Mining Numeric Association Rules with Genetic
Algorithms

Mata, J.*, Alvarez, J.L.T, Riquelme, J.C.}

*Dept. Ing. Electronica, Sist. Informaticos y Autom. Universidad de Huelva. Spain. email:mata@uhu.es
tDept. Ing. Electronica, Sist. Informaticos y Autom. Universidad de Huelva. Spain. email:alvarez@Quhu.es
iDept. Lenguajes y Sistemas Informaticos. Universidad de Sevilla. Spain. email:riquelme@Isi.us.es

Abstract

In this last decade, association rules are being, in-
side Data Mining techniques, one of the most used
tools to find relationships among attributes of a
database. Numerous scopes have found in these
techniques an important source of qualitative infor-
mation that can be analyzed by experts in order to
improve some aspects in their environment.

Nowadays, there are different efficient algorithms
to find these rules, but most of them are demand-
ing of databases containing only discrete attributes.
In this paper we present a tool, GENAR (GENetic
Association Rules), that discover association rules
in databases containing quantitative attributes. We
use an evolutionary algorithm in order to find the
different intervals. We also make use of the evo-
lutionary methodology of iterative rule learning to
not evolve always to the same rule. By means of this
we get to discover the different association rules. In
our approach we present a tool that obtain associa-
tion rules with an undetermined number of numeric
attributes in the antecedent of the rule.

1 Introduction

Association rules were introduced in [1] as a
method to find relationships among attributes in a
database. These techniques allow us to obtain a
very interesting qualitative information with which
we can take later decisions. In general terms, an
association rule is a relationship between attributes
in the way Cy = (5, where C; and Cs are pair
conjunctions (attribute, value) in the way Ay = vy
if it is a discrete attribute, or Aje[zy,yq] if it is a
continuous or numeric attribute.

Obviously, many associations of this kind can be
found in a database but only the most interesting
ones will be used for their later study. To define
this notion of interesting two fundamental concepts
were introduced [1]: Support. We will say that a
rule C; = C5 has a support value s, if a s% of the
records contain C; and C5. Confidence. We will

say that a rule Cy = C5 has a confidence value c,
if a ¢% of the records that contain C; also contain
Cs.

For example, we suppose that we have a database
with different measures taken from a river, from
which we store among other information, temper-
ature, pH, salinity, chlorophyll level, etc. The
rule: T ¢€[12.1,15.4] A pH €[7.84,7.96] = chlorophyll
€[11.44,16.41] has a support of 0.7 if the 70% of the
measures realised have a temperature between 12.1
and 15.4, a pH between 7.84 and 7.96, and a chloro-
phyll level between 11.44 and 16.41. On the other
hand, the rule has a confidence of 0.85 if the 85%
of records where the temperature is between 12.1
and 15.4 and pH between 7.84 and 7.96, then the
chlorophyll level is between 11.44 and 16.41.

The problem to solve consists in finding all the
association rules that overcome some levels or min-
imum thresholds of support and confidence, defined
by the user, called generally minsup and minconf.
The usual algorithms of association rules work in
two phases: firstly they find pair sets attribute-
value which overcome minsup minimum threshold,
secondly, departing from these sets, they discover
the rules that overcome minconf minimum thresh-
old. There are different algorithms to discover these
association rules, that can be found in [2, 9].

The process to find frequent itemsets consists,
basically, in building different combinations of
attribute-value pairs and verifying that they are pro-
duced in a determined number of records. This pro-
cess can be relatively easy and efficient when at-
tributes are discrete and their domains span few
values. For this reason the tools proposed in the
previously referred articles, work with databases in
which the domains of their attributes are formed by
a finite set of values. But in the real world there
are numerous databases where the information is
numeric. In these databases, attributes have thou-
sands of possibilities of taking one value, by this
reason the process described above is unthinkable

from a computational point of view.

There are some studies in which tools that handle
with attributes with continuous domains are pre-
sented. In [6] the author propose to divide the
quantitative attributes into a fixed number of in-
tervals of the same size and to discover the rules
departing from such intervals. One of the main
problems is that rules are only discovered depart-
ing from such intervals. In [9] they go a step further
allowing the union of consecutive intervals. In or-
der that intervals do not cover all the domain of the
attribute, the authors propose a new measure, par-
tial completeness, that the intervals must not over-
come. In [3], the concept of optimized association
rule was introduced. Rastogi and Shim followed this
line in [7] and [8], in which they permit rules that
contain disjunctions over uninstantiated numeric at-
tributes. The optimized association rules have the
form: U A Cy = C,, where U is a conjunction of
one or two conditions over numeric attributes, and
C; and C5y are instantiated conditions.

Our contribution lies in the fact that these rules
can have an undetermined amount of numeric at-
tributes in the antecedent and a unique numeric at-
tribute in the consequent. In this paper we present
a technique to find association rules in numeric
databases by using evolutionary algorithms (EA)
[4].

2 Preliminaries

The tool developed in this approach is based on
EA theory. In order to find the optimal rule, we
depart from a population where the individuals are
potential association rules. These individuals will
be evolving by means of crossover and mutation op-
erators, so that, the individual with the best fitness
will correspond to the most significant rule in the
last generation.

One of the problems we find when using EA the-
ory is that, during the process, all the individuals
tend to the same solution. In our study case, this
means that all individuals evolve towards the same
association rule, so that, rules composing the popu-
lation of the last generation, provide, in practice, the
same information. There are different techniques to
solve this problem. Among them, the use of evo-
lutionary algorithm with niches and the iterative
rule learning [5]. In this tool we use iterative rule
learning to find different association rules inside the
database. The process consists in executing the ge-
netic algorithm as many times as rules we want to
obtain. In each iteration, we will mark the records
covered by the obtained rule. This parameter affects

the fitness function of the following generations, so
that the algorithm will not search for rules that have
been previously considered.

3 Practical Implementation

In the following subsections we will describe the
general structure of the algorithm, the individuals
representation and the meaning of the operators.

3.1 GENAR algorithm

In order to decide the completeness of the inter-
vals that conform the rules, the algorithm only needs
to know minimum and maximum values of each at-
tributes domain. This value is needed for intervals
not to grow up until spanning the total domain.
Definition 1. We will define amplitude as the max-
imum size the interval of a determined attribute can
get. We will obtain this value by 1.

A4} —m;
— (1

Where M; and m; are maximum and minimum val-
ues of the domain of attribute 4, and k is a value
definable by the user, which we will call AF' (ampli-

tude factor).

amplitude(i) =

algorithm_GENAR
1.nRules = 0;
2.while ((nRules < NRULES) or
(all records covered)) do
3 nGen = 0;
4. generate first population P(nGen);
5. while (nGen < NGENERATIONS) do
6 process P(nGen);
7 P(nGen+1l) = select individuals of P(nGen);
8 complete population P(nGen+1l) by crossover;
9. make mutations in P(nGen+1);
10. nGen++;
11. end_while
12. Rules[nRules] = choose the best of P(nGen);
13. penalize tuples covered by Rules[nRules];
14. nRules++;
15.end_while
end

As we can see, the algorithm is repeated until all
rules (NRULES) have been obtained. This value
is defined by the user depending on the number of
rules he wants to obtain in the process. In step
4 the first rule population is generated. Intervals
that overcome the amplitude defined in 1 are not
allowed. The genetic algorithm is located among
steps 5 to 11. In step 6, process carries out several
functions: to calculate the support, confidence and
fitness of each individual. In step 7, a percentage of
individuals with the best fitness, according to 2 is
selected. In 8 crossovers between selected individ-
uals are made in order to complete the population.

Finally, in 9, mutations in individuals are carried
out depending on a mutation factor.

In step 12 the best individual is chosen from the
population formed in the last generation. This elec-
tion will depend on the three factors pointed out
previously: support, confidence and fitness. This
individual is one of the rules that returns the algo-
rithm. The operation made in step 13 is very im-
portant. In it records covered by the rule obtained
in the previous step are penalized. Due to the fact
that this factor is part of the adaptation function of
the EA, we achieve that the next population does
not repeat its search space, that is, it does not tend
to generate the same association rule. To penalize
the records we use a value named PF (penalization
factor), that will be defined by the user. This pa-
rameter takes its values from interval (0,1) and we
use it to decrease the fitness of those individuals
that are going to cover a record that has already
been marked.

3.2 Genetic Algorithm characteristics

GENAR algorithm uses as a search motor an EA
with real codification for the individuals. During
the evolutionary process a 15% of the individuals
pass to the following generation according to the se-
lection operator which will choose those with the
best fitness. The rest of individuals to complete the
population will be formed by the crossover operator.
Besides, the individuals will be affected by a muta-
tion operator depending on a mutation probability.
At the end of the evolutionary process, that is, when
all fixed generations have been completed, the best
individual, depending on its support, confidence and
fitness will be the association rule found.

3.3 Structure of individuals

In GENAR algorithm, each individual represents
an association rule in which maximum and mini-
mum values of the intervals of each numeric at-
tribute are stored. The last interval is the rules con-
sequent, while the rest of them conform the rules
antecedent. Besides, certain additional information
for each individual is stored, such as the number
of attributes the rule has, support, confidence and
fitness. In this paper we consider only those rules
which involve all database attributes except the last
one which acts as consequent.

In figure 1 we can see a graphic representation.

This individual represents the rule:

A1 € [.’El,y1] A ... A Ann,1 € [.’Enfl,ynflj = Se
[zn,yn]

5 ¥ support
% ¥

confidenc e
= s fitness

Fig. 1. Structure of an individual

3.4 Evaluation Function

In order that in the different iterations the in-
dividuals tend to other search spaces, we have in-
cluded a penalization factor in the evaluation func-
tion. By means of this we also achieve that as-
sociation rules which our tool return form a non-
hierarchical set, since we do not eliminate those
cases covered by a rule, but we mark them in or-
der that the same rule will not cover them again.

Evaluation function used appears in:

fitness = covered — (marked x PF') (2)

Where covered is the number of records which fit the
rule and marked is a binary value which indicates if
the record has already been covered by some previ-
ous rule.

3.5 Genetic Operators

By means of selection operation the best individ-
uals are chosen, that is, those with the best fitness,
which are the ones that will go to the following gen-
eration. From each crossover between two individu-
als, two new ones appear whose intervals will be the
first intervals of the first individual to cross and the
following intervals of the second individual to cross
and vice versa. The mutation operator consists in
altering one of the intervals of the rule. For each
bound of the chosen interval we can have two possi-
bilities, to increase or to decrease its value. In this
way we achieve four possible mutations: to shift the
complete interval to the left or to the right, and to
increase or to decrease its size. We have to be spe-
cially careful in not overcoming the fixed value of
amplitude.

4 Results

To verify that the developed algorithm finds cor-
rectly numeric association rules, we have created two
artificial databases in which certain rules, previously
fixed, are fulfilled in an adequate number of records
as to consider them interesting ones. In the first ex-
emplary database, rules have no overlapping, that
is, there are not any cases that can belong to two
rules. Nevertheless, in order to fix results we have
created a second database where there is overlap-
ping among association rules. Due to the fact that

the performance of the tool is based in a EA, we
have carried out five times the proofs in both exam-
ples and the results fit in with the average values of
such proofs.

4.1 Rules without Overlapping

The first example database is formed by four nu-
meric attributes. We have generated 1000 records
distributed in 5 association rules. The rules will be
formed then by a conjunction of the three first at-
tributes in the antecedent and the fourth one in the
consequent. The rules we pretend to find are the
following ones:

1. [1,15] A [7,35] A [60,75] then [0,25)]

. [5,30] A [25,40] A [10,30] then [25,50]

. [45,60] A [55,85] A [20,35] then [25,75]

. [75,100] A [0,20] A [40,60] then [75,100]
. [10,30] A [0,30] A [75,100] then [100,125]

Utk W N

rule sup(%) conf(%) #r
1 [1,26] [6,35] [54,82] [0,31] 19.1 80.19 191
2 [1,32] [21,42] [10,36] [18,55] 19.9 100 199
3 [37,66] [56,84] [19,44] [23,64] 15.2 81.72 152
4 [70,99] [0,26] [34,61] [69,106] 19.1 100 191
5 [2,32] [1,30] [71,99] [92,124] 18.3 77.99 183

Table 1. Obtained results without overlapping

The exact support of each of the rules artificially
defined is 20%, since each of them cover 200 records.
In table 1 we can see that the support of the ob-
tained rules is very close to such value. Moreover,
the values of the confidence are also close to 100%.
In this case the number of covered records (#r) co-
incide with the support, since the rules have no over-

lapping.

4.2 Rules with Overlapping

The second example database is formed by three
numeric attributes. We have generated 600 records
distributed in three association rules. These rules
will be formed by a conjunction of the two first
attributes in the antecedent and the third one in
the consequent. The rules we pretend to find are
the following ones:

1. [18,33] A [40,57] then [35,47]
2. [1,15] A [7,30] then [0,20]
3. [10,25] A [20,40] then [15,35]

In this case, the exact support of each of the rules
artificially defined is 33,3%, since each of them cover
200 records. Again the obtained rules have a sup-
port very close to the expected value. Moreover,

rule sup(%) conf(%) #r
1[17,32] [35,56] [32,46] 285 89.1 166
2 [1,16] [7,30] [0,21] 32.33 8291 195
3[10,25] [17,38] [13,35] 31.55 86.25 180

Table 2. Obtained results with overlapping

good values of confidence are obtained. In spite that
the rules are with overlapping, they cover almost all
the records assigned to every one of them.

References

[1] R. Agrawal, T. Imielinski and A. Swami, “Min-
ing Association Rules Between Sets of Items in
Large Databases”, Proc. of the ACM SIGMOD

Conference on Management of Data, pp. 207-
216, Washington, D.C., 1993.

[2] R. Agrawal and R. Srikant, “Fast Algo-
rithms for Mining Association Rules”, Proc. of
the VLDB Conference, pp. 487-489, Santiago
(Chile), 1994.

[3] T. Fukuda, Y. Morimoto, S. Morishita and
T. Tokuyama, “Mining Optimized Association
Rules for Numeric Attributes”, Proc. of the
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Databases Systems, 1996.

[4] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization and Machine Learning”,
Addison-Wesley, New York.

[5] A. Gonzlez and F. Herrera, “Multi-stage Ge-
netic Fuzzy System Based on the Iterative Rule
Learning Approach”, Mathware & Soft Com-
puting, 4, 233-249.

[6] G. Piatestsky-Shapiro, “Discovery, Analysis
and Presentation of Strong Rules”, Knowledge
Discovery in Databases, AAAI/MIT Press,
1991.

[7] R. Rastogi and K. Shim “Mining Optimized
Association Rules for Categorical and Numeric
Attributes”, Int’l Conference on Data Engi-
neering, Orlando, 1998.

[8] R. Rastogi and K. Shim “Mining Optimized
Support Rules for Numeric Attributes”, Int’l

Conference on Data Engineering, Sydney, Aus-
tralia, 1999.

[9] R. Srikant and R. Agrawal “Mining Quantita-
tive Association Rules in Large Relational Ta-
bles”, Proc. of the ACM SIGMOD Conference
on Management of Data, 1996.

https://www.researchgate.net/publication/228396730

