
Finding Defective Modules from Highly
Unbalanced Datasets

J C Riquelme1, R Ruiz2, D Rodŕıguez3, and J Moreno3

1 Department of Computer Science
University of Seville

Avd. Reina Mercedes s/n
41012 Sevilla

riquelme@us.es
2 Universidad Pablo de Olavide

Ctra Utrera Km 1
41013 Sevilla, Spain
robertoruiz@upo.es

3 Department of Computer Science
University of Alcalá

28805 Alcalá de Henares, Madrid, Spain
daniel.rodriguezg@uah.es

Abstract. Many software engineering datasets are highly unbalanced,
i.e., the number of instances of a one class outnumber the number of
instances of the other class. In this work, we analyse two balancing tech-
niques with two common classification algorithms using five open public
datasets from the PROMISE repository in order to find defective mod-
ules. The results show that although balancing techniques may not im-
prove the percentage of correctly classified instances, they do improve
the AUC measure, i.e., they classify better those instances that belong
to the minority class from the minority class.
Keywords: Balancing techniques, Classification, Software Engineering
datasets, defect prediction.

1 Introduction

The number of software engineering repositories containing project management
data, source code data, etc. is increasing mainly due to automated data collection
tools that allow managers and developers to collect large amounts of informa-
tion. However, dealing with such large amount of information convey associated
problems. For example, when dealing with defect prediction, most datasets are
highly unbalanced, i.e., the number of instances of the majority class (non de-
fective modules) outnumber the number of instances of the other class (defective
module). In such cases, data mining algorithms do not generate optimal classifi-
cation models to predict future defective modules. In the data mining literature,
different balancing techniques have been proposed to overcome this problem.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 67



In this work, we compare two balancing techniques and two classification
algorithms to the problem of finding defective modules. To do so, we have anal-
ysed two common classification algorithms and two balancing techniques with
five open public datasets from the PROMISE repository4.

The rest of the paper is organised as follows. Section 2 cover the background
about balancing and classification techniques. Section 3 contains the related
work. Section 4 discusses the experimental work carried out and the results.
Finally, Section 5 concludes the paper and highlights future research work.

2 Background

2.1 Unbalanced Datasets

With unbalanced datasets, the generated models can be suboptimal as most
data mining algorithms assume balanced datasets. In such cases, there are two
alternatives, either (i) to apply algorithms that are robust to unbalanced datasets
or (ii) balance the data using sampling techniques before applying the data
mining algorithm. Sampling or balancing techniques can be classified into two
groups:

– Over-sampling. This group of algorithms aim to balance the class distribution
increasing the minority class.

– Under-sampling. This group of algorithms tries to balance the class removing
instances from the majority classes.

The simplest techniques in each group are Random Over-Sampling (ROS)
and Random UnderSampling (RUS). In ROS, instances of the minority class are
randomly duplicated. On the contrary, in RUS, instances of the majority class
are randomly removed from the dataset.

In order to improve on the performance of random sampling, there are other
techniques that apply more sophisticated approaches when adding or remov-
ing instances from a dataset. Within the undersampling group, Kubat and
Matwin [1] proposed a technique called One-Sided Selection (OSS). Instead of
removing instances from the mayority class randomly, OSS attempts to under-
sample the majority class by removing instances that are considered either noisy
or borderline. The selection of noise or borderline instances is carried out apply-
ing the Tomlek links [2]. Another undersampling technique is the Neighbourhood
Cleaning Rule (NCL) [3] uses Wilson’s Edited Nearest Neighbour Rule (ENN) [4]
to remove instances from the majority class when two out of three of the nearest
neighbors of an instance contradict the class.

As a non-random oversampling method, Chawla et al. [5] proposed a method
called Synthetic Minority Oversampling Technique (SMOTE). Instead of ran-
domly duplicating instances, SMOTE generates new synthetic instances by ex-
trapolating existing minority instances with random instances obtained from k

4 http://promisedata.org/

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 68



nearest neighbors. The technique first finds the k nearest neighbors of the minor-
ity class for each minority example (authors used k = 5). Then the new samples
are generated in the direction of some or all of the nearest neighbors, depending
on the amount of oversampling desired.

2.2 Classification Methods

There are many classification methods but to analyze the effectiveness of balanc-
ing techniques, here we use two different and well-known types of classifiers, a de-
cision tree classifier (C4.5) and a probabilistic classifier (Näıve Bayes). These two
algorithms have also been selected because they represent different approaches
to learning.

– The näıve Bayes [6] algorithm uses the Bayes theorem to predict the class
for each case, assuming that the predictive attributes are independent given
a category. A Bayesian classifier assigns a set of attributes A1, . . . , An to a
class C such that P (C|A1, . . . , An) is maximum, i.e., the probability of the
class description value given the attribute instances, is maximal.

– C4.5 [7]. A decision tree is constructed in a top-down approach. The leaves
of the tree correspond to classes, nodes correspond to features, and branches
to their associated values. To classify a new instance, one simply examines
the features tested at the nodes of the tree and follows the branches corre-
sponding to their observed values in the instance. Upon reaching a leaf, the
process terminates, and the class at the leaf is assigned to the instance. C4.5
uses the gain ratio criterion to select the attribute to be at every node of the
tree.

3 Related Work

There is a large set of literature related to defect prediction using statistical
regression techniques (e.g. Basili et al. [8] to data mining. For example, Khosh-
goftaar et al. [9] which used neural networks for quality prediction. Authors used
a dataset from a telecommunications system and compare the neural networks
results with with a non-parametric model. Also, Khoshgoftaar et al. [?] have
applied regression trees as classification model to the same problem. Fenton et
al. [10] propose Bayesian networks as a probabilistic technique to estimate de-
fects among other parameters.

In relation to the problem of unbalanced datasets, sampling techniques are
the most widely used. For example, Seiffert et al. [11] studied the reduction of
noise in the data using a large number of sampling techniques such as Random
undersampling (RUS), random oversampling (ROS), one-sided selection (OSS),
cluster-based oversampling (CBOS), Wilson’s editing (WE), SMOTE (SM) and
borderline-SMOTE (BSM). Authors concluded that (RUS, WE and BSM) are
more robust than (ROS and SM) and that the unbalanced level affects the gen-
eration of optimum models. For this work, authors used only a public dataset

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 69



and generated a number of artificial datasets but extended in another work [?]
with further methods and datasets from the UCI repository.

In the software engineering domain, Yasutaka et al. [12] analyzed four sam-
pling techniques (ROS, SMOTE, RUS, ONESS) to balance a dataset before
applying three classification algorithms (lineal discriminant analysis – LDA, Lo-
gistic Regression – LR, Neural Networks – NN and Classification Trees – CT) in
defect prediction. In this study, sampling improved the classification accuracy of
LDA and LR but not for NN and CT. Authors, however, used only one dataset
that was not publicly available.

Applying the approach of using robust algorithms to handle unbalanced
datasets, Li and Reformat [13] describe a algorithm based on fuzzy logic for
this kind of problem.

As the PROMISE repository is publicly available, there are several works
applying the same datasets to the ones used here. For example, Menzies et
al. [14] have used have applied J48 (an implementation of C4.5) and Näıve Bayes
to several datasets of the repository to predict defects concluding that are good
estimators and suggesting as part of future work a resource bound exploration.

4 Experimental Work

4.1 Datasets

In this paper, we use the CM1, KC1, KC2, and PC1 datasets available in the
PROMISE repository [15] to generate models for defect classification. All these
datasets were created from projects carried out at NASA and collected under
their metrics5. Table 1 shows the number of instances (modules) for each dataset
with the number of defective, non-defective and their percentage showing that
all are highly unbalanced, varying from 7% to 20%. The last attribute is the
programming language used to develop those modules.

Table 1. Dataset used in this work.

Dataset # of instances Non-defective modules Defective % defective Language

CM1 498 449 49 9.83 C
JM1 10,885 8,779 2,106 19.35 C
KC1 2,109 1,783 326 15.45 C++
KC2 522 415 107 20.49 C++
PC1 1,109 1,032 77 6.94 C

All datasets contain the same 22 attributes composed of 5 different lines of
code measure, 3 McCabe metrics [16], 4 base Halstead measures [17], 8 derived
Halstead measures [17], a branch-count, and the last attribute is a binary class

5 http://mdp.ivv.nasa.gov/

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 70



with two possible values (false or true, whether the module has or not reported
any defects).

McCabe metrics were introduced in 1976 and are based on the count of the
number of paths contained in program based on its graph. To find the complexity,
the program, module, method of class in an object oriented programming is
represented as a graph, and its complexity can be calculated as: v(g) = e−n+2,
where e is the number of edges of the graph and n is the number of nodes in the
graph. The cyclomatic complexity measures quantity, but McCabe also defined
essential complexity, ev(g), to measure the quality of the code (avoiding what
is known as spaghetti code). Structured programming only requires sequences,
selection and iteration structures, and the essential complexity is calculated in
the same manner than the cyclomatic complexity but from a simplified graph
where such structures have been removed. The design complexity metric, iv(g),
is similar, but taking into account calls to other modules.

Another set of metrics is known as Halstead’s Software Science also were de-
veloped at the end of the 70s. These metrics are based on simple counts of tokens
(using compilers’s jargon), grouping those into: (i) operators such as keywords
from programming languages such as IF THEN, READ, FOR; arithmetic operators
+, -, *, etc; relational operators (>, ≤, etc.) and logical operators (AND, EQUAL,
etc.); and (ii) operands that include variables, literals and constants. Halstead
distinguishes between the number of unique operators and operands and total
number of them. Table 2 summarises the metrics collected for all of the datasets.
Table 2 summarizes the metrics collected from the datasets.

4.2 Execution and Results of the Experiments

The experiments were conducted using WEKA [18]. As sampling methods in this
work, we have use resample implementation of WEKA which replicates instances
randomly of and our implementation of SMOTE6. The classification methods
were already implemented in WEKA. The results reported in this section were
obtained 10 cross-validation, i.e., data is divided into 10 bins using the 90% of
the instances for training and then, 10% for testing. The procedure is repeated
10 times so all data is used for both training and testing and the reported results
are the average of those 10 runs.

In the case of balanced datasets, it is reasonable to use accuracy to measure
performance. However, with unbalanced datasets, models may not consistently
produce a useful balance between false positive rates and false negative rates.
The ROC (Receiver Operating Characteristic) graphs are used to analyse the
relationship between true positive rate and true negative rate. However, the Area
Under the ROC Curve (AUC) is generally used to provide a single value of the
performance. AUC is a useful metric for classifier performance as it is indepen-
dent of the decision criterion selected and prior probabilities.

These measures have been used to compare the accuracy of the classifiers
with and without balancing techniques. The results of the experiment can be

6 The implementation of SMOTE is available at http://www.ieru.org/wiki

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 71



Table 2. Attribute Definition Summary

Metric Definition

McCabe loc McCabe’s Lines of code

v(g) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity

Halstead base uniq Op Unique operators, n1

uniq Opnd Unique operands, n2

total Op Total operators, N1

total Opnd Total operands N2

Halstead Derived n Vocabulary, n = n1 + n2

L Program length, N = N1 + N2

Estimated Length: N ′ = n1 ·
log2n1 + n2 · log2n2

V Volume, V = N · log2(n)
d Difficulty D = 1/L
i Intelligence
e Effort e = V/L

estimated e = n1N2Nlog2n/2n2

(elementary mental discrimina-
tions)

b Error Estimate
t Time estimator T = E/18 seconds
lOCode Line count of statement
lOComment Count of lines of comments
lOBlank Count of blank lines
lOCodeAndComment Count of lines of code and com-

ments

Branch branchCount No. branches of the flow graph

Class false, true Whether the module has reported
defects

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 72



observed in tables 3 and 4. The percentage of correctly classified instances did
not increase, but the AUC improves when using sampling techniques, especially
with SMOTE.

Table 3. Percentage of Correctly Classified Instances

CM1 JM1 KC1 KC2 PC1

J48 87.95 79.50 84.54 81.42 93.33
Näıve Bayes 85.34 80.42 82.36 83.52 89.18

Resample & J48 91.57 86.84 89.81 90.80 94.86
Resample & Näıve Bayes 83.94 79.40 81.32 85.82 85.03

SMOTE & J48 84.28 77.27 82.75 80.13 88.34
SMOTE & Näıve Bayes 78.43 70.93 76.18 75.68 83.62

Table 4. AUC Values

CM1 JM1 KC1 KC2 PC1

J48 0.56 0.65 0.69 0.70 0.67
Näıve Bayes 0.66 0.68 0.79 0.83 0.65

Resample & J48 0.80 0.80 0.82 0.84 0.80
Resample & Näıve Bayes 0.72 0.69 0.78 0.87 0.67

SMOTE & J48 0.77 0.75 0.79 0.77 0.77
SMOTE & Näıve Bayes 0.72 0.68 0.79 0.83 0.61

5 Conclusions and Future Work

In this paper, we analysed two balancing techniques and two classification al-
gorithms in order to find defective modules in five publicly available software
engineering datasets. The results show that although balancing technique do
not improve the percentage of correctly classified instances, they do however
improve the AUC measure, i.e., they classify better those instances from the
minority class which are the ones of interest (in this case, to find defective mod-
ules). Also, SMOTE seems to improve the AUC measure over the resampling
method.

Future work will consist of implementing further balancing algorithms and
how to combine balancing techniques and feature selection of attributes when
datasets are highly unbalanced.

Acknowledgements

This research was supported by Spanish Research Agency (TIN2007–68084–
C02–00) and project CCG07-UAH-TIC-1588 (jointly supported by the Univer-

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 73



sity of Alcalá and the autonomic community of Madrid). Also to the Universities
of Seville, Pablo de Olavide and Alcalá.

References

1. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided
selection. In: Proc. 14th International Conference on Machine Learning, Morgan
Kaufmann (1997) 179–186

2. Tomek, I.: Two modifications of cnn. IEEE Transactions on Systems, Man and
Cybernetics 6(11) (November 1976) 769–772

3. Laurikkala, J.: Improving identification of difficult small classes by balancing class
distribution. Technical Report Technical Report A-2001-2, University of Tampere
(2001)

4. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
Systems, Man and Cybernetics, IEEE Transactions on 2(3) (July 1972) 408–421

5. Chawla, N.V., Kevin W. Bowyer, Lawrence O. Hall, W.P.K.: Smote: Synthetic
minority over-sampling technique

6. Mitchell, T.: Machine Learning. McGraw Hill (1997)
7. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San

Mateo, California (1993)
8. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics

as quality indicators. IEEE Transactions on Software Engineering 22(10) (1996)
751–761

9. Khoshgoftaar, T., Allen, E., Hudepohl, J., Aud, S.: Application of neural networks
to software quality modeling of a very large telecommunications system. IEEE
Transactions on Neural Networks 8(4) (1997) 902–909

10. Fenton, N., M.Neil, Krause, P.: Software measurement: uncertainty and causal
modeling. IEEE Software 19 (2002)

11. Seiffert, C., Van Hulse, T.M.K.J., Folleco, A.: An empirical study of the classifica-
tion performance of learners on imbalanced and noisy software quality data. IEEE
International Conference on Information Reuse and Integration (IRI 2007). (13–15
Aug. 2007) 651–658

12. Kamei, Y., Monden, A., Matsumoto, S., ichi Matsumoto, T.K.K.: The effects of
over and under sampling on fault-prone module detection. In: Empirical Software
Engineering and Measurement (ESEM 2007). (September 2007) 196–204

13. Li, Z., Reformat, M.: A practical method for the software fault-prediction. IEEE In-
ternational Conference Information Reuse and Integration (IRI 2007) (13-15 Aug.
200) 659–666

14. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering 33(1) (2007) 2–13

15. Boetticher, G., Menzies, T., Ostrand, T.: Promise repository of empirical software
engineering data (http://promisedata.org/). Technical report, West Virginia
University (2008)

16. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
2(4) (December 1976) 308–320

17. Halstead, M.: Elements of Software Science. Elsevier (1977)
18. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques. 2 edn. Morgan Kaufmann, San Francisco (2005)

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 74


