and lines of comments respectively) can be used as
good predictors of defective modules.

Also, the disparity of the selected attributes in each data
set may be the consequence of feature selection algorithm
not being able to handle unbalanced data sets appropri-
ately. The analysis of feature selection attributes under this
condition is part of our future work. In any case, some
attributes seem to be consistently more relevant than others
as a predictors of defective modules.

Table 5 shows only the first rule for each data set which
is the one covering the largest number of defective modules.
The accuracy of each rule can be measured by the number
of defective modules and non-defective modules covered by
the rule space, taking into account that there is an upper
limit to the number of defective modules. There is a trade-
off between the number of rules, number of defective and
non-defective samples covered by each rule.

In this work, in all four data sets around one third of the
defective modules were covered by the rules and there is no
defective samples covered by more than a single rule.

One problem observed, however, is that each rule seems to
captures a small number of defective modules in proportion
to the total number of them. If we consider that attributes of
a data set, in a large n-dimensional space, rules cover small
islands of points representing the minority class (defective

3. Implementation available at:
http://www.ieru.org/wiki/index.php5?title=Software

919191



Table 5. Main Decision Rule for each Data Set

Data Set Rule Condition

CM1 37.27 ≤ i AND
27 ≤ loBlank ≤ 32 AND

uniq Op ≤ 32
KC1 24,33 ≤ d AND

i ≤ 59.7 AND
24 ≤ uniq Opnd AND

12 ≤ branchCount ≤ 31
KC2 5 ≤ ev(g) AND

37 ≤ uniq Opnd
PC1 15 ≤ loComment ≤ 71 AND

85 ≤ uniq Opnd

modules) which seem to be located sparsely and surrounded
by non-defective modules. We considered a low value (5%)
as an acceptable error when searching for rules; such value
generated a large number of rules covering few instances. In
software engineering, it could make more sense not to focus
on the accuracy but to generate rules that are able to provide
an indication of defective modules even if a rule covers as
many defective modules as non-defective. The large number
of rules and attributes for each rule make it hard to analyse
and provide results for human consumption. The variance
and number of selected attributes can also be affected by
the fact that datasets are highly unbalanced; although our
selected attributes are similar to others found in the literature
for the same datasets, this needs further research.

3. Conclusions and Future Work

In this work, we have applied data mining techniques
to characterize defective modules to four data sets from
the PROMISE repository. To do so, we faced the problem
that data sets are highly unbalanced, i.e., there are many
more non-defective samples in the data sets than defective
ones which conditions the range of techniques that we can
apply and moreover, reduces the accuracy of the results.
To solve this problem, we applied feature selection as a
necessary step to reduce the data sets and then, as a subgroup
discovery technique, a genetic algorithm as a subgroup
discovery technique was used to generate rules for covering
only defective modules.

Results showed that in general data sets are not very
homogeneous in both the feature selection (attributes) se-
lected in each data set or rules generated. The results,
however, provide some points for further research. In relation
to the rules we need to improve the algorithm to obtain
a small number of simpler rules than the ones obtained.
One approach can be to increase the percentage of error
allowed for each rule. This will increase the number of
instances covered per rule but also the error rate. In this
way, rules will cover many more defective modules but rules
will be simpler and could be used as indicators instead of

almost certainty of being defective. We also need further
research about the quality of the data sets. We found a
large number of inconsistencies in the data sets used in
this work. For example, datasets have replicated instances
and contradictory instances (same values for all attributes
but different class value). We believe that in general in
software engineering datasets are of poor quality compared
to other disciplines and this needs to be further analysed.
Finally, we are only considering a binary class, it should be
possible to consider more classes such as low, medium or
high problematic modules.

Acknowledgements

Authors would like to thank to the anonymous reviewers
for their useful comments. This research was supported by
the Spanish Research Agency (TIN2007–68084–C02–00)
and the Universities of Seville, Pablo de Olavide and Alcalá.

References

[1] Aguilar-Ruiz, J.S., Riquelme, J.C., Toro M., Evolutionary
Learning of Hierarchical Decision Rules, IEEE Transactions
on Systems, Man and Cybernetics, Part B, Vol 33, No. 2, pp.
324-331

[2] Boetticher G., Menzies T., Ostrand T.; PROMISE
Repository of empirical software engineering data.
(http://promisedata.org/), West Virginia University,
Department of Computer Science (2007)

[3] Harman M., Jones B.F., Search-based software engineering,
Information & Software Technology, Vol. 43, No. 14, pp. 833–
839, 2001

[4] Hall M.A.; Correlation-based Feature Selection for Discrete
and Numeric Class Machine Learning. In: 17th Int. Conf. on
Machine Learning, 359–366 (2000)

[5] Halstead, M., Elements of Software Science. Elsevier, 1977.

[6] Klösgen, W., Explora: A Multipattern and Multistrategy Dis-
covery Assistant. In Usama M. Fayyad, Gregory Piatetsky-
Shapiro, Padraic Smyth, and Ramasamy Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages
249-271. AAAI Press, 1996.

[7] Liu H. and Yu L., Toward Integrating Feature Selection Al-
gorithms for Classification and Clustering, IEEE Trans. on
Knowledge and Data Eng., 17(3), 1–12, 2005.

[8] McCabe, T. J.; A complexity measure, IEEE Transactions on
Software Engineering 2 (4), 308–320, 1976.

[9] Wrobel, S. An algorithm for multi-relational discovery of
subgroups. In J. Komorowski & J. Zytkow (Eds.), Proc.
First European Symposion on Principles of Data Mining and
Knowledge Discovery (PKDD-97) (pp. 7887). Springer Verlag,
1997.

[10] Wrobel, S. (2001). Inductive logic programming for knowl-
edge discovery in databases. In S.Deroski & N. Lavra (Eds.),
Relational data mining. Springer-Verlag.

929292


