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Learning Decision Rules by Means of
Hybrid-Encoded Evolutionary Algorithms

This paper describes an approach based on evolutionary algorithms,
HIDER ( erarchical cision ules), for learning rules in continuous and discrete
domains. The algorithm produces a hierarchical set of rules, that is, the rules are
sequentially obtained and must be therefore tried in order until one is found whose
conditions are satis�ed. In addition, the algorithm tries to obtain more understandable
rules by minimizing the number of attributes involved. The evolutionary algorithm uses
binary coding for discrete attributes and integer coding for continuous attributes. The
integer coding consists in de�ning indexes to the values that have greater probability
of being used as boundaries in the conditions of the rules. Thus, the individuals han-
dles these indexes instead of the real values. We have tested our system on real data
from the UCI Repository, and the results of a 10-fold cross-validation are compared
to C4.5s and C4.5Rules. The experiments show that HIDER works well in practice.

J.C. Riquelme and J.S. Aguilar-Ruiz

Evolutionary Algorithms (EA) are a family of computational models inspired
by the concept of evolution. These algorithms employ a randomized search
method to �nd solutions to a particular problem [25]. This search is quite
different from the other learning methods mentioned above. An EA is any
population-based model that uses selection and recombination operators to
generate new sample examples in a search space [22]. EAs have been used
in a wide variety of optimization tasks [13] including numerical optimization
and combinatorial optimization problems, although the range of problems to
which EAs have been applied is quite broad. The main task in applying EAs
to any problem consists of selecting an appropriate representation (coding)
and an adequate evaluation function (�tness).
Genetic-based searching algorithms for supervised learning, as GABIL [7]

or GIL [11], do not handle easily numeric attributes because the method
of encoding all possible values would lead to very long rules in the case or
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C4.5. HIDER.

real-valued attributes. Concretely, GABIL and GIL are so-called �concept
learners� because they are designed for discrete domains. Other approaches,
as SIA [19], have been motivated by a real-world data analysis task in a
complex domain (continuous and discrete attributes).
The aim of our research was to obtain a set of rules by means of an

evolutionary algorithm to classify new examples in the context of supervised
learning. With our approach, HIDER, we try to handle efficiently continuous
and discrete attributes.
The justi�cation of this method will be discussed in Section 12.2. The

characteristics of our approach are presented in section 12.3, where the coding,
the algorithm, the selected �tness function, and a particular aspect named

, are detailed. Section 12.4 shows the experiments, the results
and the analysis of them. In Section 12.5 the conclusions are summarized,
some of which motivates the future works presented in Section 15.7.

Two arti�cial two�dimensional databases will be used to clarify the motivation
of our approach. The way in which C4.5 splits the space is depicted in Figure
12.1. The �gures within the circles describe the level on the tree where the
tests (nodes) over these attributes are placed. See the region labeled as B on
the bottom left corner of Figure 12.1. C4.5 divides the region into two parts,
however, we thought that the region should be completely covered by only
one rule. This fact motivates us to design an algorithm able to discover such
rule.

HIDER is quite different because it does not divide the space by an at-
tribute, but it extracts sequentially regions from the space. This permits us
to obtain regions, i.e., all examples belong to the same category. As il-
lustrated in Figure 12.2, the region labeled as B on the bottom left corner is
discovered by HIDER.
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C4.5 HIDER

For another arti�cial two�dimensional database, Figure 12.3 shows the
classi�cation that C4.5 gives. Nevertheless, the quality of the rule set would
be improved if the algorithm �nds rules within others. The most evident
feature, graphically observed in Figure 12.4, is the reduction of the number of
rules because of the rules overlapping. This characteristic motivates us to use
hierarchical decision rules instead of independent (unordered) decision rules.

In short, the obtaining of larger regions (without damaging the prediction
accuracy) and the discovery of regions within others are the two main goals
that have motivated the development of HIDER.

HIDER (HIerarchical DEcision Rules) uses an EA to search for the best solu-
tions and produces a hierarchical set of rules. According to the hierarchy, an
example will be classi�ed by the th rule if it does not match the conditions
of the th preceding rules. The rules are obtained sequentially until the
space is totally covered. The behavior is similar to a [17]. As
mentioned in [6], the meaning of any single rule is dependent on all the other
rules that precede it in the rule list, so that it might be a problem for the
expert in understanding the rules (if there are many).
When we want to learn rules in the context of continuous attributes, we

need to extend the concept of decision list in two ways: �rst, for adapting the
Boolean functions to interval functions; and second, for representing many
classes instead of the true and false values (positives and negatives examples).
For each continuous (real) attribute we obtain the boundaries values, called
and (lower and upper bounds, respectively), which de�ne the space
(range of the attribute ). These intervals allow us to include continuous at-
tributes in a decision list. Our decision list does not have the last constant
function true. However, we could interpret the last function as an unknown
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conditions class
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Hierarchical set of rules.

function, that is, we do not know which class the example belongs to. There-
fore, it may be advisable to say �unknown class� instead of making an erro-
neous decision. From the viewpoint of the experiments, when no induced rules
are satis�ed, �unknown class� will be considered as an error.
The structure of the set of rules will be as shown in Figure 12.5.

As mentioned in [8] one of the primary motivation for using real-coded
EAs is the precision with which attribute values can be represented and an-
other is the ability to exploit the continuous nature of functions of continuous
attributes. We implemented our �rst versions with binary-coded GAs, but we
realized that real-coded EAs were more efficient (time and quality of results).
Before an EA can be run, a suitable for the problem must be de-

vised. We also require a , which assigns a �gure of merit to
each coded solution. During the run, parents are for reproduction and

to generate . These aspects are described below.

In order to apply EAs to a learning problem, we need to select an internal
representation of the space to be searched. These components are critical for
the successful application of the EAs to the problem of interest.
Information on the environment comes from a data �le, where each exam-

ple has a class and a number of attributes. We have to codify that information
to de�ne the search space, which normally will be dimensionally greater. Each
attribute will be formed by several components in the search space, depending
on the speci�c representation. To �nd out an appropriate coding for the prob-
lem is very difficult, but it is almost impossible to get the perfect one. There
exist two basic principles for choosing the coding: the principle of meaningful
building blocks and the principle of minimal alphabets [25].
In our �rst approaches, we studied other EA-based classi�ers [7, 11] with

binary coding. These are generally used as concept learners, where coding
assigns a bit to each value of the attribute, i.e., every attribute is symbolic
(GABIL and GIL are two well-known systems). For example, an attribute
with three possible values would be represented by three bits. A value of one
in a bit indicates that the value of the attribute is present so that several bits
could be active for the same attribute. This coding is appropriate for symbolic
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Continuous (left) and discrete (right) attributes.

Example of coding.

domains. However, it is very difficult to use it in continuous domains, because
the number of elements in the alphabet is very large, prohibiting a complete
search.
Using binary encoding in continuous domains requires transformations

from binary to real for every attribute in order to apply the evaluation func-
tion. Moreover, when we convert binary into real, the precision is being lost,
so that we have to �nd the exact number of bits to eliminate the difference
between any two values of an attribute. This ensures that a mutation of the
less signi�cant bit of an attribute should include or exclude at least one ex-
ample from the training set. Let and be the lower and upper bounds of
an attribute. Let be the least absolute difference between any two values
of the attribute . The allowed for this attribute must be less than .
Thus, the length of an attribute will depend on that .
Nevertheless, the real coding is more appropriate with real domains, sim-

ply because it is more natural to the domain. A number of authors have
investigated nonbinary evolutionary algorithms theoretically [3, 4, 12, 20, 21].
The representation for continuous and discrete attributes is best explained

by referring to Figure 12.6, where and are values representing an interval
for the continuous attribute; are binary values indicating that the value of
the discrete attribute is active or not. A last value (omitted in the �gure) is
for the class.

For example, for a database with two attributes, one continuous and one
discrete, an individual of the population could be as that depicted in Figure
12.7.
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The number of classes determines the set of values to which it belongs,
i.e., if there are �ve classes, the value will belong to the set .
Each rule will be obtained from this representation, but when
or , where is an attribute, the rule will not have that value.
For example, in the �rst case the rule would be and in the second case

, being any value within the range of the attribute (see Figure 12.7).
If both values are equal to the boundaries, then the rule arises for that
attribute, which means that it is not relevant because either of the attribute�s
values will be covered by the whole range of that attribute . Under
these assumptions, some attributes might not appear in the set of rules. In the
same way, when every discrete value is active, that attribute does not appear
in the rule.

The algorithm is a typical sequential covering EA [14]. It chooses the best
individual of the evolutionary process, transforming it into a rule used to
eliminate data from the training �le [19]. In this way, the training �le is
reduced for the following iteration. HIDER searches for only one rule among
the possible solutions, that compared to the algorithms based on the Michigan
and Pittsburgh approaches, reduces the search space, even if several searches
must be performed if several rules are to be learned.
An overview of HIDER is shown in Figure 12.8. The algorithm is divided

in two parts: the procedure HIDER, which constructs the hierarchical set of
rules, and the function EvoAlg, which obtains one rule every time is called.
Initially, the set of rules is empty, but in each iteration a rule is included
(operator ) in ; is the training �le, and is the number of remainder
examples that have not been covered yet (exactly at the begining). In
each iteration the training �le is reduced (operator ), eliminating those
examples that have been covered by the description of the rule ( ), i.e., the
left-hand side of the rule, independently of its class. A parameter , called

, controls the number of examples that will not be
covered during the process (ranging from 0% to 5%). This factor ensures that
rules covering few examples are not generated. Some authors have pointed out
that these rules are undesirable, especially with noise in the domain [6, 10].
The termination criterion is reached when more examples to cover do not
exist, depending on . For the trials, we have set to 0.
The evolutionary algorithm is run each time to discover one rule. The

method of generating the initial population (Initialize) consists of randomly
selecting an example from the training �le for each individual of the pop-
ulation. Afterwards, an interval to which the example belongs is obtained.
For example, in one dimension, let and be the lower and upper bounds
of the attribute ; then, the range of the attribute is ; next, we ran-
domly choose an example from the training �le;

could be an individual of the
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HIDER( , )

EvoAlg( )

HIDER

EvoAlg( )

Initialize()
Evaluation( )

Selection( )
Recombination( )

Evaluation( )

best_of( )
EvoAlg

Pseudocode of HIDER.

population where and are random values belonging to ( is the
size of the training data; is the number of different classes; and is the
same of the example). For discrete attributes, we ensure that the individual
has the same active value as the example. The remainder binary values are
randomly set to 0 or 1.
For example, let the database be the one used in the Figure 12.7. A possible

individual for the initial population is obtained from a randomly selected ex-
ample . The individual could be .
The interval is for the continuous attribute and the values
is for the discrete one. Notice that the value is active and other value
( ) has been randomly set to 1. The individual keeps the same class that
of the example.
Sometimes, the examples very near to the boundaries are hard to cover

during the evolutionary process. To solve this problem, the search space is
increased (currently, the lower bound is decreased by 5%, and the upper bound
is increased by 5%), for continuous attributes.
The evolutionary module incorporates elitism: the best individual of every

generation is replicated to the next one ( , see in Figure 12.8 the loop
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controlled by the variable ). A set of children (from to ) is
obtained from copies of randomly selected parents, generated by their �tness
values and using the roulette wheel selection method. The remainder individ-
uals (from to ) are formed by means of crossovers
(recombination). As half of the new population is created by applying the
crossover operator, the probability of selecting an individual for crossing de-
pends on its �tness value. These individuals could be mutated (recombination)
later (only the individual from the elite will not be mutated). The evaluation
function (evaluation) assigns a value of merit to each individual, which will
be further used in the next generation.

Wright�s linear crossover operator [24] creates three offspring: treating two
parents as two points and , one child is the midpoint of both, and the
other two lie on a line determined by and . Radcliffe�s
�at crossover [16] chooses values for an offspring by uniformly picking values
between (inclusively) the two parents values. Eshelman and Schaffer [8] use
a crossover operator that is a generalization of Radcliffe�s which is called
the blend crossover ( - ). It uniformly picks values that lie between two
points that contain the two parents, but it may extend equally on either side
determined by a user speci�ed EA-parameter . For example, - picks
values from points that lie on an interval that extends on either side of
the interval I between the parents. Logically, - is the Radcliffe�s �at
crossover.
Our crossover operator is an extension of Radcliffes�s to parents coded as

intervals. Let and be the intervals of two parents and for
the same attribute . From these parents one children is generated by
selecting values that satisfy the expression: and

. This type of crossover could produce two situ-
ations, which are illustrated in Figures 12.9 and 12.10. When the intersection
of two intervals is not empty, as it is shown in Figure 12.9, the new inter-
val is clearly obtained. However, a different situation is produced when
the intersection is empty, because could be greater than . In this case, the
offspring is rejected.
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When the attribute is discrete, the crossover operator is like uniform
crossover [18].

Mutation is applied to continuous attributes as follows: if the randomly se-
lected location (gen) is or , then a quantity is subtracted or added, depend-
ing on whether it is the lower or the upper bound, respectively (the quantity is
currently the smaller Heterogeneous Overlap-Euclidean Metric (HOEM, [23])
between any two examples). In case of discrete attributes, mutation changes
the value from 0 to 1, or viceversa, and it is applied with low probability. We
introduce a speci�c mutation operator to generalize the attribute when nearly
all values are 1. In this case, the attribute does not appear in the rule.
Mutation is always applied with probabilities 0.1 (individual) and (at-

tribute), where is the number of attributes. If the attribute is discrete, the
probability of mutating a value is , where is the number of discrete
values of that attribute.

Databases used as training �les do not have clearly differentiated areas, so
that to obtain a totally coherent rule system (without error from the training
�le) involves a high number of rules. In [1] a system capable of producing a
rule set exempt from error (with respect to the training �le)is shown; however,
sometimes it is interesting to reduce the number of rules in order to get a rule
set that may be used like a comprehensible linguistic model. In this way, it
could be better to have a system with fewer rules despite some errors than too
many rules and no errors. When databases present a distribution of examples
very hard to classify, it may be interesting to introduce the relaxing coefficient
( ) for understanding the behavior of databases by decreasing the number
of rules [2]. indicates what percentage of examples within a rule can have
a different class than the rule has. behaves like the upper bound of the
error with respect to the training �le, that is, as an allowed error rate. To deal
efficiently with noise and �nd a good value for , the expert should have
an estimate of the noise percentage in its data. For example, if a database
produces too many rules when is 0, we could set to 5 to decrease the
number of rules and, possibly, the error rate might be very similar.
When an individual tries to expand and it always reaches examples of a

different Class, its �tness value cannot be higher, unless a few errors were
allowed. In this case, depending on the �tness function, such a value might
increase. In Figure 12.11 (right) the individual cannot get bigger, unless one
error is allowed, in which case the individual will have four new examples
(left), increasing its �tness value.
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Relaxing coefficient.

Number or rules varying for Pima database.

We have tested that the concept of the coefficient relaxation turns out to
be useful when the number of rules is greater than expected to understand
the information stored in the database.
We used Pima Indians Diabetes database to analyze the in�uence of the

relaxing coefficient on both the error rate and the number of rules. This ex-
ample showed that the error rate ranges from 18% to 34% depending on the
relaxing coefficient (from 0 to 40) and therefore depending on the number of
rules (from 26 to 2; see Figure 12.12). When , HIDER produced only
two rules for the Pima database and the error rate mean was about 30%. The
lower error rate was achieved when . All the experiments reported in
the next tables were obtained using .

The �tness function must be able to discriminate between correct and in-
correct classi�cations of examples. Finding an appropriate function is not a
trivial task, due to the noisy nature of most databases.
The evolutionary algorithm maximizes the �tness function for each in-

dividual. It is given by Eq. (12.1):

(12.1)

where is the number of examples being processed; is the class error,
which is produced when the example belongs to the region de�ned by the
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rule but it does not have the same class; is the number of examples
correctly classi�ed by the rule; and the of a rule is the proportion of
the search space covered by such rule. Each rule can be quickly expanded to
�nd more examples thanks to the coverage in the �tness function. The reason
why is not is as follows: for example,
when and , we will have the same �tness value as when

and (the difference is 2; assuming the same coverage
for both). Therefore, we decided to penalty the second case ( is greater than
) since fewer errors are preferred.
The coverage of a rule is calculated by dividing the volume of the region

de�ned by the rule by the whole volume of the search space. Let be
the interval associated with an attribute of the rule; the number of active
discrete values of an attribute ; the range of a continuous attribute
, and the number of different values of a discrete attribute . Then, the
coverage of a rule is given by

where

if the attribute is continuous
if it is discrete

and
if the attribute is continuous
if it is discrete

The experiments described in this section are from the UCI Repository [5].
The results obtained by HIDER have been compared to that of C4.5 Re-
lease 8 and C4.5Rules. To measure the performance of each method, a -fold
cross-validation was achieved with each dataset (18 databases that involve
continuous and/or discrete attributes). The algorithms were all run on the
same training data and their induced knowledge structures tested using the
same test data, so that the 10 resulting performance numbers for C4.5Rules,
C4.5, and HIDER are comparable. It is very important to note that the ex-
periments were run with the same default settings for all parameters of the
EA: a population size of as little as individuals and generations. In
cases of small data sets, like Iris, the results would have been the same using a
smaller number of generations (it had been enough around 50). There are very
small numbers considering the number of examples and the dimensionality of
some databases. HIDER needed about hours to complete the 10-fold cross-
validation for the databases in a Pentium 400Mhz with 64 Mb of RAM.
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Parameters of HIDER

Parameter Value
Population size 100
Generations 300
Crossover probability 0.5
Individual mutation probability 0.2
Gen mutation probability 0.1

Comparing Error Rates

Database C4.5Rules C4.5 HIDER
Bupa 34.5 34.7 35.7
Breast-C (Wisc) 5.2 6.28 4.3
Cleveland 25.8 26.8 20.5
German 28.8 32.1 29.1
Glass 18.5 32.7 29.4
Heart 20.7 21.8 22.3
Hepatitis 16.9 21.4 19.4
Horse Colic 17.5 19.0 17.6
Iris 4.0 4.77 3.3
Lenses 16.7 29.9 25.0
Mushroom 0.0 0.0 0.8
Pima 26.2 32.1 25.9
Sonar 29.3 30.3 43.1
Tic-Tac-Toe 18.8 14.2 3.8
Vehicle 57.6 30.6 30.6
Vote 5.3 6.2 6.4
Wine 6.7 6.7 3.9
Zoo 29.8 7.0 8.0
Average 20.1 19.8 18.3

However, C4.5 only needed about minutes in the same machine. C4.5 is an
extremely robust algorithm that performs well on many domains. It is very
difficult to consistently outperform C4.5 on a variety of data sets.
Table 12.1 gives the values of the parameters involved in the evolutionary

process. The results of the trials appear in Tables 12.2, 12.3, 12.4, and 12.5.

Table 12.2 gives the error rates (numbers of misclassi�ed examples ex-
pressed as a percentage) for the C4.5Rules, C4.5, and HIDER algorithms on
the selected domains. HIDER outperforms C4.5 and C4.5Rules in 12 out of 18
and 8 out 18 datasets, respectively. If C4.5 produces bad trees, the results from
C4.5Rules will not be very good. We can observe that there are four databases
whose results generated by C4.5 are about 40% worse than those obtained by
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Comparing Number of Rules

Database C4.5Rules C4.5 HIDER
Bupa 14.0 28.6 11.3
Breast-C (Wisc) 8.1 21.9 2.6
Cleveland 11.3 35.2 7.9
German 5.2 181.5 13.3
Glass 14.0 29.0 19.0
Heart 10.5 29.2 9.2
Hepatitis 5.4 13.8 4.5
Horse Colic 4.1 39.3 6.0
Iris 4.0 5.5 4.8
Lenses 3.1 4.1 6.5
Mushroom 17.2 15.7 3.1
Pima 9.8 93.6 16.6
Sonar 5.1 16.8 2.8
Tic-Tac-Toe 10.7 93.9 11.9
Vehicle 3.3 102.3 36.2
Vote 6.6 14.7 4.0
Wine 4.6 5.4 3.3
Zoo 5.3 9.9 7.2
Average 7.9 41.1 9.5

Comparing Global Results (C4.5/HIDER)

Database
Bupa .97 2.53
Breast-C (Wisc) 1.46 8.42
Cleveland 1.31 4.46
German 1.10 13.65
Glass 1.11 1.53
Heart .98 3.17
Hepatitis 1.10 3.07
Horse Colic 1.08 6.55
Iris 1.40 1.15
Lenses 1.20 .63
Mushroom .01 5.00
Pima 1.24 5.64
Sonar .70 6.00
Tic-Tac-Toe 3.69 7.89
Vehicle 1.00 2.83
Vote .96 3.68
Wine 1.70 1.64
Zoo .88 1.38
Average 1.22 4.40
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Comparing Global Results (C4.5Rules/HIDER)

Database
Bupa .97 1.24
Breast-C (Wisc) 1.21 3.12
Cleveland 1.26 1.43
German .99 .39
Glass .63 .74
Heart .93 1.14
Hepatitis .87 1.20
Horse Colic .99 .68
Iris 1.21 .83
Lenses .67 .48
Mushroom .01 5.55
Pima 1.01 .59
Sonar .68 1.82
Tic-Tac-Toe 4.95 .90
Vehicle 1.88 .09
Vote .83 1.65
Wine 1.72 1.39
Zoo 3.72 .74
Average 1.36 1.33

HIDER (Breast Cancer, Iris, Tic-Tac-Toe and Wine). It is especially worthy
the error rate of the Tic-Tac-Toe database. C4.5Rules improves the results of
C4.5 for nearly all databases, except three of them (Tic-Tac-Toe, Vehicle and
Zoo). C4.5Rules did not achieve to improve those results generated by C4.5,
quite the opposite, made results worse, particularly for Tic�Tac�Toe and Zoo
databases. As catalogued in the last row of Table 12.2, HIDER is on average
better than the others. In Table 12.4 these results will be analyzed by means
of the measure ( ) used in the Quinlan�s works [15].
Table 12.3 compares the number of rules generated by the three ap-

proaches. In order to count the number of rules generated by C4.5, we could
sum the leaves on the tree or apply the expression , where is the size of
the tree. C4.5Rules improves C4.5 in all databases, except Mushrooms. These
results are very similar to those generated by HIDER. Nevertheless, although
the result for German database is very interesting (5.2 rules), for others data-
bases C4.5Rules reduces the number of rules too much (3.3 rules for Vehicle
and 5.3 rules for Zoo), leading to a high error rate (57.6% for Vehicle and
29.8% for Zoo). Due to that reason, although C4.5Rules on average gener-
ated fewer rules (7.9) than HIDER (9.5), the error rate increased: C4.5Rules
(20.1%) and HIDER (18.3%).
Table 12.4 shows a measure of improvement ( ) for the error rate [second

and fourth columns: ( )] and the number of rules [third and �fth columns:
( )]. To calculate those coefficients ( and , respectively) the error rate
(number of rules) for C4.5 (or C4.5Rules) has been divided by the corre-
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sponding error rate (number of rules) for HIDER. On average, HIDER found
solutions that had less than one fourth of the rules output by C4.5. Surpris-
ingly, C4.5 generated a number of rules �ve times greater than HIDER for
one third of the databases. It is worth noting that applying HIDER, more
than two thirds of the databases produce less than half the rules. C4.5 only
was better with the Lenses database. C4.5 made the error rate better for six
databases, although only three of them improved signi�cantly (Mushrooms,
Sonar and Zoo). In summary, the averaged error rate generated by C4.5 is
22% greater and the averaged number of rules 340%. This reason leads to
us to make a comparison with C4.5Rules, mainly in regard to the number of
rules. The average ratio of the error rate of C4.5 to that of HIDER is 1.22,
while the ratio of the number of rules is 4.40. Although the results in Table
12.3 indicated that C4.5Rules improved on average (7.9 rules) to HIDER (9.5
rules), analyzing the relative increase of the number of rules, we can observe
that those numbers can be deceptive. C4.5Rules generates an averaged num-
ber of rules 33% greater (fourth column), as well as an averaged error rate
36% higher (�fth column), as it is shown in the last row of Table 12.5.
As the overall averages at the bottom of the tables indicate, HIDER is

more accurate than C4.5, and C4.5 is more accurate than C4.5Rules. HIDER
produces fewer rules than C4.5Rules, which also generates fewer than C4.5.

An EA-based supervised learning tool to classify databases is presented in this
paper. HIDER produces a hierarchical set of rules, where each rule is tried in
order until one is found whose conditions are satis�ed by the example being
classi�ed. The use of hierarchical decision rules led to an overall improvement
of the performance on the 18 databases investigated here. In addition, HIDER
improves the �exibility to construct a classi�er varying the relaxing coefficient.
In other words, one can trade off accuracy against understanding. HIDER was
compared to C4.5 and C4.5Rules and the number of rules as well as the error
rate were decreased. To summarize shortly, the experiments show that HIDER
works well in practice.

Evolutionary algorithms are very time-consuming. This aspect is being ana-
lyzed from the viewpoint of the coding. We are designing a new type of coding
that uses natural numbers for both continuous and discrete attributes, so as
the speci�c genetic operators. This encoding method allows us to reduce the
dimensionality of the search space so that the algorithm might converge more
quickly.
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