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ABSTRACT
This paper describes a novel method for the estimation of the
trajectory and orientation of a rigid body moving along a railway
track. Compared to other recent developments in the literature, the
presented approach has the significant advantage of using inertial
sensors only, excluding global position and orientation sensors. The
excluded sensors are compensated with an odometry system and
previous knowledge of the design track geometry. The procedure
is based on a kinematic model of the relative motion of the body
with respect to the track, together with a Kalman filter algorithm.
Two different approaches are used and compared for the estimation
of the noise covariance matrices in the Kalman filter. One is based
on the use of experimental results with a known output. The other
one relies upon constrained maximum likelihood estimation. The cal-
culated trajectory and orientation are applied in this research to the
problem of track geometry measurement. A scale track is used for
experimental validation, showing that results are sufficiently accu-
rate for this application. The obtained results also reveal that the
constrained maximum likelihood estimation performs similarly to
the known-output method. This is very convenient because it allows
a straightforward application of the algorithm in different scenarios.
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1. Introduction

The problem of finding the trajectory of a body in space using inertial sensors is a
classic problem that has been treated by many scientists in the fields of inertial navigation
of vehicles, robotics or biomechanics. In fact, the first application of the Kalman filter in
the 1960s of the last century was the inertial navigation of spacecrafts in the Apollo project.
The inherent difficulty of this type of estimation is associated with the drift of the trajectory
coordinates obtained by integrating acceleration and angular velocity signals that include
noise. This problem can be fixed including new sensors that provide signals proportional to
the trajectory coordinates themselves, not their derivatives. To this end, the most popular
technology is the global navigation satellite system (GNSS).

CONTACT J. González-Carbajal jgcarbajal@us.es

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://www.iavsd.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2023.2203865&domain=pdf&date_stamp=2023-04-21
mailto:jgcarbajal@us.es


2 J. GONZÁLEZ-CARBAJAL ET AL.

Nowadays there exist numerous algorithms for inertial navigation that work reasonably
well in many applications. The use of state observers aims to determine the state of the sys-
tem, which may include the sensors biases [1–3] or the error parameters of the inertial
measurement unit (IMU) [4]. Sensor fusion algorithms lead to estimated trajectory and ori-
entation without the drift problem [5–11]. Optimisation algorithms have been successfully
applied to the trajectory estimation of aircrafts, spacecrafts, cars, robots or humans. This
minimisation can be approached by different algorithms such as the Levenberg–Marquardt
algorithm [12], Gauss-Newton algorithm, gradient descent algorithm [13,14] and control
loop [15,16]. The estimation of the trajectory of an aircraft in space is much more diffi-
cult than the estimation of the trajectory of a vehicle along a rail track. However, when the
latter is used for rail geometry measurement, the accuracy that is needed is millimetric.
This is much more than the accuracy required for the inertial navigation of aircrafts and
other vehicles. It is apparent that new specific navigation methods must be developed for
railway vehicles. This paper treats the problem of the trajectory estimation of railways with
application to track geometry measurement.

In the railway industry, track geometry measurement is a fundamental phase of track
maintenance. Two different types of equipment are used for this task: man-driven rail track
trolleys (RTTs) and track recording vehicles (TRVs). On one hand, the technology behind
the RTT is simple and accurate. The relative irregularities (track gauge and cross-level)
are directly measured with a distance sensor, like a linear variable differential transformer
(LVDT), and an inclinometer, respectively. The absolute irregularities (alignment and ver-
tical profile) require an absolute positioning system, like a total station or a very accurate
GNSS. Despite their precision and good performance, in addition to their low cost, the
main handicap of RTT devices is their slowness when measuring the track. On the other
hand, the technology used in TRV is more varied. Essentially, there are two technologies
[17]: versinemeasurement systems (VMSs) and inertial measurement systems (IMSs). The
VMS, also called chord method, are based on simple kinematics that only requires the
measurements of distance sensors, obtaining both horizontal and vertical measurement
of rails [18]. The IMS are based on the use of inertial sensors (accelerometers and gyro-
scopes), the most serious problem being the need to integrate the sensor signals in time
to get the irregularities. Many IMS include optical sensors in addition to the inertial sen-
sors, as does the system developed by the authors and used in this paper [19]. In contrast
to other methods used in the industry, our method for using inertial and optical sensors
data is fully documented. Being not very detailed, Ref. [20] is the best description about
this data fusion technique that has been found in the scientific literature. The main draw-
back of the TRV methods is that they are based on the use of expensive and dedicated
vehicles.

The alternative to both measuring methods (RTT and TRV) is the use of inexpen-
sive measuring systems, mounted on in-service vehicles for continuous monitoring of
track conditions (see Ref. [21] for an extensive review). Weston et al. published a set of
papers [22,23], showing the measurement of vertical and lateral track irregularities using
accelerometers and gyroscopes mounted in the bogie frame and a very simple kinematic
model of the vehicle motion. Seok Lee et al. [24] presented a Kalman filter data fusion
approach based on accelerometer signals mounted on the body frame (BF) and the axle-
box. Wei et al. [25] proposed a method to estimate the alignment of the track through a
double integration of the acceleration measured by several accelerometers placed on the
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vehicle. Tsai et al. [26,27] presented a fast inspection technique based on the application of
the Hilbert–Huang transform to the signal of an accelerometer mounted on the axle-box
of an in-service car. Tsunashima et al. [28] estimated the vertical track geometry using the
accelerations measured in the car body of the Japanese Shinkansen using a Kalman filter
based on a very basic carmodel.More recently,DeRosa et al. [29] proposed a set of different
model-based methods to estimate both lateral track alignment and cross-level irregulari-
ties. In Ref. [30], Muñoz et al. proposed a Kalman filter model-based methodology for
the estimation of lateral track irregularities from measurements from different sensors
mounted on an in-service vehicle. In the work of Escalona et al. [19], a track measurement
system that can be installed on in-service vehicles and combines a kinematicmodel, a com-
putational vision system and inertialmeasurementwas presented.Manymethodologies for
track geometry measurement require the estimation of the trajectory for the measurement
of the absolute irregularities. In the present work, a new method for the estimation of the
trajectory and orientation of a rigid body is presented, with application to track geometry
measurement. This paper is organised as follows. Section 2 presents the kinematic descrip-
tion of the geometry of a track, of a vehicle running on the track and their relationship with
the measurements of inertial sensors. Section 3 explains the Kalman filter used to estimate
the trajectory and attitude of a body moving along the track. Section 4 shows two differ-
ent methods that can be used to find the covariance matrices needed for the application
of the Kalman filter. Section 5 describes the experiments used for the application of the
developed estimation techniques to the geometry measurement of a scale track. Section 6
shows and discusses the validity of the estimation techniques based on the assessment
of the experimental results. Finally, summary and conclusions of this work are given in
Section 7.

2. Kinematic models

This section shows the kinematic models used in the estimation of the trajectory and ori-
entation of a bodymoving along a rail track. It is a summary of themore detailed kinematic
description given in Ref. [19].

Figure 1 shows an arbitrary rigid body b that moves along a rail track. The track is rep-
resented by its centreline and its horizontal projection to the plane Z = 0. This projection
is important in railway kinematics because the arc-length coordinate s is defined along this
curve and its tangent vector is used to define the heading angle of the track, as shown in the
figure. The figure shows three frames: (1) an inertial and global frame (GF) < X,Y ,Z >
that is fixed in space, (2) a track frame (TF) < Xt ,Yt ,Zt > whose position and orienta-
tion are known functions of the arc-length coordinate along the track s and (3) the BF
< Xb,Yb,Zb > that is rigidly attached to the body.

2.1. Kinematics of the track centreline

Describing the kinematics of the track centreline is equivalent to providing the functions
that give the position and orientation of the TF with respect to the GF. The definition of
the TF is such that the Xt axis is tangent to the track design centreline, the Yt axis is per-
pendicular to Xt and connects the left rail centreline and the right rail centreline and the
Zt axis is perpendicular to both Xt and Yt . The components of the absolute position vector
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Figure 1. Kinematics of a body with track-relative coordinates.

of an arbitrary point on the design track centreline with respect to the GF is a function of
the arc-length s as follows:

Rt (s) =
⎡
⎣Rtx
Rty
Rtz

⎤
⎦ . (1)

And the rotation matrix from the TF to the GF can be approximated to

At (s) �
⎡
⎣cosψ t − sinψ t ϕt sinψ t + θ t cosψ t

sinψ t cosψ t θ t sinψ t − ϕt cosψ t

−θ t ϕt 1

⎤
⎦ , (2)

where the Euler angles ψ t (azimut or heading angle), θ t (vertical slope) and ϕ t (cant or
superelevationangle) that can be observed in Figure 1 have been used. Note that the vertical
slope and cant angles are assumed to be small and the rotation matrix is linearised using
the small-angle assumption.

The six functions Rtx(s), Rty(s), Rtz(s), ψ t(s), θ t(s) and ϕ t(s) are tabulated in the railway
industry and they represent the design geometry of the track centreline. In this paper, it is
assumed that these functions are given.

Each body b moving along the track has an associated TF at each instant of time. Its
position and orientation are obtained substituting the position of the body along the track,
sb(t), in the functions Rt(s) and At(s).
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2.2. Kinematics of a bodymoving along the track

The coordinates used to describe the position and orientation of the arbitrary body b shown
in Figure 1 moving along the track are

qb =
[
sb rt,by rt,bz ϕt,b θ t,b ψ t,b

]T
, (3)

where sb is the arc-length along the track of the position of the body, rt,by and rt,bz are the
non-zero components of the position vector �rt,b of the BF with respect to the TF, this is
Nrt,b = [ 0 rt,by rt,bz ]T, andϕt,b, θ t,b and ψ t,b are three Euler angles (roll, pitch and yaw,
respectively) that define the orientation of the BF with respect to the TF. The arc-length sb
associated with the body can be obtained by finding the plane that, being perpendicular to
the track centreline, contains the origin of the BF. The intersection of that plane with the
track centreline defines the point where sb is measured.

The linearised transformation matrix from the BF to the TF is given by

At,b �
⎡
⎣ 1 −ψ t,b θ t,b

ψ t,b 1 −ϕt,b
−θ t,b ϕt,b 1

⎤
⎦ . (4)

The absolute position vector and the absolute orientation matrix of body b are given by

Rb = Rt + At̄rt,b, Ab = AtAt,b. (5)

The time derivatives of these expressions are used to find the absolute acceleration and
angular velocity of body b. See more details in Ref. [19].

2.3. Kinematics of the gyroscope signals

In the remainder of this paper, it will be assumed that an inertial sensor or IMU is installed
on themoving body. The IMU is assumed to be installed at the origin of the BF of themov-
ing bodywith the sensor frame parallel to the BF. The IMUmeasures the three components
of the absolute angular velocity and the three components of the absolute acceleration in the
sensor frame. The three signals acquired with the gyroscope are a measure of the absolute
angular velocity of the BF as follows:

ωimu = ω̂
b, (6)

where ωimu is the 3 × 1 array of the gyroscope signals at a particular instant of time and
ω̂
b contains the three components of the absolute angular velocity in the BF in that time

instant. As explained in Ref. [19], the gyroscope signals are related to the absolute Euler
angles of body b and their time derivatives as follows:⎡

⎣ω̂x
ω̂y
ω̂z

⎤
⎦ =

⎡
⎣1 0 − sin θb

0 cosϕb sinϕb cos θb

0 − sinϕb cosϕb cos θb

⎤
⎦

⎡
⎣ ϕ̇bθ̇b
ψ̇b

⎤
⎦ + uω(t), (7)

where uω(t) represents the noise of the gyroscope and�b = [ ϕb θb ψb ]T is the set
of absolute angles (with respect to the GF) of the body b. Note that these are not the same
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angles given inEquation (3)which are BF toTF relative angles.Using again the small angles
assumption of the roll and pitch angles, the following approximation can be adopted:⎡

⎣ω̂x
ω̂y
ω̂z

⎤
⎦ ≈

⎡
⎣ϕ̇b − θbψ̇b

θ̇b + ϕbψ̇b

ψ̇b − ϕbθ̇b

⎤
⎦ + uω(t), (8)

which is the set of equations that will be introduced in the Kalman filter as a measurement
model for the gyroscope.

Finally, it is useful to specify the relation between the absolute angles {ϕb, θb,ψb} and
the track-relative angles {ϕt,b, θ t,b,ψ t,b}:

ϕt,b ≈ ϕb − ϕt ,

θ t,b ≈ θb − θ t ,

ψ t,b ≈ ψb − ψ t , (9)

where the assumption that {ϕt,b, θ t,b,ψ t,b} are small angles has been used.

2.4. Kinematics of the accelerometer signals

Nowadays,most IMU’s used in vehicle dynamics haveMEMS-type accelerometers. In con-
trast to piezoelectric accelerometers, the measured signals include the effect of gravity as
follows:

aimu = ˆ̈Rb +
(
Ab

)T[
0 0 g

]T + uac(t), (10)

where aimu is the 3 × 1 array of the accelerometer signals, ˆ̈Rb contains the three compo-
nents of the absolute acceleration of the IMU in the sensor frame,Ab is the absolute rotation
matrix of the IMU, uac(t) represents the accelerometer noise and g is the acceleration of
gravity that is assumed to act in the Z direction. Equation (10) can also be written as

aimu =
(
At,b

)T ¯̈Rb +
(
Ab

)T[
0 0 g

]T + uac(t), (11)

where ¯̈Rb represents the absolute acceleration of the IMUprojected onto the TF. It is shown
in Ref. [19] that vector ¯̈Rb can be developed as

¯̈Rb =
⎡
⎣ V̇
ρhV2

−ρvV2

⎤
⎦ +

⎡
⎣ 0
r̈t,by
r̈t,bz

⎤
⎦

+

⎡
⎢⎣−rt,by

(
V̇ρh + V2(ρ′

h − ρtwρv)
) + rt,bz (V2ρtwρv + V̇ρv)

−rt,by
(
V2(ρ2tw + ρ2h)

) + rt,bz (V2ρvρh − V̇ρtw)
rt,by (V2ρvρh + V̇ρtw)− rt,bz

(
V2(ρ2tw + ρ2v )

)
⎤
⎥⎦

+ 2

⎡
⎣Vρvṙt,bz − Vρhṙt,by

−Vρtwṙt,bz
Vρtwṙt,by

⎤
⎦ , (12)
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where V is the forward velocity of the body and ρh, ρv and ρtw are the horizontal,
vertical and twist curvatures, respectively, of the track centreline. The prime represents
differentiation with respect to s.

Introducing Equations (2), (4), (5) and (12) into Equation (11) provides vector aimu as
the sum of the noise term uac(t) and a nonlinear function of the position and orientation
of body b and their time derivatives. This expression, which is not presented here because
of its considerable length, can be found in Appendix 1.

Finally, note that the second term in the r.h.s. of Equation (11) can be used to obtain
the direction of gravity (vertical) with respect to the sensor frame. These values are used
in inclinometers to measure the orientation of a body. In that sense, it can be said that our
method does use an inclinometer. In other words, our accelerometer is used tomeasure the
acceleration and, in part, the orientation of the sensor frame, as done in an inclinometer.

3. Kalman filter

A Kalman filter approach is proposed to obtain the trajectory and attitude of the moving
body from the IMU measurements. Please note that the term Kalman filter is used in a
broad sense throughout the paper, since the procedure applied to obtain the position and
orientation of the moving body is actually a first-order extended Kalman smoother [31].

For the Kalman filter that we use in this research, a purely kinematic process model has
been chosen. Alternatively, a dynamic model based on the equations of motion of a rail
vehicle moving along the track could be used as the process model. The kinematic model
is preferable because it requires less parameters to identify, being all of them geometric
(easy to find). Besides, the kinematic model is valid for all bodies of the vehicle. Dynamic
models need many more parameters that are more difficult to identify (position of centres
of gravity, inertia tensors, stiffness constants, viscous-equivalent damping constants, etc.)
and vary depending on the selected body of the vehicle.

Before defining the Kalman filter, it is useful to clarify the chosen nomenclature for the
state space model:

{
xk+1 = Fxk + qk
zk = g(xk)+ uk

}
with

{
qk ∼ N(0,Q)

uk ∼ N(0,U)

}
. (13)

• xk: state vector of the system at time instant k.
• zk: measurements vector at time instant k.
• F: transition matrix of the system.
• g(xk): measurement model given as a nonlinear function of the state.
• Q: Process noise covariance matrix.
• U: Measurements noise covariance matrix.
• N(M, S): Multivariate normal random variable with meanM and covariance matrix S.

The proposed Kalman filter simultaneously estimates the absolute orientation of the
moving body and its position relative to the track, given by variables {ϕb, θb,ψb, rt,by , rt,bz }.
The algorithm exploits the kinematic model given by Equations (8), (9) and (11).
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In order to avoid the drift of the position variables {rt,by , rt,bz }, it is convenient to include
the following additional equation in the Kalman filter:[

rt,by
rt,bz

]
=

[
0
δ

]
+ upos(t), (14)

which constitutes a pair of fictitious positionmeasurements with noise upos(t) [32]. Param-
eter δ represents the vertical distance at rest between the IMU and the track design
centreline.

The state vector is defined as

x =
[
ϕb ϕ̇b θb θ̇b ψb ψ̇b rt,by ṙt,by r̈t,by rt,bz ṙt,bz r̈t,bz

]T
. (15)

Note that the arc-length coordinate sb and its time derivatives are not included in x.
The reason is that this coordinate is estimated using an independent odometry algorithm
described in Ref. [19]. This algorithm is very accurate for practical purposes but not as
accurate as to detect longitudinal vibrations in the vehicle. Therefore, the Kalman filter
cannot detect the influence on the body trajectory of the longitudinal vibrations of the
vehicle.

Using Equations (8), (9), (11), (14) and (15), all vectors and matrices required to for-
mulate the state space model (13) can be obtained. These are presented in Appendix 1 for
better clarity. In the next paragraphs, the proposed model and the assumptions on which
it is based are discussed.

Regarding the process model, a purely kinematic representation of the system has been
chosen, for reasons that have already been outlined at the beginning of this section. It is
worth examining with some detail the consequences of this kind of modelling. Consider,
for example, the relation between successive accelerations in y direction (the reasoning is
analogous for the z direction), which takes the form r̈t,by,k+1 = r̈t,by,k + fk. It is clear that the
term fk will depend on the variation, between instants k and k+ 1, of the forces acting on
body b. If b is the car body of the vehicle, these forceswill bemainly transmitted through the
suspension system.However, taking a purely kinematic approachmeans that we decide not
to model the forces acting upon the system, which frees us from having to define stiffness
constants, masses, moments of inertia, etc. The consequence is that the term fk remains
unknown and can only be modelled as a random variable. In the presented approach, as
is shown in Appendix 1, the term fk has been modelled as a Gaussian random variable
with zero mean and a variance proportional to the sampling interval. This corresponds
to the assumption that the acceleration follows a Wiener process between instants k and
k+ 1, which is a rather usual kinematic model [31,33], sometimes referred to as Wiener
process acceleration state model in the literature. It could be argued that the hypothesis that
accelerations evolve between measurements as Wiener processes is not actually met by a
railway vehicle, which is a reasonable objection. It is true that such a process model by
itself could not provide anything like the real vehicle motion. However, it will be shown
that, when this type of process model is put together with the appropriate measurement
model, the results can be reasonably accurate, even if the statistical assumptions for the
construction of the process equations are not rigorously met.

The proposed process model also includes the assumption that angular velocities evolve
asWiener processes betweenmeasurements, analogously to the describedmodel for linear
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accelerations. These hypotheses provide a covariance matrix Q with the form presented
in Appendix 1.

Regarding the measurement equations, we assume each measurement to have a Gaus-
sian noise with zero mean and no correlation between samples, characterised by a covari-
ancematrixU. This is a reasonable assumption for the IMUmeasurements, although there
could be some noise colouration if the sampling interval was too small. On the other hand,
it is interesting to note the implications of this kind of modelling with respect to the vir-
tual position measurements (Equation (14)). Focusing on the position in y direction (the
situation is analogous for the position in z direction), it is assumed that, at each instant k,
position rt,by is a random Gaussian variable with zero mean and certain variance, without
any dependence on previous instants. Of course, this assumption does not represent the
true dynamics of the vehicle motion. Nevertheless, in the absence of any real position sen-
sor, a virtual measurement such as given in Equation (14) is an effective means to avoid
the drift of the position variables (see the work from Naets et al. [32] for a thorough jus-
tification of this technique). As was mentioned with regards to the process model, it will
be shown that the Kalman filter can provide sufficiently accurate estimations even when
some of the statistical model assumptions are not met by the real system.

It can be observed in Appendix 1 that 13 parameters are required to fully define
covariance matrices Q and U. These parameters are gathered in a vector p:

p =
[
qϕ qθ qψ qy qz uωx uωy uωz uacx uacy uacz uposy uposz

]T
. (16)

The meaning of each of these parameters is specified below:

• {qϕ , qθ , qψ }: power spectral density (PSD) of the roll, pitch and yaw angular accelera-
tions, respectively.

• {qy, qz}: PSD of the jerk (time derivative of the linear acceleration) in y and z directions,
respectively.

• {uωx , uωy , uωz }: variance of the gyrometer noise in its three directions.
• {uacx , uacy , uacz }: variance of the accelerometer noise in its three directions.
• {uposy , uposz }: variance of the noise associated with the fictitious position measurements

in y and z directions, respectively.

4. Methods for the estimation of covariancematrices

In the last section, a Kalman filtering approach has been presented with the aim of esti-
mating the trajectory and attitude of a rigid body b moving along a railway track. To be
able to use this algorithm, the first step is to fully define covariance matrices Q and U in
Equation (13).

We use p = [ p1 p2 · · · pM ]T to denote a vector containing the scalar parameters
that determine matricesQ andU. The number of elements in p isM = 13 for the Kalman
filter under consideration (see Equation (16)).

Before proceeding to describe the proposed strategies to estimate vector p, some clari-
fications are appropriate. The developments presented in Sections 2 and 3 are completely
general, in the sense that they can be used in any application that requires estimating the
position and orientation of a vehicle moving along a railway track. On the other hand,
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these techniques have been applied in the current research to the specific problem of mea-
suring track irregularities. A track geometrymeasuring system (TGMS) has been developed
by the authors, combining computer vision with the estimation of the trajectory and atti-
tude of the vehicle using inertial sensors (see Ref. [19] for details). The present section
expounds two alternative procedures to estimate vector p. The first one is specific to the
TGMS application, while the second one is as general as Sections 2 and 3:

• Known-output method (KOM). The covariance matrices are tuned through a compar-
ison between the track irregularities obtained experimentally with the TGMS and a set
of reference irregularities.

• Constrained maximum likelihood (CML) estimation. This technique uses the IMU
measurements to obtain themost likely vector p.

In both cases, a global optimisation of certain objective function is conducted, with the
components of vector p varying within a specified range. In order to choose appropriate
range limits, consider first that every parameter pi must be positive due to their physical
meaning – see Section 3.On the other hand, the range should bewide enough to encompass
a meaningful optimum of the objective function. After several trials, the following range
has been found to produce accurate results:

10−4 ≤ pi ≤ 104 for i = 1, . . . ,M (17)

with each pi measured in SI.
After testing different global optimisation techniques included in the MATLAB opti-

misation toolbox, the method that was found to work best for this application was the
surrogate optimisation [34].

4.1. KOM

In order to apply the KOM, the vehicle with the operating TGMS has to travel along a track
whose irregularities have already been obtained through some other reliable methodology
(reference irregularities). For the present work, these reference irregularities were obtained
using an LVDT, an inclinometer and a total station, as described in detail in Ref. [35].

It is convenient at this point to recall that we are interested in the four irregularities that
are usually controlled in the railway industry:

• Absolute irregularities: alignment (ξal) and vertical profile (ξvp).
• Relative irregularities: gauge variation (ξgv) and cross-level (ξcl).

‘Absolute’ and ‘relative’ mean that the first two irregularities are those of the track cen-
treline while the last two are relative irregularities of the left rail with respect to the right
rail. See Ref. [19] for precise definitions of these terms.

The optimisation algorithm searches for the vector p that minimises the root mean
square (RMS) of the difference between the TGMS irregularities and the reference irregu-
larities. Thus, the objective function for the optimisation, f, is defined as

f = (ξ
tgms
al − ξ

ref
al )RMS + (ξ

tgms
vp − ξ

ref
vp )RMS + (ξ

tgms
cl − ξ

ref
cl )RMS, (18)
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where reference irregularities are labelled with superscript ref and irregularities obtained
with the TGMS are labelled with superscript tgms.

Note that the gauge variation is not included in (18). The reason is that this irregularity
has been found to depend almost exclusively on the computer vision system of the TGMS,
with a negligible influence of the vehicle trajectory and attitude.

Let us make some remarks about the described strategy:

• From a pragmatic point of view, this approach has a clear disadvantage: when installing
the TGMS on a new commercial vehicle, it would need to travel along a track whose
irregularities were reliably known beforehand, which is not easy to find in practice. Fur-
thermore, the appeal of the TGMS technology could get limited by the need of a complex
initial calibration.

• This procedure relies on the assumption that once the covariance matrices have been
estimated for a certain track, with certain levels of irregularity and a vehicle circulating
at certain speed, theKalman filter will still produce accurate results for other tracks, with
different irregularities and different vehicle speeds. The validity of this hypothesis is not
evident. Fortunately, the CML estimation procedure is not subjected to this potential
drawback, as discussed in the next subsection.

4.2. CML estimation

Constrained maximum likelihood estimation (MLE) is a very common approach for tun-
ing the parameters of statistical models — the meaning of the word constrained in the
title of this subsection will be seen at the end of it. The basic idea is the following. Con-
sider a generic multivariate random variable y whose probability density function, p(y|p),
depends on a set of parameters p. Given a specific observation y0, we estimate p as the set
of parameters that maximises p(y0|p). That is to say, we choose the parameters that are
most likely to generate the observed data. For a more complete explanation of the MLE
concept, see Ref. [36].

The generic scheme outlined above can be directly particularised to the trajectory and
attitude estimation that is being investigated. While the vector of parameters p is given in
Equation (16), the set of observed data y0 represents the sequence of accelerations, angular
velocities, forward speeds and positions along the track registered during a specific ride of
the moving body b (Figure 1). Finally, the probability density of the observations p(y|p)
can be obtained from the model equations (13), as shown in Ref. [37].

In summary, given a set of observations y0, the proposed global optimisation algorithm
will explore the space of parameterspwithin the range specified inEquation (17), searching
for those parameter values that maximise p(y0|p). The specific equations that need to be
appended to the Kalman filter algorithm in order to calculate p(y0|p) can be found in Ref.
[37].

Note that, when the described methodology is used for the TGMS application, it has a
plain advantage over the one set forth in Section 4.1, since in this case there is no need for a
previously known set of irregularities to tune the covariancematrices. Consider further the
following benefit: assume that a railway vehicle, with an operating TGMS, performs two
rides on two very different tracks, with different irregularity levels and moving at different
forward speeds. As was commented in Section 4.1, it is not obvious that only one pair of
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matricesQ andU could provide accurate results for both tracks. The MLE would take this
automatically into account by obtaining one set ofmost likely covariance matrices for each
of the rides. Of course, this can also be said about different portions of the same vehicle
ride. It might be appropriate, for example, to use different Q matrices for curves and for
straight portions of the track. This kind of differentiation can easily be implemented when
using CML estimation, as discussed in more detail in Section 6.1.

4.2.1. Constraints imposed for the optimisation
The experimental results obtained during this research have shown that the MLE, as has
been described, can produce inaccurate outcomes in this application. That is to say, the
most likely covariance matrices do not necessarily provide a good position and attitude
estimation. This problem has been solved by slightly guiding the search for the optimum
with the following constraint on the parameters:

uacy ≤ uposy /10 (19)

with both parameters measured in SI.
From the physical meaning of uacy and uposy , specified at the end of Section 3,

Equation (19) can be interpreted as follows:measuring all parameters in SI, the Kalman filter
must have a considerably higher confidence in the accelerometer measurements in y direction
than it has in the virtual positionmeasurements in y direction. This way, we avoid the optimi-
sation process from leading to a solution of the type rt,by (t) ≈ 0 due to an excessive weight
of the fictitious position measurements in the calculations.

It can be said after the above considerations that, instead of a plain MLE, the proposed
approach falls within the category of CML estimation [38,39].

5. TGMSmethod and experimental setup

The TGMS is a technology developed by the authors for the measurement of the irregu-
larities of rail tracks. It combines inertial sensors with computer vision, as schematically
represented in Figure 2. This technology is explained in detail in Ref. [19].

Results shown inRef. [19] are obtainedwith a 1:10 scale experimental facility installed at
the School of Engineering of the University of Seville. Figure 3 shows the 90m-scale track
that has been designed to create an arbitrary distribution of irregularities, while Figure 4
displays the scale vehicle used in the experiments, which incorporates the TGMS. In this
case, body b, whose trajectory and orientation will be estimated, is the vehicle carbody. It is
important to emphasise that the TGMS allows the installation of the sensors on any body
of the vehicle. The track includes a 22m straight section and two curved sections of 26m
and 12m, among other features.

Note that algorithms for the estimation of the trajectory and attitude of the IMU were
already used in the TGMS presented in Ref. [19]. The methods developed in this paper
improve the Kalman filter model and the estimation of the covariance matrices compared
with the equivalent methods given in Ref. [19]. As a consequence, the estimation of the
track irregularities is substantially improved also, as will be shown in Section 6.
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Figure 2. TGMS.

Figure 3. Scale track: (a) aerial view and (b) detail of track supports.

6. Results

This section presents the experimental results that have been obtained when applying the
procedures developed in this paper to the problem of track geometry measurement, as
described in Section 5. For the details on how the trajectory and attitude estimation is
used within the TGMS technology to measure track irregularities, see Ref. [19]. This tech-
nology can be used to obtain gauge, cross-level, alignment and vertical profile. However,
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Figure 4. Scale vehicle with TGMS.

Figure 5. Forward velocity of the scale vehicle during the test.

the influence of the position and orientation of the TGMS in themeasurement of the gauge
is very little (video cameras provide almost all the data that are needed). For this reason,
the gauge is excluded from the results presented next.

The reference geometry of the scale track was measured using a LVDT sensor for the
gauge, an inclinometer for the cross-level and a high-accurate robotic total station for the
alignment and vertical profile. The procedure is described in Ref. [35]. Results are labelled
as ‘Reference’ in the plots shown in Appendix 2. These reference results can be considered
as equivalent to the ones that can be obtained with a RTT with total station, which is the
most accurate device used in the industry to measure track irregularities. Reference irreg-
ularities are measured in the unloaded track. Measurements taken from the scale vehicle
with TGMSmeasure the loaded track irregularities. In the case of the scale track, deforma-
tion due to the vehicle action is not significant.However, in real scale tracks, if the geometry
measurements are made from a heavy vehicle, the unloaded and loaded track irregular-
ities may differ significantly. Reference irregularities are compared with the estimations
obtained using the measurements taken during one ride of the instrumented vehicle along
the scale track with the forward velocity shown in Figure 5.
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Table 1. Quantitative evaluation of the difference between the cross-level provided by the TGMS and
the reference cross-level: µ (mean value), σ (standard deviation) and Max (maximum absolute value).

Cross-level (unfiltered) Cross-level (filtered)

µ (mm) σ (mm) Max (mm) µ (mm) σ (mm) Max (mm)

CML estimation 0.054 0.162 1.185 0.004 0.119 1.051
KOM 0.028 0.167 1.242 0.002 0.114 1.105
KOM for 0.8m< s < 45m 0.032 0.173 1.280 0.002 0.111 1.053
KOM for 45m< s < 65m −0.063 0.500 2.509 0.0004 0.119 1.211
CML estimation with added noise 0.053 0.166 1.161 0.003 0.119 1.050

Some of the irregularity profiles displayed throughout this section are filtered. Whether
or not each particular irregularity has been filtered for the representation is specified in the
corresponding figure caption (Figures A1–A2). Filtered irregularities only preserve wave-
lengths between 0.3mand 7m. European Standard [40] states that irregularitywavelengths
between 3m and 70m are the ones directly associated with railway vehicles safety. These
wavelengths are divided by the scale factor to find the cut-off wavelengths of the applied
filter.

The rest of this section is divided into three subsections. Section 6.1 compares the ref-
erence irregularities with those obtained using the TGMS, both applying CML estimation
and KOM for the covariance matrices. In Section 6.2, we analyse the confidence intervals
for the irregularities obtained using CML estimation. Finally, Section (6.3) evaluates the
results provided by the TGMS using CML estimation when artificial noise is added to the
IMU signals. This is intended to assess the sensitivity of the algorithm to a drop in sensor
quality. The graphical representation of all the obtained results is shown in Appendix 2.

6.1. Performance of CML estimation and KOM

The results presented in Figure A1 show that the irregularity profiles provided by the
TGMS are remarkably accurate, either using CML estimation (except for a spurious align-
ment peak at the beginning of the test) or KOM to obtain the covariance matrices. This is
evidenced by the similarity between the reference irregularities and those yielded by the
TGMS. The achieved accuracy is quantified in Tables 1 and 2. Although a standard devi-
ation of more than 1mm for the alignment in Table 2 might seem excessive, it should be
noted that this value is highly affected by the mentioned initial spurious peak. If this initial
portion of the track is disregarded, the standard deviation falls to 0.7 mm, which is more
acceptable. The reason for the clear alignment inaccuracy during the first metres of the
ride will require further investigation in the future.

It should be mentioned that the results presented in Figure A1 were obtained for con-
stant covariance matrices Q and U. However, as was discussed in Section 4.2, one of
the main advantages of CML estimation is that it allows for the estimation of different
covariance matrices for different portions of the track. This was done for the test under
consideration, dividing the track into its straight and curved segments. Since, in this case,
no improvement was found with respect to the calculation with constant Q and U, the
results corresponding to varying covariance matrices are not shown in the paper. In any
case, the fact that this differentiation between portions of the track is easily implementable
with CML estimation constitutes a highly advantageous feature— in general, better results
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Table 2. Quantitative evaluation of the difference between the absolute irregularities provided by the
TGMS and the absolute irregularities of reference: µ (mean value), σ (standard deviation) and Max
(maximum absolute value).

Alignment (filtered) Vertical profile (filtered)

µ (mm) σ (mm) Max (mm) µ (mm) σ (mm) Max (mm)

CML estimation 0.040 1.030 6.952 0.008 0.375 1.877
KOM −0.017 0.659 3.621 0.005 0.360 1.800
KOM for 0.8m< s < 45m −0.005 0.891 3.369 0.007 0.356 1.828
KOM for 45m< s < 65m −0.007 0.792 3.471 0.007 0.356 1.844
CML estimation with added noise 0.024 0.999 5.641 0.007 0.368 1.869

can be expected if the covariances are optimised for each specific condition of the vehicle
motion.

Since both KOM and CML estimation provide reasonably accurate results, and taking
into account the benefits and weaknesses discussed in Section 4 for both methods, CML
estimation seems to be the most promising algorithm for the TGMS. For this reason, the
two remaining subsections focus on the results obtained with CML estimation.

6.2. Confidence intervals obtainedwith CML estimation

A relevant and often overlooked feature of the Kalman filter algorithm is that, together
with the sequence of expected system states, it also provides the sequence of covariance
matrices for the system state. Thismeans that we have a quantification of the level of uncer-
tainty associated with the Kalman filter estimation, which allows for the computation of
confidence intervals.

The 95% confidence intervals for the irregularities obtained with CML estimation are
shown in Figure A3, together with the reference irregularities. In principle, the proportion
of the complete track for which each reference irregularity falls within the confidence inter-
val should be around 95%. However, the percentages obtained from Figure A3 turn out to
be considerably different: 49% for the unfiltered cross-level, 73% for the filtered cross-level,
98% for the filtered alignment and 99% for the filtered vertical profile. The confidence inter-
val seems to be too narrow for the cross level and too wide for the alignment and vertical
profile. Possible reasons for this discrepancy are discussed in the next paragraphs.

First, it is clear that the irregularities obtained using the TGMS have additional sources
of uncertainty other than those associated with the trajectory and attitude estimation. For
example, the uncertainty of the artificial vision system of the TGMS is not included in the
construction of the confidence intervals presented in Figure A3, which may distort the
results.

On the other hand, it is highly probable that the mismatch of the confidence inter-
vals is also due to the statistical assumptions of the state space model. As was discussed
in Section 3, some of the hypotheses on which the model is built are not met by the real
system, namely the assumption that linear accelerations and angular velocities evolve as
Wiener processes between samples (process model) and the assumption that the positions
in y and z direction are, at each considered instant, Gaussian random variables with no
dependence between samples (virtual position measurements, Equation (14)). It is conve-
nient to recall that these two assumptions have been introduced as a means to eliminate
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the need for position sensors and for a dynamic model of the system. The rationale is clear:
if, even with the mentioned assumptions, the algorithm was found to provide sufficiently
accurate results, this would constitute a relevant step towards making the estimation of
trajectory and attitude of railway vehicles as simple and practical as possible.

Figure 6. IMU signals with and without added noise. Each graph on the right is a close-up view of the
corresponding graph on the left.
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The results presented in Figure A1 show that the Kalman filter with CML estimation
provides the trajectory and orientation of the vehicle with notable accuracy. However,
Figure A3 indicates that the obtained confidence intervals are not reliable. In other words,
the proposed algorithm is able to produce accurate estimates for the system state (trajec-
tory and orientation of the vehicle) but does not correctly quantify the uncertainty of this
estimation. This was actually expectable, considering the assumptions made. In fact, the
same kind of result can be found with a simple synthetic example where certain periodic
displacement in one dimension is tracked using a noisy acceleration measurement (true
known acceleration+ artificial noise) and a fictitious position measurement such as given
in Equation (14), together with a process model that assumes the acceleration to evolve
as a Wiener process between samples: the Kalman filter is able to accurately estimate the
sequence of positions, but not its confidence intervals. Note that even without a good esti-
mation of the uncertainty, having a reliable estimate of the trajectory and attitude of a
railway vehicle can be highly useful for practical purposes.

6.3. Performance of CML estimationwith added IMU noise

This subsection intends to evaluate the sensitivity of the proposed algorithm to the quality
of the IMU. For this assessment, some artificial Gaussian noise has been added to each of
the IMU signals, as represented in Figure 6. The estimated irregularities, with and without
this additional noise in the inertial measurements, are represented in Figure A2, together
with the reference irregularities. It can be observed that the irregularity estimation remains
reasonably accurate despite the extra noise, which suggests that the proposedmethodology
can provide good results even with an IMU of moderate quality and cost.

7. Summary and conclusions

This paper addresses the estimation of the trajectory and attitude of a body moving along
a railroad track. Compared with the equivalent, and well developed in the literature, esti-
mation problems used for inertial navigation of air or road vehicles, this problem has
two specific properties: (1) the resulting trajectory and attitude are very similar to the
known trajectory and attitude of the track centreline and (2) the required accuracy is very
demanding for applications like track geometry measurement. The developed estimation
techniques are based on the kinematics of an arbitrary body moving along an arbitrary
track and the exact relationship between the description of this type of motion and the
measurements of inertial sensors.

The estimations are based on the discrete first-order extended Kalman smoother (sim-
ply Kalman filter for short). This procedure requires assigning appropriate values to the
parameters of the process noise and measurement noise covariance matrices. Two meth-
ods are used in this work to calculate these parameters: the KOM and the CML estimation.
The KOM, which is specific for the application of track geometry measurement, requires
the use of a railroad track with known irregular geometry. The CML estimation is much
more general and does not rely upon the previous knowledge of any irregularity profiles.
Both techniques are explained in detail. In this paper, the Kalman filter and themethods for
the estimation of the covariance matrices are used as described in the scientific literature.
No contributions are done to these methods.
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The proposed approach is experimentally validated using a 1:10 scale track. Results
show a remarkably accurate estimation of the track irregularities, using either the KOM
or CML estimation for the covariance matrices. Therefore, it is obvious to propose the use
of the much simpler and less costly CML estimation procedure, which also has the advan-
tage of being able to provide different covariancematrices for each specific condition of the
vehicle motion. It should be mentioned that although the proposed CML estimation yields
accurate irregularity profiles, it does not provide reliable confidence intervals, probably due
to the statistical assumptions of the model. In any case, thanks to the applied estimation
techniques, the precision of the measurement of the track irregularities has improved sig-
nificantly with respect to the results presented in Ref. [19]. In addition, the CML estimation
is found to be considerably robust against IMU noise.

Finally, it should be stressed that the method presented in this paper to measure the
trajectory and attitude of a body moving along a rail track can be used with the same level
of accuracy regardless of the length of the track. To this end, an odometry algorithm for
the estimation of the body position along the track that does not suffer of signal drift
must be used, as the one described in Ref. [19]. This is a key aspect that allows this
method to be used to measure the track geometry without the need of total station or
GNSS.
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Appendices

Appendix 1: Kalman filter for the orientation and trajectory: matrices of the
state spacemodel

This appendix specifies all the expressions required to build the state space model for the Kalman
filter. Parameter�t represents the sampling interval.{

xk+1 = Fxk + qk
zk = g(xk)+ uk

}
with

{
qk ∼ N(0,Q)
uk ∼ N(0,U)

}
,

z = [
ωimu
x ωimu

y ωimu
z aimu

x aimu
y aimu

z 0 δ
]T ,

x =
[
ϕb ϕ̇b θb θ̇b ψb ψ̇b rt,by ṙt,by r̈t,by rt,bz ṙt,bz r̈t,bz

]T
,

https://doi.org/10.1016/j.measurement.2015.11.033
https://doi.org/10.1142/S1793536912500161
https://doi.org/10.1177/0954409714527930
https://doi.org/10.1016/j.jsv.2021.116122
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F =

⎡
⎢⎢⎢⎣

F1 0 0 0 0
0 F1 0 0 0
0 0 F1 0 0
0 0 0 F2 0
0 0 0 0 F2

⎤
⎥⎥⎥⎦ ,

F1 =
[

1 �t
0 1

]
, F2 =

⎡
⎣ 1 �t �t2/2

0 1 �t
0 0 1

⎤
⎦ ,

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̇b − θbψ̇b

θ̇b + ϕbψ̇b

ψ̇b − ϕbθ̇b

g4A(x)+ g4B(x)+ g4C(x)+ g4D(x)+ g4E(x)
g5A(x)+ g5B(x)+ g5C(x)+ g5D(x)+ g5E(x)
g6A(x)+ g6B(x)+ g6C(x)+ g6D(x)+ g6E(x)

rt,by
rt,bz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

g4A(x) =
(
V2(ρtwρv − ρ′

h)− ρhV̇ − (ψb − ψ t)V2(ρ2tw + ρ2h)− (θb − θ t)(ρvρhV2 + ρtwV̇)
)
rt,by ,

g4B(x) =
(
−2ρhV − 2ρtwV(θb − θ t)

)
ṙt,by + (ψb − ψ t)r̈t,by ,

g4C(x) =
(
ρvV̇ + ρtwρhV2 + (ψb − ψ t)(ρvρhV2 − ρtwV̇)+ (θb − θ t)(ρ2tw + ρ2h)V

2
)
rt,bz ,

g4D(x) =
(
2ρvV − 2(ψb − ψ t)ρtwV

)
ṙt,bz − (θb − θ t)r̈t,bz ,

g4E(x) = −gθb + (ψb − ψ t)ρhV2 + (θb − θ t)ρvV2 + V̇ ,

g5A(x) =
(
(ψ t − ψb)

(
V2(ρtwρv − ρ′

h)− ρhV̇
)

−V2(ρ2tw + ρ2h)+ (ϕb − ϕt)(ρvρhV2 + ρtwV̇)
)
rt,by ,

g5B(x) =
(
2ρhV(ψb − ψ t)+ 2ρtwV(ϕb − ϕt)

)
ṙt,by + r̈t,by ,

g5C(x) =
(
(ψ t − ψb)(ρvV̇ + ρtwρhV2)+ ρvρhV2 − ρtwV̇ − V2(ϕb − ϕt)(ρ2tw + ρ2h)

)
rt,bz ,

g5D(x) =
(
2ρvV(ψ t − ψb)− 2ρtwV

)
ṙt,bz + (ϕb − ϕt)r̈t,bz ,

g5E(x) = gϕb + (ψ t − ψb)V̇ + (ϕt − ϕb)ρvV2 + ρhV2,

g6A(x) =
(
(θb − θ t)

(
V2(ρtwρv − ρ′

h)− ρhV̇
) + (ϕb − ϕt)V2(ρ2tw + ρ2h)+ ρvρhV2 + ρtwV̇

)
rt,by ,

g6B(x) =
(
2ρhV(θ t − θb)+ 2ρtwV

)
ṙt,by + (ϕt − ϕb)r̈t,by ,

g6C(x) =
(
(θb − θ t)(ρvV̇ + ρtwρhV2)+ (ϕt − ϕb)(ρvρhV2 − ρtwV̇)− V2(ρ2tw + ρ2h)

)
rt,bz ,

g6D(x) =
(
2(θb − θ t)ρvV + 2(ϕb − ϕt)ρtwV

)
ṙt,bz + r̈t,bz ,

g6E(x) = (θb − θ t)V̇ + (ϕt − ϕb)ρhV2 − ρvV2 + g,
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J = ∂g
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −ψ̇b 0 0 −θ̇b 0 0 0 0 0 0
ψ̇b 0 0 1 0 ϕb 0 0 0 0 0 0
−θ̇b 0 0 −ϕb 0 1 0 0 0 0 0 0
0 0 J4,3 0 J4,5 0 J4,7 J4,8 J4,9 J4,10 J4,11 J4,12
J5,1 0 0 0 J5,5 0 J5,7 J5,8 J5,9 J5,10 J5,11 J5,12
J6,1 0 J6,3 0 0 0 J6,7 J6,8 J6,9 J6,10 J6,11 J6,12
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

J4,3 = −rt,by (ρvρhV
2 + ρtwV̇)− 2ρtwVṙt,by + rt,bz V2(ρ2tw + ρ2h)− r̈t,bz − g + ρvV ,

J4,5 = −rt,by V2(ρ2tw + ρ2h)+ r̈t,by + rt,bz (ρvρhV
2 − ρtwV̇)− 2ρtwVṙt,bz + ρhV2,

J4,7 = V2(ρtwρv − ρ′
h)− ρhV̇ + (ψ t − ψb)V2(ρ2tw + ρ2h)+ (θ t − θb)(ρvρhV2 + ρtwV̇),

J4,8 = −2ρhV − 2ρtwV(θb − θ t),

J4,9 = ψb − ψ t ,

J4,10 = ρvV̇ + ρtwρhV2 + (ψb − ψ t)(ρvρhV2 − ρtwV̇)+ (θb − θ t)(ρ2tw + ρ2h)V
2,

J4,11 = 2ρvV + 2(ψ t − ψb)ρtwV ,

J4,12 = θ t − θb,

J5,1 = (ρvρhV2 + ρtwV̇)rt,by + 2ρtwVṙt,by − V2(ρ2tw + ρ2h)r
t,b
z + r̈t,bz + g − ρvV2,

J5,5 = (
ρhV̇ − V2(ρtwρv − ρ′

h)
)
rt,by + 2ρhVṙt,by − (ρvV̇ + ρtwρhV2)rt,bz − 2ρvVṙt,bz − V̇ ,

J5,7 = (ψ t − ψb)
(
V2(ρtwρv − ρ′

h)− ρhV̇
) − V2(ρ2tw + ρ2h)+ (ϕb − ϕt)(ρvρhV2 + ρtwV̇),

J5,8 = 2ρhV(ψb − ψ t)+ 2ρtwV(ϕb − ϕt),

J5,9 = 1,

J5,10 = (ψ t − ψb)(ρvV̇ + ρtwρhV2)+ ρvρhV2 − ρtwV̇ + V2(ϕt − ϕb)(ρ2tw)+ ρ2h ,

J5,11 = 2ρvV(ψ t − ψb)− 2ρtwV ,

J5,12 = ϕb − ϕt ,

J6,1 = V2(ρ2tw + ρ2h)r
t,b
y + r̈t,by + (ρtwV̇ − ρvρhV2)rt,bz + 2ρtwVṙt,bz − ρhV2,

J6,3 = (
V2(ρtwρv − ρ′

h)− ρhV̇
)
rt,by − 2ρhVṙt,by + (ρvV̇ + ρtwρhV2)rt,bz + 2ρvVṙt,bz + V̇ ,

J6,7 = (θb − θ t)
(
V2(ρtwρv − ρ′

h)− ρhV̇
) + (ϕb − ϕt)V2(ρ2tw + ρ2h)+ ρvρhV2 + ρtwV̇ ,

J6,8 = 2ρhV(θ t − θb)+ 2ρtwV ,

J6,9 = ϕt − ϕb,

J6,10 = (θb − θ t)(ρvV̇ + ρtwρhV2)+ (ϕt − ϕb)(ρvρhV2 − ρtwV̇)− V2(ρ2tw + ρ2h),

J6,11 = 2(θb − θ t)ρvV + 2(ϕb − ϕt)ρtwV ,

J6,12 = 1,
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Q =

⎡
⎢⎢⎢⎣

qϕQ1 0 0 0 0
0 qθQ1 0 0 0
0 0 qψQ1 0 0
0 0 0 qyQ2 0
0 0 0 0 qzQ2

⎤
⎥⎥⎥⎦ ,

Q1 =
[
�t3/3 �t2/2
�t2/2 �t

]
, Q2 =

⎡
⎣ �t5/20 �t4/8 �t3/6

�t4/8 �t3/3 �t2/2
�t3/6 �t2/2 �t

⎤
⎦ ,

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uωx 0 0 0 0 0 0 0
0 uωy 0 0 0 0 0 0
0 0 uωz 0 0 0 0 0
0 0 0 uacx 0 0 0 0
0 0 0 0 uacy 0 0 0
0 0 0 0 0 uacz 0 0
0 0 0 0 0 0 uposy 0
0 0 0 0 0 0 0 uposz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Appendix 2: Results: track irregularity profiles

Figure A1. Irregularities obtained with the TGMS (either using CML estimation or KOM), compared to
the reference irregularities. (a) Unfiltered and (b–d) filtered.



26 J. GONZÁLEZ-CARBAJAL ET AL.

Figure A2. Irregularities obtained using CML estimation (with and without artificial noise on the IMU
signals), compared to the reference irregularities. (a) Unfiltered and (b–d) filtered.
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Figure A3. 95% confidence intervals for the different irregularities obtained with CML estimation,
compared to the reference irregularities. (a) Unfiltered and (b–d) filtered.
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