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Abstract. This paper addresses the situation that may happen after the
application of feature subset selection in terms of a reduced number of
selected features or even same solutions obtained by different algorithms.
The data mining community has been working for a long time with the
assumption that meaningful attributes are either highly correlated with
the class or represent a consistent subset, that is, with no inconsistencies.
We have analysed around a hundred data sets very varied with a number
of attributes below one hundred, a number of instances not greater than
fifty thousand and a number of classes below fifty. Basically, in the first
round we applied two different feature subset selection methods to pick
up the figures in terms of reduced dimensionality. After that, we divided
them into different groups according to the number of selected attributes.
Next, we deepened the analysis in every category and we added a new
feature selection procedure. Finally, we assessed the performance of the
original problem and the reduced subsets with four classifiers providing
some prospective directions.
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1 Introduction

Predictive data analytics [8] encompasses the business and data processes and
computational models that enable a business to make data-driven decisions. The
key idea is to move from data to insights to decisions. Machine learning
algorithms work by searching through a set of possible prediction models for the
model that best captures the relationship between the descriptive features and
the target feature [22]. An obvious search criteria to drive this search is to look for
models that are consistent with the data. The classifier training could achieve to
three types of models: an under-fitted one, an over-fitted one and a just right one.
Thus, it is true that there is a trade-off between the current data and the
generalisation ability with unseen data. Data pre-processing (DP) is one of the
crucial and time-consuming activities within Knowledge Discovery in Databases
(KDD) [4]. Likely, feature selection [12] is said to be one of the most widesprea



approaches within DP. It pursues to pick up the most important features in
order to simplify the model and predict more accurately.

This paper aims at analysing the situation obtained when CFS and CNS
pick up only a very reduced number of attributes and to propose a strategy
to deal with this drawback. The rest of this article is organized as follows:
Sect. 2 describes some concepts about feature selection; Sect. 3 introduces our
proposal; Sect. 4 shows the experimental results; finally, Sect.5 states the con-
cluding remarks.

2 Feature Selection

Feature selection (FS) is one of the possible approaches to reduce the dimension-
ality. It picks up among the original variables those that are better suited for the
problem at hand [7]. There are different kinds of methods to contend with feature
selection [11]. Filter methods are independent of the classifier, whereas wrapper
methods use the inductive algorithm as the evaluation function. F'S involves two
phases: (a) to get a list of attributes according to an attribute evaluator and (b)
to carry out a search on the initial list. All candidate lists would be evaluated
using a measure evaluation and the best one will be returned. Correlation-based
Feature Selection (CFS) [6] and Consistency-based search in feature selection
(CNS) [3] are two powerful methods to deal with this problem. Both operate
together with a search method such as Greedy Search or typically Best First.
There are some desirable properties to be exhibited in the reduced feature space:
(a) low dimensionality, (b) retention of sufficient information, (¢) enhancement
of separability in feature space for examples in different classes by removing
effects du to noise attributes, and (d) comparability of features among examples
in the same category [14]. A goal of feature selection is to avoid selecting too
many or too few features than is necessary [16]. If too few features are selected,
there is a good chance that information content in this set of features is low.
On the other hand, if too many (irrelevant) features are selected, the effects
due to noise present in (most real-world) data may overshadow the informa-
tion present. Hence, this is a trade-off which must be addressed by any feature
selection method.

3 Proposal

The current paper sheds light on how to deal with problems where feature sub-
set selection procedures choose a small number of attributes or even those cases
when the solution reached for both procedures is exactly the same. As repre-
sentative feature subset selectors we have singled out CFS and CNS. CFS is
continually used from the developing time by Mark A. Hall up to now and cur-
rently have more than two thousands of citations and around fifty from the
current year. To give some examples, one of the most recent work has been pro-
duced in the context of activity monitoring [13]. CNS is a popular, but not so
much as the aforesaid, feature subset selector falling also into filter category with



around seven hundred citations. CNS has been claimed that sometimes chooses
a small number of features that may not be enough to provide the classifier an
appropriate performance [20].

The first step is to collect the number of selected attributes for the afore-
mentioned two methods for problems with a number of features less or equal
than one hundred and a number of instances not higher than fifty thousand. As
usually in data analytics field, the data preparation techniques operate on the
training set and the test set remains unchanged and is evaluated by the first time
after the classifier training. We have experimented with problems from the UCI
(University of California at Irvine) repository [2] as well as some classical prob-
lems from the literature on Machine Learning [17] or Artificial Intelligence [15].
We have analysed around a hundred of problems. We have divided the problems
into four outstanding scenarios as follows: (a) Only one selected attribute, (b)
Only two attributes are singled out by CFS, (¢) Only two picked attributes by
CNS and (d) Same solution is achieved by CFS and CNS. As a second step, we
also evaluated the classification performance with a previous data preparation
from the original data with a feature ranking method such as ReliefF [9] which
is a very strong method; later, it was extended to a very detailed work in [10]
and by coincidence is now marking the twentieth birthday. ReliefF requires a
threshold that may not be appropriately tuned according to the no free-lunch
Theorem [23]. We go further and we propose Leave-k-out ReliefF or ReliefF (&),
to shorten, which is the application of ReliefF with the dropping of k attributes.
The value of k is set depending on the number of original attributes. In this
study, for problems with lower than 10 attributes we have experimented with
values of 1,2,3 for k. Next, for data sets with a number of attributes in the
range (10,20] k takes the values 2,3,4. And finally, for problems containing more
attributes, that is between 21 and 30, £ is configured with the values 3,4,5. We
have not defined more sets of values for k£ because we did not come across with
any problem not fulfilling the condition in the four scenarios explained earlier.

4 Experimental Results

Table 1 describes the data sets utilised. Some of them are classical from Super-
vised Machine Learning and the remaining ones are publicly available in the
UCT (University of California at Irvine) repository [2]. They come from real-
world applications of different fields such as Medicine, Public Health, Botanic
or Biology. The problems have been sorted by the number of attributes selected
by CFS and CNS in ascending order. The size of the problems meeting the con-
ditions of the four described scenarios ranges from around twenty to more than
three thousand. The number of features varies between four and twenty nine,
whereas the number of classes is between two and more than twenty. The missing
values have been replaced in the case of nominal variables by the mode or, when
concerning continuous variables, by the mean, bearing in mind the full data set.

We have evaluated the original and the reduced data sets with four classifiers
such as C4.5 [18], INN [1], PART [5] and SVM [21]. We have used the imple-
mentations provided by WEKA tool [22] with default parameters that are those



Table 1. Summary of the data sets used and selected features for each feature subset
selector

Data set Instances Classes Features
Total Train Test Original CFS CNS

Liver 345 259 86 2 6 1 —
Post-op 90 67 23 3 20 1 1
Lenses 24 18 6 3 6 1 2
Golf 28 20 8 2 2 2
Iris 150 111 39 3 4 2 2
Hypo 3772 2829 943 4 29 2 6
Breast 286 215 71 2 15 4 2
Smoking 2855 2141 714 3 13 5 2
Primary-tumor 339 251 88 21 23 5 5
FEcoli 336 251 8 8 7 6 6
Yeast 1484 1112 372 10 8 7 7
Average 882.6 661.3 221.4 5.5 12.3 3.3 3.5
Max 3772 2829 943 21 29 7 7

suggested by the own authors of the algorithms. We have chosen CFS and CNS
as representative feature subset selection methods, because they are based on
different kind of measures, have few parameters and have provided a good per-
formance inside the supervised machine learning area. Often, BestFirst search is
the preferable option by the researchers for both FSS algorithms. CFS is likely
the most used FSS in data mining. CNS is also powerful, however the quantity
of published works is more reduced [19].

4.1 Scenario I

This subsection copes with problems where only one attribute is obtained after
the CFS. Table2 shows the results of the experiments in this first scenario.
According to the results, it seems that CFS is not able to capture the outstanding
relationships between the variables and the class label. It is especially dramatic
in the case of INN. CNS picks up from 0 through 2 attributes depending on the
problem at hand. With two features the situation has been relieved a bit but in
the remaining cases the performance is not very promising in general terms and
sometimes very poor. Particularly, in Post-op the number of attributes selected
by CFS and CNS is only a 5% of the original set which is extremely reduced
and only C4.5 classifier is able to get a better performance. Generally speaking,
ReliefF (—k) get more stable results keeping at least a half of the features in data
sets with less than ten attributes or up to a 80% of the characteristic space for
a problem with twenty features. As a general idea, INN does not operate very
well with only one selected feature.



Table 2. Scenario I: Accuracy test results

Data set Classifier FULL CFS CNS ReliefF ReliefF ReliefF ReliefF
() 2 3 4
Liver C4.5 68.60 58.14 59.46  68.60  66.28
INN 61.63 39.53 58.30  54.65 56.98
PART  61.63 58.14 59.46  68.60  66.28
SVM 58.14 58.14 57.92 58.14  58.14
Ind. average 62.50 53.49 58.78 62.50 61.92
Post — op C4.5 52.17 56.52 56.52 52.17 5217  52.17
INN 56.52  4.35 4.35 56.52 56.52 56.52
PART  65.22 56.52 56.52 56.52 56.52 56.52
SVM 56.52 56.52 56.52 56.52 56.52 56.52
Ind. average 57.61 43.48 43.48 55.43 55.43  55.43
Lenses C4.5 66.67 50.00 66.67 66.67  66.67  66.67

INN 16.67 50.00 66.67 50.00 83.33  66.67
PART  66.67 50.00 66.67 66.67 66.67  66.67
SVM 66.67 50.00 66.67 66.67 83.33  66.67

Ind. average 54.17 50.00 66.67 62.50 75.00 66.67

Global averages C4.5 62.48 54.89 62.48 61.71
INN 44.94 31.29 64.83  60.06
PART  64.50 54.89 63.93  63.16
SVM 60.44 54.89 66.00  60.44

Partial averages C4.5 61.59 63.06 52.17
1NN 35.51 54.15 56.52
PART 61.59 63.06 56.52
SVM 61.59 62.29 56.52

ReliefF(—2) is a reasonable alternative to CFS and CNS

The value of k affects clearly to the performance but a trade-off value may
be two, thus ReliefF(-2) is a quite reasonable solution to the problem showed by
CF'S and CNS. PART decreased the accuracy with Post-op after feature selection
from any of the two poles, that is when only one attribute is selected or even
almost all the features are retained. ReliefF(—k) shows a very flat behaviour in
Post-op because the results remained constant.

4.2 Scenario II

We move on to the outlook where CFS only singles out two attributes which
results are shown in Table3. CNS picks from two to six attributes. Iris is a
classical problem in the literature; according to the results at least two out of
four attributes are required to generalised with a high accuracy. Golf is a data
set rooted from the first studies in the field of Artificial Intelligence and the
removal of one attribute with ReliefF(-1) keeps the original results. If more



Table 3. Scenario II: Accuracy test results

Data set Classifier FULL CFS CNS ReliefF ReliefF ReliefF ReliefF ReliefF
(-1 (-2) (-3) (-4) (-5)
Golf C4.5 62.50 62.50 62.50 62.50 62.50 62.50
INN 75.00 50.00 50.00 75.00 50.00 37.50

PART 62.50 62.50 62.50 62.50 37.50 62.50
SVM 37.50 37.50 37.50 37.50 50.00 25.00

Ind. average 59.38 53.13 53.13 59.38 50.00 46.88
Iris C4.5 94.87 94.87 94.87 94.87 94.87 94.87
INN 94.87 94.87 94.87 94.87 94.87 89.74

PART 94.87 94.87 94.87 94.87 94.87 94.87
SV M 94.87 94.87 94.87 94.87 94.87 94.87

Ind. average 94.87 94.87 94.87 94.87  94.87  93.59
Hypo C4.5 99.15 96.92 98.94 99.26  99.26 98.94
INN 90.99 96.50 94.27 90.88  90.99 90.88
PART 98.83 96.92 98.94 98.83 98.83 98.73
SV M 93.85 93.32 93.43 93.85  93.85 93.85
Ind. average 95.70 95.92 96.39 95.71 95.73 95.60
Global averages C4.5 85.51 84.77 85.44 85.54
INN 86.95 80.46 79.72 72.71
PART 85.40 84.77 85.44 85.40
SVM 75.41 75.23 75.27 71.24
Partial averages C4.5 85.44 78.69 78.69 99.26
INN 79.72 84.94 72.44 90.99
PART 85.44 78.69  66.19 98.83
SVM 75.27 66.19 72.44 93.85

ReliefF(—2) or ReliefF(—1) are suitable for low — dimensionality problems
ReliefF(—k) with k = 3,4,5 is a good way for Hypo (initially 29 features)

than one attribute is discarded, the situation could be acceptable for k = 2 in
general terms, but for k = 3 only in PART happens improvements compared
with k = 2. Hypo is a problem which original results are better than those with
the reduced sets. Although, the situation is appropriate with CNS. ReliefF(-k)
is a good approach and the original results are even overcome. The conclusion
is very simple and could us to assert that two attributes or three are at least
necessary for small problems. Hypo is a problem which exhibits a strong classifier
dependency but ReliefF(—4) is a good way.

4.3 Scenario III

This subsection depicts in Table 4 the results of those problems where only two
attributes where retained by CNS. The situation achieved is very limited because
with only two attributes out of more than twelve is not very easy to get good
results for a classifier in general terms. CFS picked up from four through five
attributes. Roughly speaking, the classification performance is very pretty with
the exception of INN in Smoking data set. The removal of around a 20% of
attributes let to recover more or less similar results that the full feature space.



Table 4. Scenario III: Accuracy test results

Data set Classifier FULL CFS CNS ReliefF ReliefF ReliefF
(2 (3 (9
Breast C4.5 70.42 69.01 69.01 70.42  70.42  70.42
INN 64.79 70.42 70.42 67.61 69.01 69.01
PART 69.01 71.83 69.01 64.79 63.38 67.61
SV M 64.79 66.20 64.79 66.20 66.20 64.79
Ind. average 67.25 69.37 68.31 67.25 67.25  67.96
Smoking C4.5 68.63 69.47 69.47 67.65  69.47  69.47
INN 54.76 38.52 5.60 56.86  50.28  50.14
PART  61.48 67.36 68.77 62.75 61.76  66.11
SV M 69.47 69.47 69.47 69.47  69.47  69.47
Ind. average 63.59 61.20 53.33 64.18 62.75 63.80
Global averages C4.5 69.53 69.24 69.24 69.03 69.95 69.95
INN 59.78 54.47 38.01 62.23  59.65  59.58
PART  65.25 69.60 68.89 63.77 62.57 66.86
SVM 67.13 67.83 67.13 67.83 67.83 67.13

Relief F(—k) with k near to 3 exhibits a good per formance

Table 5. Scenario IV: Accuracy test results

Data set Classifier FULL CFS/CNS ReliefF ReliefF ReliefF ReliefF ReliefF
1 (2) (=3) (+4) (=3)
Ecoli c4.5 82.35 82.35 82.35 80.00 77.65
INN 82.35 82.35 82.35 83.53 72.94
PART 80.00 80.00 80.00 78.82 76.47
SVM 83.53 83.53 83.53 83.53 77.65
Ind. average 82.06 82.06 82.06 81.47 76.18
Primary — tumor C4.5 45.46  42.05 40.91 40.91 43.18
INN 36.36  30.68 36.36 37.50 37.50
PART 43.18 42.05 40.91 39.77 38.64
SVM 47.72  42.05 48.86 48.86 47.73
Ind. average 43.18 39.20 41.76 41.76 41.76
Yeast c4.5 54.84 54.03 54.57 52.68 53.49
INN 48.39 49.46 49.46 49.46 48.92
PART 56.72 54.30 55.65 55.91 54.30
SVM 55.91 54.84 54.57 54.30 53.76
53.97 53.16 53.56 53.09 52.62
Global averages C4.5 60.88 59.48 57.35
INN 55.70 54.17 52.74
PART 59.97 58.78 57.23
SV M 62.39 60.14 60.09
Partial averages C4.5 68.46 66.34 40.91 43.18
INN 65.91 66.50 37.50 37.50
PART 67.82 67.37 39.77 38.64
SVM 69.05 68.92 48.86 47.73

ReliefF(—2) is convenient for low — dimensionality data sets

ReliefF(—k) with k = 3,4,5 is a good way for Primary — tumor (23 classes)




4.4 Scenario IV

Table 5 represents an overview where CFS and CNS pick up exactly the same
features. The problems are now very handicapped because the number of classes
is between eight and ten and the number of attributes is very close to the pos-
sible class labels. The situation is very delimited because the margin to discard
attributes is not big because CFS and CNS have removed a single attribute
for low-dimensionality problems and these are data sets are very complex espe-
cially to high number of classes. In the aforesaid scenario two attributes may be
removed with ReliefF(—k) keeping a good performance. Contrarily, in Primary-
tumor only five features are selected with CFS. Interestingly, ReliefF(—k) could
discard safely at least three attributes that is at least a reduction close to a 15%.

5 Conclusions

A new feature ranking method called Leave-k-out ReliefF, also named
ReliefF (—k), was introduced. It was proposed as the alternative methodology
when CFS or CNS only pick a very reduced number of attributes that could
be 1 or 2 for any of these methods or even the same attributes are singled
out by both methods. The recommendations depend on the number of origi-
nal attributes and according to the test-bed are as follows. For problems with
fewer than 10 attributes 1 or two attributes could be discarded safely. Finally,
for problems with more features around 3 attributes could be removed from the
input space.
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