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Object detection has been one of the most active topics in computer vision for the past years. Recent
works have mainly focused on pushing the state-of-the-art in the general-purpose COCO benchmark.
However, the use of such detection frameworks in specific applications such as autonomous driving is
yet an area to be addressed. This study presents an enhanced 2D object detector based on Faster R-
CNN that is better suited for the context of autonomous vehicles. Two main aspects are improved: the
anchor generation procedure and the performance drop in minority classes. The default uniform anchor
configuration is not suitable in this scenario due to the perspective projection of the vehicle cameras.
Therefore, we propose a perspective-aware methodology that divides the image into key regions via clus-
tering and uses evolutionary algorithms to optimize the base anchors for each of them. Furthermore, we
add a module that enhances the precision of the second-stage header network by including the spatial
information of the candidate regions proposed in the first stage. We also explore different re-
weighting strategies to address the foreground-foreground class imbalance, showing that the use of a
reduced version of focal loss can significantly improve the detection of difficult and underrepresented
objects in two-stage detectors. Finally, we design an ensemble model to combine the strengths of the dif-
ferent learning strategies. Our proposal is evaluated with the Waymo Open Dataset, which is the most
extensive and diverse up to date. The results demonstrate an average accuracy improvement of 6.13%
mAP when using the best single model, and of 9.69% mAP with the ensemble. The proposed modifications
over the Faster R-CNN do not increase computational cost and can easily be extended to optimize other
anchor-based detection frameworks.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Developing robust machine learning models that can accurately
detect and classify multiple objects in an image remains a core
challenge in computer vision. Object detection has attracted the
interest of many researchers due to its application to multiple
real-world problems such as autonomous driving [1,2], robotic
vision [3], security surveillance [4], or land monitoring [5]. In
recent years, the latest advancements in this field have been
achieved thanks to the development of deep convolutional net-
works. Deep learning has proven to be a very powerful tool for
learning abstract hierarchical representations of raw input data
[6]. With the increase of availability and quality of remote sensing
data collected by different sensors (higher resolution RGB cameras,
LiDAR and radar data, etc.), deep learning models have pushed the
state-of-the-art in many visual recognition tasks [7].
In particular, object detection is one of the main perception
problems that the advanced driver assistance system (ADAS) of
autonomous vehicles faces. The multi-modal sensors equipped in
these vehicles provide valuable data to be used with popular deep
learning-based object detectors. Nevertheless, the perception sys-
tems of self-driving vehicles need to be accurate and robust
enough to operate safely in complex scenarios such as mixed urban
traffic, adverse weather conditions, unmapped roads, or areas with
unreliable connectivity [8]. Under these circumstances, it is still
hard for existing detectors to perceive all traffic participants (vehi-
cles, pedestrians, traffic signs, etc.) accurately, robustly, and in real-
time. The impact of autonomous driving in the future promises to
be important due to its potential to improve road safety, reduce
traffic, and decrease pollution [9]. However, many aspects require
significant progress before this technology can fully substitute
human driving.

In this work, the aim is to enhance the 2D object detection accu-
racy in the images obtained from the on-board cameras of auton-
omous vehicles. The goal of this detection task is to determine
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the presence of objects from given categories and return the spatial
location of each instance through a bounding box [10]. In recent lit-
erature, the main trend in object detection is to develop increas-
ingly sophisticated architectures to improve the performance
over the general-purpose COCO (Common Objects in Context)
benchmark [11]. However, the effectiveness of such generic object
detectors when applied to particular applications is still far from
optimal [12]. For this reason, this study proposes several modifica-
tions to the popular Faster R-CNN detection framework to better
adapt it to the specific context of self-driving cars. The novelty of
this work lies in two main aspects that are considered for improv-
ing the performance of the original model: optimizing the anchor
generation procedure and modifying the learning process to
improve accuracy over minority instances.

The uniform anchor generation procedure of Faster R-CNN is
not suitable for the autonomous driving scenario. The default con-
figuration, which has proven to be effective for generic object
detection, produces anchors with the same scale and aspect ratios
at each location of the feature map. However, due to the perspec-
tive projection of on-board cameras in the vehicles, the scale of
objects has a strong correlation with their position in the image
in this context. This implies that in regions where objects tend to
be very large, producing small-scale anchors is not appropriate,
and vice versa. To overcome this anchor mismatch issue, our pro-
posal is to divide the images into several regions and optimize each
of them independently. With the help of a clustering study, key
regions in the images that have objects with significantly different
dimensions are obtained. Then, a methodology based on evolution-
ary algorithms is presented in order to search for optimal values of
scale and aspect ratio for the prior anchors of each region. Further-
more, we modify the second-stage header network introducing
spatial properties extracted from the region of interest (ROI) pro-
posals of the first stage. The spatial features of ROIs (size and posi-
tion in the image) are concatenated to the convolutional features
extracted from the backbone network to improve localization
accuracy.

Another important issue is that the default training scheme of
Faster R-CNN results in a significant performance drop in minority
classes and difficult instances. In the literature, the learning pro-
cess of detectors has been given less attention compared to the
development of architectures [13]. However, a balanced learning
scheme is crucial for this multi-class scenario due to the presence
of elements, such as pedestrians or cyclists, that are less frequent
than vehicles. In this study, an extensive analysis of different
approaches to address foreground-foreground class imbalance is
performed. Several alternatives are explored, such as assigning dif-
ferent weights according to the class distribution and the use of
focal loss, which has been traditionally used in one-stage detectors.
Finally, an ensemble model based on non-maximum suppression
and test-time augmentation is designed, combining the different
training strategies to increase the robustness of the detector.

The recently released Waymo Open Dataset [14] is used for
evaluating the proposal, which is the largest and most diverse up
to date in terms of geographic coverage and weather conditions.
Waymo is 15 times more diverse than other existing benchmarks
such as KITTI [15]. In this dataset, the object detection task has
objects from three classes (vehicles, pedestrians, and cyclists) that
are divided into two difficulty levels. To the best of our knowledge,
this is the first study that addresses anchor optimization and class
imbalance in a multi-class 2D detection problem in the context of
autonomous vehicles. The proposed methodology can easily be
extended to other anchor-based detection frameworks with differ-
ent backbone networks, since it does not rely on the specific imple-
mentation carried out in this study.

In summary, the main contributions of this work can be com-
piled as follows:
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� A novel region-based anchor optimization methodology using
evolutionary algorithms for 2D object detection for autonomous
driving

� A module that enhances the second-stage header network of
Faster R-CNN by including the spatial features of ROIs produced
by the region proposal network.

� A thorough study of different training procedures to address
severe foreground-foreground class imbalance in two-stage
object detectors.

� An ensemble model combining the strengths of the different
learning strategies to improve detection precision.

The rest of the paper is organized as follows: Section 2 presents
a review of related work; in Section 3 the materials used and the
methods proposed in the study are described; Section 5 reports
and discusses the results obtained; Section 6 presents the conclu-
sions and potential future work.
2. Related work

Recent progress in the object detection field has been driven by
novel methodologies based on deep learning, as it has happened in
many computer vision tasks [16]. Existing image object detectors
in the literature can be mainly divided into two categories: two-
stage detectors such as Faster R-CNN [17], and one-stage detectors
such as SSD [18]. Generally speaking, the strength of one-stage
detectors lies in their higher inference speed, while two-stage
architectures obtain higher localization accuracy.

The pioneering two-stage detector was the Regions with CNN
features framework (R-CNN) [19]. R-CNN used the selective search
method to crop box proposals from the image and feed them to a
convolutional network classifier. This external proposal generation
was very costly and inefficient. Faster R-CNN solved this issue by
sharing features between the region proposal network (RPN) and
the detection network [17]. This approach improved accuracy
and speed and has led to a large number of follow-up works. For
instance, R-FCN proposed a position-sensitive ROI cropping that
respects translation variance [20]. Later studies have focused on
exploiting the multi-scale properties of feature extractors, such
as the feature pyramid networks (FPNs) with lateral connections
proposed in [21]. Other works have tried to improve this detector
by including rotation-invariant and Fisher discriminative regular-
izers on the CNN features [22]. Due to the cost of manually labeling
bounding boxes, there are also many studies on weakly-supervised
object detection that only work with image-level labels [23]. Cur-
rently, the COCO leaderboard is led by Cascade R-CNN methods.
Cascade models build a sequence of detectors trained with increas-
ing intersection-over-union (IoU) thresholds, to be sequentially
more selective against false positives [24].

In contrast, one-stage architectures predict class probabilities
and bounding box offsets directly from the image, without the
region proposal step. The first YOLO (You Only Look Once) archi-
tecture was proposed in [25], achieving real-time inference rates
but with high localization errors. SSD combined ideas from YOLO
and RPN to improve the performance while maintaining high
speed [18]. With the help of default bounding boxes, SSD detects
objects at different scales on several feature maps. More recently,
an important step forward in the one-stage family was achieved
by solving the foreground-background class imbalance problem.
RetinaNet proposed a novel focal loss function that focuses on dif-
ficult objects by down-weighting the importance of well-classified
samples [26]. Other interesting approaches are the anchor-free
one-stage detectors, which do not require pre-defined anchor
boxes. FCOS [27] and CenterNet [28] use the center of objects to
define positives and regress the four distances that build the
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bounding box from that point. Models such as ExtremeNet [29] or
CornerNet [30] generate the boxes by locating several keypoints
first. Anchor-free detectors are more flexible than RetinaNet and
can achieve similar performance.

The backbone network that acts as a feature extractor and its
capacity to extract quality features play a very important role in
all detection frameworks. Rather than the VGG network [31] used
in the original Faster R-CNN paper, deeper and more densely con-
nected architectures have been recently proposed. Some examples
include the ResNet [32] used in the Mask R-CNN detector [33],
ResNeXt [34], Res2Net [35], or HRNet [36]. The improved YOLOv3
detector includes multi-scale predictions and a new feature extrac-
tor, DarkNet-53, which uses residual blocks and skip connections
[37]. Other works such as NAS-FPN [38] introduce neural architec-
ture search to learn optimal feature fusion in the pyramid and
build a stronger backbone. However, these complex networks lead
to slower inference speed. Since this is undesired in real-time
applications, other researchers have focused on designing light-
weight backbones such as MobileNets [39], which are also less
accurate. In general, finding the optimal speed/accuracy balance
in a backbone architecture is a difficult task that highly depends
on the problem to be addressed [40].

The interest in the autonomous driving field has risen signifi-
cantly in recent years. Many high-quality datasets are becoming
available for the research community to push the state-of-the-art
in problems such as object detection. After the popular KITTI
benchmark [15], other datasets have been released such as NuSce-
nes [41] or PandaSet [42]. A complete overview of existing self-
driving datasets is provided in [43]. Waymo has recently released
the most extensive and diverse multi-modal dataset up to date
[14]. In [44], the authors evaluate the trade-off between accuracy
and speed of several state-of-the-art detectors over the Waymo
dataset. However, there are still few works that have addressed
the optimization of existing 2D object detectors in the context of
autonomous vehicles. RefineNet proposed extra regressors to fur-
ther refine the candidate bounding boxes for vehicle detection
[45]. The work in [46] presents an anchor optimization methodol-
ogy and ROI assignment improvement over two-stage detectors
but also focusing only on vehicles and not on other traffic partici-
pants. A CNN-based methodology to improve vehicle detection in
adverse weather conditions was presented in [47]. There are other
important perception problems in autonomous driving being
addressed with deep learning such as 3D detection using LiDAR
point clouds [48,49] and object tracking [50,51].
3. Materials and methods

This section presents the dataset used for the study and the
methodology proposed to enhance object detection in the context
of autonomous vehicles. Firstly, the anchor optimization procedure
and the modifications applied to the Faster R-CNN architecture are
described. Secondly, the different learning strategies studied to
address class imbalance are explained. Thirdly, the proposed
ensemble model is presented. In the final section, the remaining
implementation details are provided to allow reproducibility. The
complete source code can be found at [52].
3.1. Waymo Open Dataset

The Waymo Open Dataset [14] consists of 1150 driving video
scenes across different urban areas (Phoenix, San Francisco, and
Mountain View) and at different times of the day (day, night, and
dawn). Each scene captures synchronized LiDAR and camera data
for 20 s, resulting in around 200 frames per scene. The problem
addressed in this study is 2D object detection. This task is to assign
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2D bounding boxes to objects that are present in a single RGB cam-
era image. Waymo’s vehicle is equipped with five high-resolution
cameras (Front, Front Left, Front Right, Side Left, and Side Right).
Frontal cameras obtain images with a resolution of 1920x1280,
while lateral cameras have an image size of 1920x886. All cameras
have a �25:2� horizontal field of view (HFOV). An example of the
images captured by all cameras in a single frame is presented in
Fig. 1. As it is done in Waymo’s online challenge, the images
obtained from all cameras are considered a single dataset for eval-
uation purposes.

The dataset contains around 10 million manually annotated
labels across all cameras. Three different classes are considered
for this problem: vehicles (which includes any wheeled motor
object such as cars or motorbikes), pedestrians, and cyclists.
Fig. 2a shows an example of the labeled data provided, which are
tightly fitting bounding boxes around the objects. Furthermore,
Waymo provides two different difficulty levels for the labels (Level
1 and 2), which are illustrated in Fig. 2b. Level 2 instances are
objects considered as hard and the criteria depends on both the
human labelers and the object statistics. For the evaluation, the
level 2 metrics are cumulative and also include all objects belong-
ing to level 1. The count of objects of the different classes is pre-
sented in Table 1. As can be seen, there is a significant class
imbalance between vehicles and pedestrians, and the number of
cyclist labels is minimal.

The dataset is divided into 1000 scenes for training and valida-
tion (around 1 million images), and 150 for testing (around 150 k
images). Waymo provides an online submission tool to evaluate
the models over the testing set since those labels are not publicly
available. The scenes composing the test set are from a different
geographical area, which ensures that the capacity of generaliza-
tion of trained models is properly evaluated.

3.2. Faster R-CNN architecture

Faster R-CNN has been extensively used in the recent literature
as a general-purpose object detection framework [17]. This detec-
tor follows a multi-task learning procedure, combining classifica-
tion and bounding box regression to solve the detection problem.
It uses a convolutional backbone (e.g. VGG, ResNet) to extract hier-
archical features from the images, and consists of two stages: a
region proposal network (RPN) and a Fast R-CNN header network.
Fig. 3 shows the Faster R-CNN architecture, illustrating the com-
plete two-stage process.

In the first stage, the RPN uses features from an intermediate
level of the feature extractor to predict class-agnostic box propos-
als (object or background). This is achieved by predicting multiple
candidate boxes at each location using multi-scale reference
anchors. Afterwards, a limited number of these proposals (typically
300) are selected as regions of interest (ROIs) and pass to the sec-
ond stage. The selected ROIs are used to crop features from the
same intermediate feature map using a ROI pooling operation.
Those cropped features are then fed to the remaining layers of
the backbone network to predict a class and perform a box refine-
ment for each proposal. In Faster R-CNN, convolutional features are
shared between both stages, which improves accuracy and speed.
However, its bottleneck is the number of ROIs proposed by the
RPN, since the computation of the second stage is run once per
proposal.

In this study, the ResNet-101 backbone network is used, since it
provides a good speed/accuracy trade-off [53]. It is also the net-
work provided for the baseline results published with the Waymo
dataset, which allows a fair comparison. As in the original imple-
mentation [32], features used in the RPN are extracted from block
3 of the ResNet. In the second stage, ROIs are cropped and resized
to 14x14, and then max-pooled to 7x7 before being fed to block 4.



Table 1
Count of labeled objects in the Waymo dataset.

Vehicle Pedestrian Cyclist

Count 7.7 M 2.1 M 63 K
Percentage 78.07% 21.29% 0.64%

Fig. 1. Images from a single frame obtained by the five cameras of Waymo’s vehicle.

Fig. 2. 2D object detection problem in the Waymo Open Dataset.
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However, our proposal does not rely on this specific backbone and
can be used with other existing anchor-based two-stage detectors.

Despite its advantages, there are several aspects of Faster R-
CNN that can be improved to better adapt it to the characteristics
of the problem addressed in this study, which is object detection in
the autonomous driving scenario. The improvements proposed to
the original architecture are highlighted in red in Fig. 3: the per-
region anchor generation optimization in the RPN; and the ROIs
spatial features concatenation in the header classification network.
The details of these modifications are provided in the following
sections.

3.3. Anchor generation optimization

The first stage of the Faster R-CNN is the region proposal net-
work (RPN) that selects the ROIs to be forwarded to the detection
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stage. The ROIs are generated using a convolutional sliding window
over some intermediate feature map of the backbone network.
These proposals are parametrized relative to reference boxes
known as anchors. In order to detect different-sized objects, the
RPN predicts multiple region proposals at each location by using
multi-scale anchors. There are k anchor boxes with different scales
and aspect ratios centered at each pixel of the feature map. The
scale ratio is defined with respect to a base of 256, and the aspect
ratio is the width over the height of the box. The size and shape of
these anchors have to be manually defined and are critical for the
success of the detector [54].

In this self-driving scenario, the shape of objects captured by
the cameras can be significantly different depending on their class
and position in the image. The shape of pedestrians tends to be tall
and narrow, while vehicles are often wider and more squared. Fur-
thermore, the perspective projection of the cameras equipped in
autonomous vehicles is an important factor that must be consid-
ered for object detection [46]. The original RPN implementation
in Faster R-CNN using ResNet proposes multiple anchors with dif-
ferent scales ratios ð0:25;0:5;1;2Þ and aspect ratios ð0:5;1;2Þ at
each location [32]. This uniform configuration was found to work
well for general-purpose object detection, but it is far from optimal
in this particular application. Those pre-defined scales and aspect



Fig. 3. Faster R-CNN architecture. The improvements proposed in this study are highlighted in red. N refers to the number of ROIs passing to the second stage.
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ratios do not coincide with the size of the objects seen from on-
board cameras, hence resulting in many invalid anchors and use-
less computation. Therefore, in this study, the aim is to find a bet-
ter configuration for those values of scale and aspect ratio.

Due to the perspective of the cameras in the vehicle, the size of
the captured objects highly depends on their position in the image.
Therefore, one of the first steps of this study is to analyze the rela-
tionship between bounding box dimensions and their location in
the image. Fig. 4 displays the distribution of all objects in the data-
set with respect to two variables: the vertical position of the center
of the object (y-axis center), and the object’s height. Due to the dif-
ferent dimensions and nature of frontal and lateral cameras, the
analysis is separated for both of them to check for any significant
particularities. As can be seen in the figure, there is a strong corre-
lation between both variables. For frontal cameras, there is a 0.67
Pearson correlation coefficient, while for lateral cameras the corre-
lation is 0.69. This positive correlation implies that objects of larger
size tend to appear at the bottom part of the image, while smaller
objects are more often at the top part of the image, as they are fur-
ther away.

These findings confirm the fact that a uniform anchor genera-
tion across the image is not optimal for this context. This anchor
dimension mismatch can significantly decrease the performance
of the detector. The next steps of the paper focus on how the
anchor generation process has been modified to adapt it for this
Fig. 4. Correlation between the object size and its location in the image. The (0,0) point
positive correlation.
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specific problem and improve the detection accuracy. Our
perspective-aware proposal is divided into two steps: the division
of the images in key regions using a clustering analysis, and the
per-region anchor optimization using evolutionary algorithms.
3.3.1. Region division using clustering
Given the different characteristics of objects depending on their

location in the image, the objective is to find a better anchor gen-
eration methodology that accounts for the perspective projection.
In contrast to the default uniform generation method, the proposal
is to divide the image into several key regions and obtain the best
configuration for each of them independently. In order to find the
optimal division in regions, a clustering analysis is performed with
respect to the aspect and scale ratio of all 10 million objects in the
dataset. When the K-Means algorithm is applied, the best division
is obtained with two clusters after analyzing internal validity
indices such as the Silhouette index. Fig. 5 shows the distribution
of elements in the cluster according to the values of both features.
As can be seen, while the aspect ratio is similar for the elements in
both clusters, there is a significant difference in the scale ratio. The
distribution plot shows that the K-Means clustering algorithm
assigns to cluster 1 the majority of the larger scale elements (those
that have a scale ratio greater than 1) and to cluster 0 the smaller
scale objects (those that have a scale ratio below 1).
refers to the top left corner of the image. The regression line illustrates the strong



Fig. 5. Distribution of the aspect and scale ratio of the elements belonging to each cluster..
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With the clustering results, the region division can be obtained
by analyzing the position in the image of the objects belonging to
each cluster, which is illustrated in Fig. 6a. This figure plots the
center of objects in both x and y-axis (horizontal and vertical posi-
tion). Frontal and lateral cameras are combined for this clustering
study, hence a normalized value is used for the vertical position of
the objects. As can be seen in the figure, the majority of elements of
cluster 1 (larger objects) are in the bottom part of the image. In
contrast, elements in cluster 0 are spread across the middle and
upper part of the image. The spatial bounds that delimit the clus-
ters can be found with the help of the density distribution of the
Fig. 6. Division of the camera images into four
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position of elements. For each cluster, we define the interval delim-
ited by two values a and b that contains 99% of the elements, in
order to allow for the presence of outliers. Those two values define
the interval in which the majority of elements of each cluster are
positioned in the image. Fig. 6a displays the a and b values with
dotted red lines. For cluster 0, the bounds are at positions 0.188
and 0.691. For cluster 1, only the first bound (0.392) is displayed
since the elements spread until the bottom of the image. If those
bounds are combined, we can establish four key regions in the
image that will have objects with significantly different character-
istics. The final result of the region division study is depicted in
regions according to the clustering study.



M. Carranza-García, P. Lara-Benítez, J. García-Gutiérrez et al. Neurocomputing 449 (2021) 229–244
Fig. 6b, in which some example images are shown with the bounds
for the four regions (R1, R2, R3, and R4). These images clearly illus-
trate the difference in scale between objects of different regions.

3.3.2. Evolutionary algorithm to optimize anchors per region
Once the region division has been defined, an evolutionary algo-

rithm (EA) is designed to find the optimal values for scale and
aspect ratios for each of them. An evolutionary algorithm mini-
mizes a fitness function by exploring a population of possible solu-
tions over a specific number of generations. The population is
formed by individuals that are represented as a chromosome,
which are a combination of genes. For this problem, the chromo-
some is encoded as a set of 7 floating-point numbers representing
the parameters that define the anchors. The first three numbers
correspond to the aspect ratios and the remaining four correspond
to the scale ratios. The objective is to search for the best value of
each gene within defined boundaries and with a specified decimal
precision. The EA creates a random initial population of a specific
size. From the initial population, the algorithm combines the best
individuals using single-point crossover and creates a new genera-
tion. The crossover is applied separately to the aspect ratio and
scale ratio genes, so that there is no interference between the
two parameters. Additionally, a low mutation probability is added
to maintain genetic diversity over generations. The complete
parameter configuration of the proposed EA is presented in Table 2.
The gene boundaries are defined considering the size of images and
the limitations of using ResNet-101 as a backbone network. Given
the base anchor scale of 256, the specified boundaries imply that
the maximum possible scale is 1024 pixels and the minimum is
16 pixels (which is the receptive field unit of the network). An indi-
vidual can be represented as X ¼ ðA; SÞ, where A ¼ ða1; a2; a3Þ
defines the three possible aspect ratios and S ¼ ðs1; s2; s3; s4Þ defines
the four possible scale ratios. The decoded individual defines a set
of 12 anchor configurations Baij , which are conformed by the carte-
sian product between aspect and scale ratio (Baij ¼ A� S). There-
fore, the whole decoding process of an individual X can be
expressed as follows:

X ¼ fBaijg; where Baij ¼ ðai; sjÞ for i 2 f1; ::;3g; j
2 f1; ::;4g ð1Þ
The goal of the proposed EA is to maximize the intersection

between the anchors generated from the decoded individual and
the ground truth boxes in the images. This is measured using the
Intersection over Union (IoU) metric, which is presented in Eq.
(2). The IoU is defined as the ratio of area-of-overlap to area-of-
union of a ground truth bounding box Bgt and a proposed base
anchor Ba:

IoUðBgt ;BaÞ ¼ areaðBgt \ BaÞ
areaðBgt [ BaÞ

¼ areaðBgt \ BaÞ
areaðBgtÞ þ areaðBaÞ � areaðBgt \ BaÞ ð2Þ
Table 2
Parameter configuration of the evolu-
tionary algorithm

Parameter Value

Gene boundaries [0.06, 4]
Gene precision 10�3

Crossover probability 0.8
Mutation probability 0.2
Population size 100
Num. Generations 50
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The IoU metric is used for defining the EA fitness function (Eq. (3),
which evaluates the quality of the solutions provided by individuals
in the population. For an individual X, the decoded chromosome
generates the 12 possible anchors (4 scales and 3 aspect ratios).
For each ground truth bounding box, the fitness function finds the
maximum overlap obtained with the proposed anchor boxes and
averages the result among all objects. A logarithmic factor is applied
in order to ensure that there are fewer ground truth boxes with a
maximum IoU lower than 0.5 [55]. In the equation, K refers to the
number of ground truth objects.

FitnessðXÞ ¼ 1
K

XK
k¼1

� 1�maxIoUðBgtk ;XÞ
� �2 � log maxIoUðBgtk ;XÞ

� �� �

maxIoUðBgtk ;XÞ ¼ max
i ¼ 1::3
j ¼ 1::4

IoUðBgtk ;Baij Þ
� �

ð3Þ
Table 3 presents the optimized parameters that are obtained for

each region. As can be seen, the optimal values found by the evo-
lutionary algorithm are significantly different from the original
configuration. Regions at the top of the image with smaller objects
have lower scale ratios. The scale in R1 and R2 ranges from values
close to zero and up to a maximum of 0.5, which means that
default anchors of scales 1 and 2 are not suitable. In contrast, R4
accounts for the presence of larger objects with values ranging
from 0.6 until 2.9. Fig. 7 presents an example that shows the differ-
ence between the uniform anchor generation (red boxes) and our
optimized proposal (blue boxes). The dotted red boxes illustrate
useless default anchors that have a great size mismatch with
objects in different regions. In regions with small objects, the orig-
inal strategy generates useless large-scale anchors. Analogously, in
the bottom part of the image where there are objects closer to the
camera, it generates very small inefficient anchors. Our proposal
generates anchors with a higher matching precision, which results
in a more effective detector. In the experimental study, the param-
eter optimization process is also analyzed separating frontal and
lateral cameras, in order to check if there is a further improvement.

3.4. ROIs spatial features concatenation

As it was seen in the previous Section 3.3, the spatial location of
objects in this context plays an important role in the detection
problem. Considering this fact, we propose a slight yet effective
modification to the second stage of the Faster R-CNN framework.
The information used by the second stage only comes from the
convolutional features cropped from an intermediate feature map
of the backbone network, which are then max-pooled to a
7� 7� 1024 map. This implies that the spatial characteristics of
each box proposal are lost in the ROI pooling process. The size
(width and height) and position of the proposed bounding box
Table 3
Optimized anchor configuration found with the evolutionary algorithm. The values
for scale and aspect ratios for each region are provided.

Parameter Region Values

Scale Ratio Original 0.25, 0.5, 1, 2
R1 0.074, 0.158, 0.250, 0.414
R2 0.082, 0.155, 0.254, 0.500
R3 0.095, 0.189, 0.518, 1.557
R4 0.598, 1.101, 1.800, 2.852

Aspect ratio Original 0.5, 1, 2
R1 0.344, 0.672, 1.801
R2 0.461, 0.853, 2.246
R3 0.473, 0.905, 2.497
R4 0.314, 0.805, 2.136



Fig. 7. Difference between the uniform anchor generation procedure and our anchor optimization proposal. The complete image is displayed in the center, with three zoomed
areas. The dotted red lines illustrate cases with an important anchor size mismatch when using the default anchor configuration.

M. Carranza-García, P. Lara-Benítez, J. García-Gutiérrez et al. Neurocomputing 449 (2021) 229–244
with respect to the complete image are not taken into account by
the Fast-RCNN header network. In this multi-class object detection
problem with images from on-board cameras of a vehicle, the posi-
tion of the box has a significant correlation with its dimensions.
Therefore, including this information in the class-specific predic-
tion and box refinement done in the second stage can enhance
the localization accuracy.

For these reasons, our proposal is to construct those spatial fea-
tures and concatenate them to the convolutional features of each
ROI obtained from the cropped map. This process is illustrated in
the flowchart displayed in Fig. 8, and in Fig. 3 with more detail.
For each of the N selected ROIs, cropped features are fed to the
fourth block of the ResNet backbone. Then, the network is divided
into two branches for different tasks: classification and bounding-
box regression. In each branch, the convolutional features are flat-
tened using a spatial average pooling, which converts the
N � 7� 7� 2048 maps into N � 2048 neurons. At this point, four
features are concatenated for each ROI proposal in both branches:
the width of the box, the height of the box, the horizontal position
of the center of the box (X center), and the vertical position of the
center of the box (Y center). This results in a layer of N � 2052 neu-
rons. Those combined features are then used to predict the class
and refine the boxes by means of a fully connected (FC) layer.

3.5. Learning strategies to address class imbalance

Class imbalance is an important issue that may severely
degrade the performance of detectors if it is not properly addressed
[56]. In object detection, there are two different class imbalance
problems: background-foreground and foreground-foreground.
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The background-foreground imbalance is associated with the small
number of positive examples (bounding boxes matching an object)
compared to the number of negatives boxes (background of the
image). The foreground-foreground problem refers to the imbal-
ance between object classes of a dataset, which often leads to over-
fitting on the over-represented class. Since the foreground-
background imbalance is unavoidable and does not depend on
the specific dataset, it has attracted more interest in the recent lit-
erature. However, in the self-driving dataset used in this study,
there is a significant imbalance between vehicles (80%) and the
other type of objects (pedestrians 20% and cyclists less than 1%).

In order to alleviate the foreground-background imbalance, Fas-
ter R-CNN uses hard sampling techniques based on heuristic meth-
ods. In the first stage, random sampling is used for training the
RPN. To avoid a bias in the learning towards negative samples,
128 positive and 128 negative examples are randomly selected to
contribute to the loss function. In the second stage, the employed
strategy is to limit the search space. For the Fast R-CNN detection
network, only the best N ROIs are selected according to their
objectness scores, while maintaining a 1:3 positive–negative ratio.
However, this methodology presents the problem that all examples
are equally weighted once they are sampled. The original Faster R-
CNN implementation does not take into account the presence of
under-represented objects, which limits performance under high
imbalance. Therefore, we aim to design a better training procedure
that addresses the foreground-foreground imbalance in this
scenario.

Our proposal is to study how the loss function of two-stage
detectors can be modified using cost-sensitive re-weighting tech-
niques, which has been one of the main approaches in the litera-



Fig. 8. Flowchart illustrating the ROIs spatial features concatenation process.
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ture for class imbalance problems [57]. These techniques are based
on assigning relatively higher costs to minority instances, hence
building a better class-balanced loss. In this work, we explore
two re-weighting alternatives that can improve overall detection
accuracy: balance the loss function with weights that are propor-
tional to the class distribution; and the use of focal loss, which
has been traditionally used for one-stage detectors.

3.5.1. Weight assignment based on class distribution
The first approach is to assign different weights to instances of

each class depending on the class frequency distribution. This sim-
ple yet effective method has been widely used in many computer
vision tasks [58]. As stated before, in Faster R-CNN, the training
is framed as a multi-task learning problem that combines classifi-
cation and bounding box regression. We propose to modify the loss
function by adding a weight wi parameter to the classification and
regression terms. The complete loss function with weights assign-
ment is expressed in Eq. (4):

Lðpi; tiÞ ¼ Lcls þ Lreg ¼ 1
Ncls

X
i

wiLclsðpi;p
�
i Þ þ k

Nreg

X
i

wip�
i L

smooth
1 ðti � t�i Þ

Lclsðpi; p
�
i Þ ¼ CEðpi;p

�
i Þ ¼ �p�

i log pi � ð1� p�
i Þ logð1� piÞ

ð4Þ
where pi is the predicted probability of proposal i being an object,
and pi� is the groundtruth label (0 or 1). ti are the four predicted
box coordinates, and ti� are the ground truth coordinates. wi is
the weight assigned depending on the ground truth class. Ncls and
Nreg are normalization terms which are set to the RPN mini-batch
size, which is typically 256. Lcls is the binary cross-entropy function
and Lreg is the smooth L1 loss function.

Note that we have described only the RPN loss function for sim-
plicity, but the modification is done in both stages. The loss func-
tion in the second stage is the same, except that in the RPN the
classification problem is binary (background vs object) while in
the Fast R-CNN header network the classification is multi-class.
This implies that the multi-class cross-entropy function is used.
In this case, the normalization parameters are set to the number
of ROI proposals that pass to the second stage.

In order to obtain the best possible performance, a grid search is
performed to find the optimal weight value for each class. The
search involves experimenting with different sets of weights, con-
sidering four possible values ð0:3;0:5;0:7;0:9Þ that can be assigned
to vehicles and pedestrians. The maximum weight ð1:0Þ is kept for
cyclists since they are extremely underrepresented.

3.5.2. Reduced focal loss
The second re-weighting alternative that is explored is focal

loss, which was introduced in [26] as an improvement to the Reti-
naNet one-stage detector. The focal loss function belongs to
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another line of work that assigns weights according to sample dif-
ficulty. These methods assume that training a detector with hard
examples improves performance. A method of this family that
has been used in two-stage detectors is Online Hard Example Min-
ing (OHEM) [59]. However, OHEM requires more memory con-
sumption and increases training time. Although focal loss was
found to be more effective than OHEM for imbalance problems, it
has not been used extensively in two-stage detectors. In this work,
we study the application of the focal loss function to the Faster R-
CNN framework and propose a modification to better adjust it to
its characteristics.

Focal loss (FL) assigns higher weights to hard examples, with
the aim of alleviating the high background-foreground imbalance.
As is shown in Eq. (5), focal loss modifies the standard cross-
entropy equation by adding a factor ð1� piÞc. When c > 0, the rel-
ative loss for easy and well-classified samples is reduced, putting
the effort on the classification of hard examples.

FLðpiÞ ¼ �að1� piÞc logðpiÞ ð5Þ
Although this function was introduced to reduce the influence

of easy background examples, it also has an effect on the
foreground-foreground imbalance. Instances from minority classes
often have higher losses since they are rare and their features are
usually poorer. However, the direct application of focal loss in
two-stage detectors presents several problems. Firstly, focal loss
can have as a side-effect that the learning is biased towards noisy
or mislabeled data, which is also hard to classify [57]. Furthermore,
focal loss contradicts slightly the behaviour of two-stage detectors:
RPN aims to maximize recall (allowing false positives), while the
job of Fast R-CNN header network is to classify proposals correctly.
An extreme focus on hard samples can reduce the recall of RPN,
which implies that lower-quality proposals pass to the second
stage. Therefore, inspired by the work in [60], we propose a mod-
ified version called reduced focal loss (RFL).

Reduced focal loss aims to perform hard example mining but
softening the effect of difficult samples. This is achieved by apply-
ing the factor only to instances with losses that are above a certain
threshold. The loss of samples that are below the threshold
remains unaltered, which means that is the same as the original
cross-entropy loss. This approach is formulated in Eq. 6. RFL is
applied in the classification term of the loss function in both stages
of the Faster R-CNN detector.

RFLðpiÞ ¼ �aRFðpi; thÞ logðpiÞ

RFðpi; thÞ ¼
1 if pi < th
ð1�piÞc

thc
if pi P th

(
ð6Þ

Following [60], the thresholds are fixed to 0.5 and 0.25 for the
RPN and Fast R-CNN respectively. RFL is more suitable than the
original focal loss for two-stage detectors, and can significantly
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improve the performance over rare and difficult instances. Another
important advantage that is obtained when using focal loss here is
that all anchors can be considered in the RPN loss function. The
sampling process in the original RPN discards many anchor boxes
that can be useful for the training process, especially those hard
negatives that are close to an object.
3.6. Ensemble model

Ensemble models can be key to further improve the robustness
of detection systems. However, ensembling object detectors is not
straightforward due to the specific particularities of this problem:
multiple classes with different shapes, overlapping bounding
boxes, etc. [61]. In this work, we propose to build an ensemble that
combines the output of models from the different learning strate-
gies presented in the previous Section 3.5. The ensemble model is
based on Non-Maximum Suppression (NMS) [62] and uses the
affirmative ensembling strategy proposed in [63]. With this strat-
egy, when one of the methods proposes the presence of an object
in a region, such detection is considered as valid. Later, the NMS
algorithm is applied to merge detections by removing redundant
overlapping boxes. NMS selects proposals in descending order of
confidence scores and discards boxes that have an IoU overlap with
already selected boxes greater than a pre-defined threshold. Our
proposal is to merge the output of three models with different
training schemes: original Faster R-CNN training, re-weighting
proportional to class distribution, and reduced focal loss re-
weighting. With this approach, the aim is to enhance detection
accuracy without a significant increase in computation. If the pre-
dictions from the single models are obtained in parallel with differ-
ent devices, the overhead introduced by the NMS algorithm is
minimal. The only parameter that has to be tuned for the NMS
ensemble is the IoU threshold. We explored values ranging from
0.5 and 0.9, and found consistent and similar results on values
between 0.6 and 0.8. Therefore, the IoU threshold was fixed to
the intermediate value 0.7, which is also the same value used inter-
nally in the ROI selection process of Faster R-CNN.

Furthermore, Test-Time Augmentation (TTA) is also explored in
the experiments as another ensemble technique. TTA is to create
random modifications of the test images, obtaining predictions
with a model for each of them, and then ensemble the results.
The only augmentation that is exploited is scale augmentation,
with the objective of improving the detection of small objects.
The test images are resized using the factors 0.8, 1, and 1.2 with
respect to the original image scale. This is done for each of the
three considered models, and detections are merged as explained
above.
3.7. Other implementation details

For the implementation, the popular TensorFlow Object Detec-
tion API has been used [64]. Except for the proposed modifications,
the original Faster-RCNN implementation is followed in terms of
parameter choice. The architecture is trained end-to-end, which
means that RPN and header networks are jointly trained. The orig-
inal resolution of the images is maintained for frontal
ð1920� 1280Þ and lateral ð1920� 886Þ cameras. The COCO pre-
trained Faster R-CNN model available in the TensorFlow repository
is used for initializing the network weights. Transfer learning is
used since it is a common practice in the object detection field to
avoid excessive training times [1]. For each experiment, the models
are fine-tuned for 500k iterations, using the SGD optimizer with
learning momentum 0.9. The initial learning rate is set to 0.001,
and decrease by 10x after 200k and 400k steps. For training the
models, a batch size of 1 is used, which was the maximum allowed
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by the GPU memory given that the images have very high resolu-
tion. The ROI proposals mini-batch size is increased to 256 during
training in order to accelerate convergence [21]. At test time, the
original value of 300 proposals is kept. The only data augmentation
technique used in single models is random horizontal flip.
4. Results and discussion

This section reports and discusses the results obtained from the
experiments carried out in this study. First of all, the baseline
results with the original model are presented. Later, the experi-
ments are reported following the same order in which the methods
are presented in Section 3. This allows performing a comprehen-
sive analysis of the effectiveness of all proposed modifications in
an incremental manner.
4.1. Evaluation metric

In this study, the Average Precision (AP) metric is used to mea-
sure performance. AP is the reference object detection metric in the
literature [65]. It is calculated by tracking the interpolated preci-
sion/recall curve. As shown in Eq. (7), the first step is to set the pre-
cision for recall r to the maximum precision obtained for any recall
r0 P r. The AP is then calculated as the area under this curve by
numerical integration. As can be seen in Eq. (8), this value can be
approximated by the sum of the precision at every k where the
recall changes, multiplied by the change in recall DrðkÞ.

pðrÞ ¼ max
r0 :r0>r

pðr0Þ ð7Þ
AP ¼
Z 1

0
pðrÞdr 	

XN
k¼1

pðkÞDrðkÞ ð8Þ

The IoU is used to determine whether the predicted bounding
boxes are considered true or false positives. As stated before, the
IoU is defined as the area of overlap between a predicted box
and a ground truth box divided by their area of union. A prediction
is considered true positive if the IoU value is above a certain
threshold, being a false positive otherwise. Ground truths objects
with no matching detections are considered false negatives. In
the Waymo dataset, the IoU thresholds are defined as 0.7 for vehi-
cles and 0.5 for pedestrians and cyclists [14]. In the next sections
that present the experimental results, the accuracy for each class
as well as the average AP of the three classes are reported. The pre-
cision values are divided into the two difficulty levels provided by
Waymo (L1 and L2).

Furthermore, the computational efficiency of the models is ana-
lyzed since it is an essential aspect in the autonomous driving sce-
nario. The training and inference times of the models are reported,
considering a batch size of 1 image. The input video in the Waymo
data comes at 10 Hz, hence 10 frames per second (FPS) can be con-
sidered real-time speed in this context. Besides speed, other met-
rics are analyzed such as memory usage, the number of floating-
point operations (FLOPS), and the number of parameters. These
metrics allow comparing the models independently from the hard-
ware used in the experiments.
4.2. Baseline results

This section presents the results obtained with the original Fas-
ter R-CNN model and other popular detection frameworks that are
implemented in the TensorFlow Object Detection API. These
results, which are presented in Table 4, will be the baseline for
the comparison to validate our proposal.
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Two baseline results are provided for the original Faster R-CNN
model. The first baseline is the one provided by Waymo [14] using
a COCO pre-trained Faster R-CNN with ResNet-101, which is also
the base of our proposal. However, Waymo does not provide in
the report any details about the parameter configuration and the
accuracy over cyclists is missing. Therefore, we also run our own
experiment with the default Faster R-CNN provided in the Tensor-
flow API, in order to allow for a full and fair comparative study. Our
experiment with the default configuration obtains better results
than the one reported by Waymo (2.1% in vehicles and 2.4% in
pedestrians), hence it will be the baseline used in future compar-
isons. The analysis will be mainly focused on the Level 2 AP metric
since it also includes all objects in Level 1.

Furthermore, Table 4 compares the performance of Faster R-
CNN with other one-stage detectors that have been extensively
used in the recent literature such as RetinaNet, CenterNet, and
YOLOv3. These one-stage models with different characteristics
are also fine-tuned from the available checkpoints pre-trained on
COCO. RetinaNet and YOLOv3 are both anchor-based detectors,
while CenterNet is an anchor-free model. RetinaNet and CenterNet
use the same ResNet-101 backbone as Faster R-CNN, but with fea-
ture pyramid networks, which increases computation cost. In con-
trast, YOLOv3 uses the DarkNet-53 feature extractor, which is more
efficient than ResNet.

As can be seen, the original Faster R-CNN outperforms the one-
stage models in all the AP metrics. The difference in accuracy is
more significant in the cyclist class, which indicates that one-
stage models are less robust to the presence of imbalanced data.
RetinaNet is the most competitive model in terms of average accu-
racy among the studied one-stage detectors, while CenterNet
obtains a slightly higher precision on pedestrians. YOLOv3 achieves
similar AP values to the other one-stage models in the pedestrian
and cyclist classes. However, it suffers a significant precision drop
in the vehicle class. This is due to the harder IoU threshold of this
class, as YOLOv3 does not perform well for thresholds greater than
0.5 [37].
Fig. 9. Evolution of the EA used to optimize the generation of anchors. The dotted
lines represent the average maximum IoU value between ground truth boxes and
anchors of the four regions..
4.3. Anchor optimization and spatial features

Section 3.3 presented the importance of the spatial properties of
objects in the context of autonomous driving, and the strong corre-
lation between object position in the image and bounding box
dimension. Therefore, the first analysis that is presented is the
assessment of the anchor optimization procedure and the addition
of spatial features in the second stage of Faster R-CNN. For this pur-
pose, we conduct several experiments that show the impact of the
proposed modifications on the performance.

First of all, we evaluate the effect in the network initialization of
the optimized anchor parameters found by the EA. Fig. 9 illustrates
the evolution over generations of the average IoU between ground
truth boxes and proposed anchors in each region. As can be seen,
the evolutionary algorithm obtains a significant improvement over
the original parameters. The average value obtained with the
default uniform anchors is around 0.45 IoU. This demonstrates that
the original pre-defined scales and aspect ratios are not suitable in
Table 4
Baseline results obtained with the original Faster R-CNN model and other one-stage detec

Model Vehicle Pedestrian

L1 L2 L1

Waymo baseline [14] 63.70 53.30 55.80
Original Faster R-CNN 64.82 55.44 58.91

RetinaNet 61.21 50.43 55.59
CenterNet 50.70 43.25 57.23
YOLOv3 49.82 41.76 53.89
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this context. Due to the perspective projection of cameras, the IoU
is very far from optimal in regions at the top of the image that con-
tain smaller objects (R1, R2, R3). The evolutionary algorithm con-
verges to a much better solution for each region, obtaining an
average IoU of 0.64. This indicates that there will be many more
anchors that match with object boxes and that the Faster R-CNN
training will be more effective. Furthermore, Fig. 9 also displays
the result obtained if the anchors are optimized using K-means
clustering as it is done in the YOLO detector [37]. This simpler
approach obtains an average IoU of 0.516, which shows that the
proposed EA with the custom fitness function provides a better
solution to the problem of anchor optimization in this context.

The results of the experiments conducted in this section are
reported in Table 5. This table shows the improvement obtained
over the original Faster R-CNN model, which was provided in
Table 4. The first experiment performed is to concatenate the ROIs
spatial features in the Fast R-CNN header network. This allows us
to separately evaluate the importance of this novel proposal. We
maintain the original anchor configuration and only modify the
second stage of the Faster R-CNN by adding the spatial features
module. This modification already obtains an average 0.85% AP
improvement, which is more important in pedestrians with a
1.95% increase. This finding confirms the fact that including spatial
properties from the ROIs proposed by the RPN can improve local-
ization accuracy. Although the cropped convolutional features con-
tain rich information, the position of objects in the images plays a
key role due to the perspective projection of cameras. Therefore,
having the spatial information of the proposals for the final classi-
fication and box-refinement seems essential in this context.

Afterwards, the spatial features module is combined with the
per-region anchor optimization procedure. Two experiments are
performed: optimizing the base anchors for the complete dataset,
and separating the images from frontal and lateral cameras. Since
they capture images with different dimensions, better results
may be obtained if the evolutionary algorithm is applied indepen-
tion frameworks.

Cyclist Average

L2 L1 L2 L1 L2

52.70 – – – –
55.12 43.19 38.28 55.64 49.61

52.02 29.09 24.08 48.63 42.18
53.83 30.55 23.89 46.16 40.32
50.25 31.12 24.96 44.94 38.99



Table 5
AP values obtained using the spatial features concatenation module and anchor optimization. The baseline result from Table 4 obtained with the original model is provided for
comparison. F/L refers to optimizing anchors for frontal and lateral camera separately.

Model Vehicle Pedestrian Cyclist Average

L1 L2 L1 L2 L1 L2 L1 L2

Original Faster R-CNN 64.82 55.44 58.91 55.12 43.19 38.28 55.64 49.61
ROIs spatial features 65.91 55.56 61.30 57.07 44.16 38.76 57.12 50.46
Anchor optimization 68.19 56.33 66.73 64.48 48.21 40.57 61.04 53.79
F/L Anchor optimization 68.51 57.29 66.94 64.68 49.07 41.16 61.50 54.37
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dently in both subsets. When employed over the whole dataset,
our anchor optimization method boosts the performance by more
than 5.4% and 4.1% average AP with respect to the baseline in L1
and L2 respectively. Again, the greatest improvement is obtained
in pedestrian detection with more than a 9% increase. These results
demonstrate that the uniform anchor configuration of the default
Faster R-CNN is not suitable for this scenario. The different size
of the objects in different regions of the images requires a better
anchor generation procedure. The per-region optimization pro-
posal better matches the shape of objects, allowing a more effec-
tive training. Furthermore, when searching for the optimal base
anchors by separating frontal and lateral cameras, an additional
performance improvement is obtained. In summary, the model
with optimized anchors obtains an average AP of 54.37, which is
a significant enhancement compared to the original 49.61. In the
experiments presented in the next section (the study of different
learning strategies and the ensemble models), this model is used
as the base: Faster R-CNN with spatial features concatenation
and anchor optimization separating frontal and lateral cameras.
These two improvements can be easily extended to other anchor-
based detection frameworks since our proposal does not rely on
this specific implementation.

4.4. Learning strategies to address class imbalance

The next step of the experimental study is to evaluate the differ-
ent training methodologies that have been proposed to address the
foreground-foreground class imbalance. As it was explained in Sec-
tion 3.1, in this problem there is a high imbalance between vehicles
and pedestrians. Furthermore, the number of cyclist boxes is very
reduced, which explains the performance drop in this class seen
in Table 4. Table 6 presents the results obtained with the three dif-
ferent learning strategies: the original Faster R-CNN training, the
re-weighting according to class distribution (which is noted as
class weights), and re-weighting according to sample difficulty (fo-
cal loss). Note that all these models already include the modifica-
tions studied in Section 4.3, that is, the anchor optimization and
the spatial features concatenation.

For the re-weighting proportional to class distribution, a grid
search with different sets of weights is performed. In Table 5, the
two configurations that obtained better average performance are
displayed: ð0:5;0:9;1:0Þ and ð0:7; 0:9;1:0Þ for weights of vehicles,
pedestrians, and cyclists respectively. As can be seen, with this
Table 6
AP values obtained using the different learning strategies to address class imbalance. The be
models, the numbers represent the weights assigned to vehicles, pedestrians and cyclists

Vehicle Pedest

Model L1 L2 L1

Best model Table 5 68.51 57.29 66.94

Class weights (0.5, 0.9, 1) 66.56 56.22 67.04
Class weights (0.7, 0.9, 1) 66.85 56.58 66.59

Focal loss 68.73 57.15 68.14
Reduced focal loss 69.37 58.55 69.57
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approach the accuracy of minority instances improves, especially
over cyclists. In the first experiment ð0:5;0:9;1Þ, in which the
weights of vehicles is reduced more aggressively, a 1.57% increase
in cyclists AP is obtained. In the second case ð0:7; 0:9;1Þ, the
improvement is a smaller 1.05% increase. However, the AP over
pedestrians remains with similar values compared to the original
training, or even slightly worse in the latter case. Furthermore,
the improvement over cyclists comes with the cost of an undesired
performance decrease in vehicles. These results suggest that this
alternative is not the best option if it were to be used as a single
model. However, it seems a suitable alternative if the main focus
is to improve on classes with an extremely small number of exam-
ples. In this dataset, cyclist labels represent less than 1% of the total
number of instances. Therefore, this re-weighting methodology is
effective to improve accuracy over this class. In order to account
for all involved classes, a better solution will be to combine several
complementary models with different sets of weights.

The other alternative that is considered is to re-weight accord-
ing to sample difficulty. For this case, two experiments are per-
formed: the standard focal loss as defined in [26] and the
reduced focal loss version. As expected, the original focal loss does
not provide a significant enhancement in performance. In contrast,
the reduced version is found to be far more effective. Reduced focal
loss obtains an average 1.37% improvement over the default train-
ing scheme. It is important to mention that the greatest AP increase
is achieved over pedestrians, which is the minority class. However,
the improvement over the cyclist class is not as important as the
one obtained with the class weights alternative. This suggests that
the number of instances is not sufficient for focal loss to have an
effect. In general, these results show that focal loss can be used
effectively in two-stage detectors if it is properly adjusted with this
simple modification. The reduced focal loss training provides the
best single model that has been found in the experiments, obtain-
ing a 6.13% AP increase compared to the original Faster R-CNN
baseline.

4.5. Ensemble models

The previous section demonstrated that the considered learning
strategies have different strengths and perform better over differ-
ent classes. Therefore, we propose to build an ensemble model fus-
ing the output of three models to enhance the detection
performance. The models with the best average AP for each learn-
st model of Table 5 uses the original Faster R-CNN training procedure. In class weights
respectively.

rian Cyclist Average

L2 L1 L2 L1 L2

64.68 49.07 41.16 61.50 54.37

64.81 50.21 42.73 61.27 54.58
63.48 49.56 42.21 61.00 54.09

65.45 47.79 41.54 61.55 54.71
66.95 49.13 41.73 62.69 55.74



Table 7
AP values obtained with the ensemble models. The best model of Table 6 refers to the reduced focal loss model.

Vehicle Pedestrian Cyclist Average

Model L1 L2 L1 L2 L1 L2 L1 L2

Best model Table 6 69.37 58.55 69.57 66.95 49.13 41.73 62.69 55.74
NMS Ensemble 69.61 59.69 72.81 69.28 52.27 45.67 64.90 58.21
NMS Ensemble + TTA 70.76 61.37 74.17 70.88 52.31 45.70 65.75 59.30
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ing strategy in Table 6 are selected: the original training, the class
weights with weights set (0.5, 0.7, 0.9), and the reduced focal loss.
With these models, two different ensemble techniques have been
tested: the NMS ensemble and its combination with test-time aug-
mentation. The results are presented in Table 7, in which they are
compared to the best single model that was obtained using
reduced focal loss.

As can be seen, the improvement obtained in this case is very
significant. While it is difficult to build a single model with a strong
performance on all classes, ensemble models provide a solution to
increase the robustness of predictions. Compared to the best single
model, the NMS ensemble achieves a 2.47% AP increase. The
improvement is consistent for all classes and is even more impor-
tant for both minority classes. Moreover, the use of TTA further
enhances localization accuracy over vehicles and pedestrians. The
NMS ensemble with TTA was the best performing model at Way-
mo’s online challenge, providing an average 9.69% AP increase over
the initial Faster R-CNN baseline.

Fig. 10 summarizes the results obtained at each step of the
experimental study in an incremental manner. As can be observed,
single models already obtain a significant enhancement over the
baseline, especially on pedestrian detection which is one of the
underrepresented classes. The plot also illustrates the importance
of the anchor generation optimization given the particularities of
Fig. 10. Level 1 and 2 AP values obtained at each step of the experime

Table 8
Computational efficiency of the studied detection models.

Model Training (ms) Inference (ms) F

RetinaNet 601.02 131.60 7
CenterNet 586.68 103.52 9
YOLOv3 320.34 65.12 15

Faster R-CNN 453.22 96.32 10
+ NMS Ensemble – +0.15 10
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the object detection task in the autonomous driving context.
Finally, the results obtained with the ensemble model demonstrate
the effectiveness of combining different learning strategies in this
complex scenario.

4.6. Computational efficiency

In the autonomous driving scenario, the required computa-
tional resources and the inference speed are essential aspects to
consider given that real-time predictions have to be provided in
order to make informed driving decisions. Therefore, this section
analyzes the computational efficiency of the studied models.
Table 8 presents the training and inference computation time of
the Faster R-CNN model, together with the other one-stage detec-
tors that have been tested. The reported times are averaged over
1000 images with the original resolution and considering a batch
size of one. Furthermore, other metrics are reported such as the
number of parameters, the number of floating-point operations,
and memory usage. For all tests, a computer with an Intel Core
i7-770K CPU and a NVIDIA Titan V 12GB GPU has been used.

First of all, it must be noted that the improvements proposed in
this study do not increase the computation for training and infer-
ence compared to the original Faster R-CNN model with ResNet-
101. The only extra cost of our proposal comes from the spatial
ntal study in comparison with original the Faster R-CNN baseline.

PS Parameters ð106Þ GFlops Memory (GB)

.59 50.76 1310.64 3.53

.65 44.37 919.11 3.12
.35 55.63 418.26 2.35

.39 47.38 905.09 3.88

.38 – – –
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features concatenation in the second stage, but it is minimal. The
anchor optimization and the change in the training procedure do
not introduce any computation overhead when running the detec-
tion model. The anchor optimization process, which includes the
clustering and genetic algorithm, requires around one hour of com-
putation, but this is a step previous to the training of the model.

As can be seen in Table 8, in the experiments that use a single
Faster R-CNN model, the training process is costly. It takes about
3 days to complete the 500k training steps that have been defined
for the experiments. This illustrates the importance of using trans-
fer learning, given the high cost of training this framework with
very deep convolutional networks. With respect to the inference
time, the Faster R-CNN model achieves a rate of 10.39 frames per
second, which results in a practical object detection system in
terms of speed [17]. Given that the Waymo data comes at 10
FPS, the proposed two-stage detector meets the real-time inference
requirement. Furthermore, it can be seen that in the case of the
ensemble, the overhead of the NMS algorithm is very small. The
limitation of the ensemble is that as many devices as models will
be needed to be efficient. If there are sufficient devices, predictions
can be obtained in parallel for each model and combined very fast
using the NMS algorithm.

In comparison with the one-stage detectors, Faster R-CNN pre-
sents a faster inference speed than RetinaNet and CenterNet, but it
is slower than YOLOv3. Although RetinaNet and CenterNet have
lower memory usage, the use of feature pyramid networks in their
backbone networks increases the computation time, making them
less practical for this application. Moreover, the high resolution of
the images is another factor that increases the inference time of
these models. Although one-stage are faster than two-stage detec-
tors in theory, using larger images reduces the differences between
them [44]. The number of parameters is similar in all models, with
CenterNet having the lowest number. YOLOv3 is able to run at 15
FPS and has a very low memory usage thanks to the efficient
DarkNet-53 backbone. It also presents a much lower number of
FLOPS, which is a measure independent of the employed hardware.
However, its detection precision is much worse than the two-stage
detector as it was seen in Section 4.2. In summary, it can be con-
cluded that the proposed Faster R-CNN detector provides the best
balance between accuracy and speed when compared to the rest of
the one-stage models studied.
5. Conclusions

In this paper, we proposed an enhanced 2D object detector
based on Faster R-CNN that improves the detection accuracy in
the context of autonomous driving. In this scenario, the perspective
projection plays an important role in the size of objects captured
by on-board cameras. Furthermore, there is a high imbalance
between vehicles and other traffic participants such as pedestrians
and cyclists. Therefore, our study aimed to improve two main
aspects: the default anchor generation procedure, and the perfor-
mance drop in minority classes. We conducted a comprehensive
experimental study over the Waymo Open Dataset, in which the
proposed modifications over the original Faster R-CNN model were
incrementally evaluated.

After analyzing the properties of the objects in the dataset, we
discovered a strong correlation between their size and their posi-
tion in the image. Therefore, we proposed to improve the genera-
tion of the base anchors, which are a critical element for the
success of the detector. Our perspective-aware proposal was based
on dividing the images into regions via clustering and searching for
the optimal anchor configuration for each of them using an evolu-
tionary algorithm. The improvement in performance obtained with
the optimized parameters demonstrated that the default uniform
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anchors of Faster R-CNN were not suitable for this object detection
task. Moreover, given the importance of the spatial properties of
proposals, we proposed to add a module to the second-stage
header network that includes spatial information from the first-
stage candidate regions to further increase localization accuracy.

In order to address the foreground-foreground class imbalance,
we explored different learning strategies that re-weight the origi-
nal loss function. We found out that a modified version of focal loss
can considerably enhance the detection of minority instances in
two-stage detectors. Furthermore, the results showed that assign-
ing weights according to the class distribution was more effective
when dealing with very extreme class imbalance. Finally, we
designed an ensemble model based on non-maximum suppression
that combined the different training procedures. The ensemble
model obtained a very significant increase in accuracy compared
to the original Faster R-CNN baseline.

In future works, we aim to study the application of our proposal
under more efficient backbone networks to improve the inference
rates of the detection system. In the autonomous driving scenario,
achieving real-time speed is crucial and should be given more
importance in future studies. Moreover, another important line
of work that should be addressed is the fusion of camera data with
other sources, such as the information provided by LiDAR sensors.
Novel approaches on how to combine the data of multi-modal sen-
sors without damaging inference speed could lead to more robust
and effective detectors. Further research will also study dynamic
approaches that can guide the anchor generation to fit the data dis-
tribution during the training procedure, which could make the
whole anchor optimization process automatic. Furthermore, other
ensemble techniques, such as graph-clique, could be tested and
compared to the non-maximum-suppression approach.
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