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8.1 Introduction

In recent years, there has been an explosion in the growth of databases in
all areas of human endeavor. Progress in digital data acquisition and stor-
age technology has resulted in the growth of huge databases. In this work,
we address the feature selection issue under a classification framework. The
aim is to build a classifier that accurately predicts the classes of new unla-
beled instances. Theoretically, having more features and instances should give
us more discriminating power. However, this can cause several problems: in-
creased computational complexity and cost; too many redundant or irrelevant
features; and estimation degradation in the classification error.

The problem of feature selection received a thorough treatment in pattern
recognition and machine learning. Most of the feature selection algorithms
approach the task as a search problem, where each state in the search spec-
ifies a distinct subset of the possible attributes [2]. The search procedure is
combined with a criterion in order to evaluate the merit of each candidate
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subset of attributes. There are a lot of possible combinations between each
procedure search and each attribute measure [17, 4, 16]. However, search
methods can be prohibitively expensive in massive datasets, especially when
a data mining algorithm is applied as an evaluation function.

There are various ways in which feature selection algorithms can be grouped
according to the attribute evaluation measure, depending on the type (filter
or wrapper technique) or on the way that features are evaluated (individual
or subset evaluation). The filter model relies on general characteristics of
the data to evaluate and select feature subsets without involving any mining
algorithm. The wrapper model requires one predetermined mining algorithm
and uses its performance as the evaluation criterion. It searches for features
better suited to the mining algorithm, aiming to improve mining performance,
but it also is more computationally expensive [15, 13] than filter models.
Feature ranking (FR), also called feature weighting [2, 8], assesses individual
features and assigns them weights according to their degrees of relevance,
while the feature subset selection (FSS) evaluates the goodness of each found
feature subset. (Unusually, some search strategies in combination with subset
evaluation can provide a ranked list.)

In order to compare the effectiveness of feature selection, feature sets chosen
by each technique are tested with three well-known learning algorithms: a
probabilistic learner (näıve Bayes), an instance-based learner (IB1), and a
decision tree learner (C4.5). These three algorithms have been chosen because
they represent three quite different approaches to learning, and their long-
standing tradition in classification studies.

The chapter is organized as follows. In the next two sections, we will review
previous work, and notions of feature relevance and redundancy, respectively.
In Section 8.4, we will present our proposed measures of feature relevance and
redundancy using a wrapper or filter approach, and describe our algorithm.
Experimental results are shown in Section 8.5, and the most interesting con-
clusions are summarized in Section 8.6.

8.2 Related Work

Traditional feature selection methods in some specific domain often select
the top-ranked features according to their individual discriminative powers [7].
This approach is efficient for high-dimensional data due to its linear time
complexity in terms of dimensionality. They can only capture the relevance
of features to the target concept, but cannot discover redundancy and ba-
sic interactions among features. In the FSS algorithms category, candidate
feature subsets are generated based on a certain search strategy. Different
algorithms address these issues distinctively. In [17], a great number of selec-

© 2008 by Taylor & Francis Group, LLC



Efficient Incremental Feature Selection in Massive Data 149

tion methods are categorized. We found different search strategies, namely
exhaustive, heuristic, and random searches, combined with several types of
measures to form different algorithms. The time complexity is exponential in
terms of data dimensionality for exhaustive searches and quadratic for heuris-
tic searches. The complexity can be linear to the number of iterations in a
random search, but experiments show that in order to find the best feature
subset, the number of iterations required is usually at least quadratic to the
number of features [5]. The most popular search methods in pattern recogni-
tion and machine learning cannot be applied to massive datasets due to the
large number of features and instances (sometimes tens of thousands). One
of the few used search techniques in these domains is sequential forward (SF,
also called hill-climbing or greedy search). Different subset evaluation mea-
sures in combination with an SF search engine can be found. We are specially
interested in the wrapper approach.

A key issue of wrapper methods is how to search into the space of subsets
of features. Although several heuristic search strategies exist such as greedy
sequential search, best-first search, and genetic algorithm, most of them are
still computationally expensive O(N2) (with N the number of features of the
original dataset), which prevents them from scaling well to datasets containing
thousands of features. A rough estimate of the time required by most of
these techniques is in the order of thousands of hours, assuming that the
method does not get caught in a local minima first and stops prematurely.
For example, if we have chosen 50 features from 20,000 (0.0025% of the whole
set) through a greedy search, the subset evaluator would be run approximately
one million times (N times to find the best single feature, then it tries each
of the remaining features in conjunction with the best to find the most suited
pair of features N − 1 times, and so on, more or less 20, 000 × 50 times).
Assuming 4 seconds on average by each evaluation, the results would take
more than 1,000 hours.

The limitations of both approaches, FR and FSS, clearly suggest that we
should pursue a hybrid model. Recently, a new framework of feature selection
has been used, where several of the above-mentioned approaches are combined.
[21] proposed a fast correlation-based filter algorithm (FCBF) that uses corre-
lation measure to obtain relevant features and to remove redundancy. There
are other methods based on relevance and redundancy concepts. Recursive
feature elimination (RFE) is a proposed feature selection algorithm described
in [10]. The method, given that one wishes to find only r dimensions in the
final subset, works by trying to choose the r features that lead to the largest
margin of class separation, using an SVM classifier. This combinatorial prob-
lem is solved in a greedy fashion at each iteration of training by removing
the input dimension that decreases the margin the least until only r input
dimensions remain (this is known as backward selection). The authors in [6]
have used mutual information for gene selection that has maximum relevance
with minimal redundancy by solving a simple two-objective optimization, and
[20] proposes a hybrid of filter and wrapper approaches to feature selection.
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In [12], the authors propose a rank search method to compare feature se-
lection algorithms. Rank search techniques rank all features, and subsets of
increasing size are evaluated from the ranked list (i.e., the first attribute, the
two first ones, etc.). The best attribute set is reported. The authors apply the
wrapper approach to datasets up to 300 attributes and state that for the ADS
dataset (1,500 attributes) the estimated time to only generate the ranking in
a machine with a 1.4GHz processor would be about 140 days and to evalu-
ate the ranked list of attributes would take about 40 days. In contrast, our
method can be tested on datasets with 20,000 features on a similar machine
in a few hours.

This chapter presents a feature selection method, named BIRS (Best In-
cremental Ranked Subset), based on the hybrid model, and attempts to take
advantage of all of the different approaches by exploiting their best perfor-
mances in two steps: First, a filter or wrapper approach provides a ranked
list of features, and, second, ordered features are added using a wrapper or
filter subset evaluation ensuring good performance (the search algorithm is
valid for any feature ranked list). This approach provides the possibility of
efficiently applying any subset evaluator, wrapper model included, in large
and high-dimensional domains, obtaining good results. The final subset is
obviously not the optimum, but it is unfeasible to search for every possible
subset of features through the search space. The main goal of our research
is to obtain a few features with high predictive power. The wrapper version
of this algorithm has been proved to be efficient and effective in microarray
domains [18].

8.3 Preliminary Concepts

8.3.1 Relevance

The purpose of a feature subset algorithm is to identify relevant features
according to a definition of relevance. However, the notion of relevance in ma-
chine learning has not yet been rigorously defined in common agreement [1].
Reference [13] includes three disjointed categories of feature relevance: strong
relevance, weak relevance, and irrelevance. These groups are important to
decide what features should be conserved and which ones can be eliminated.
The strongly relevant features are, in theory, important to maintain a struc-
ture in the domain, and they should be conserved by any feature selection
algorithm in order to avoid the addition of ambiguity to the sample. Weakly
relevant features could be important or not, depending on the other features
already selected and on the evaluation measure that has been chosen (accu-
racy, simplicity, consistency, etc.). Irrelevant attributes are not necessary at
all. Reference [1] makes use of information theory concepts to define the en-
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tropic or variable relevance of a feature with respect to the class. Reference
[2] collects several relevance definitions. The above notions of relevance are
independent of the specific learning algorithm being used. There is no guar-
antee that just because a feature is relevant, it will necessarily be useful to
an algorithm (or vice versa). The definition of incremental relevance in [3]
makes it explicit, since it is considered especially suited to obtain a predictive
feature subset.

DEFINITION 8.1 Incremental usefulness Given a sample of data
XL, a learning algorithm L, a feature space F, and a feature subset S (S ⊆ F),
the feature Fi is incrementally useful to L with respect to S if the accuracy of
the hypothesis that L produces using the group of features {Fi} ∪ S is better
than the accuracy achieved using just the subset of features S.

We consider this definition to be especially suited to obtain a predictive
feature subset. In the next section, concepts can be applied to avoid a subset
that contains attributes with the same information.

8.3.2 Redundancy

Notions of feature redundancy are normally in terms of feature correlation.
It is widely accepted that two features are redundant to each other if their
values are completely correlated. There are two widely used types of mea-
sures for the correlation between two variables: linear and non-linear. In the
first case, the Pearson correlation coefficient is used, and in the second one,
many measures are based on the concept of entropy, or the measure of the
uncertainty of a random variable. Symmetrical uncertainty is frequently used,
defined as

SU(X, Y ) = 2
[

IG(X |Y )
H(X) + H(Y )

]

where H(X) = −
∑

i P (xi)log2(P (xi)) is the entropy of a variable X and
IG(X |Y ) = H(X)−H(X |Y ) is the information gain from X provided by Y .

The above-mentioned definitions are between pairs of variables. However,
it may not be as straightforward in determining feature redundancy when one
is correlated with a set of features. Reference [14] applies a technique based
on cross-entropy, named Markov blanket filtering, to eliminate redundant fea-
tures. This idea is formalized in the following definition.

DEFINITION 8.2 Markov blanket Given a feature Fi ∈ S (a set of
attributes) and the class Y, the subset M ⊆ S (Fi /∈M) is a Markov blanket
of Fi if, given M, Fi is conditionally independent of S−M− {Fi} and Y.

Two attributes (or sets of attributes) X, Y are said to be conditionally
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independent given a third attribute Z (or set) if, the given Z makes X and
Y independent, i.e., the distribution of X , knowing Y and Z, is equal to
the distribution X knowing Z; therefore, Y does not have influence on X
(P (X |Y, Z) = P (X |Z)).

Theoretically, it can be shown that once we find a Markov blanket M of fea-
ture Fi in a feature set S, we can safely remove Fi from S without increasing
the divergence from the original distribution. Furthermore, in a sequential
filtering process, in which unnecessary features are removed one by one, a
feature tagged as unnecessary based on the existence of a Markov blanket M
remains unnecessary in later stages when more features have been removed.
The Markov blanket condition requires that M assumes not only the infor-
mation that Fi has about Y, but also about all the other features. In [14] it
is stated that the cardinality of set M must be small and fixed.

References [20] and [21] are among the most cited works at present following
the above-mentioned framework (FR+FSS). Both are based on this concept
of Markov blanket. In the first one, the number of attributes of M is not
provided, but it is a fixed number among the highly correlated features. In the
second one, a fast correlation-based filter is implemented (FCBF), where M is
formed by only one attribute, and gradually eliminates redundant attributes
with respect to M from the first to the final attributes of an ordered list.
Other methods based on relevance and redundancy concepts can be found in
[10, 6].

8.4 Incremental Performance over Ranking

In this section, we introduce first our ideas of relevance and redundancy
taking into account the aim of applying a wrapper model to massive datasets;
second, changes introduced by the filter model; and then our approach is
described.

As previously indicated, the wrapper model makes use of the algorithm that
will build the final classifier to select a feature subset. Thus, given a classifier
L, and given a set of features S, a wrapper method searches in the space of S,
using cross-validation to compare the performance of the trained classifier L
on each tested subset. While the wrapper model is more computationally ex-
pensive than the filter model, it also tends to find feature sets better suited to
the inductive biases of the learning algorithm and therefore provides superior
performance.

In this work, we propose a fast search over a minimal part of the feature
space. Beginning with the first feature from the list ordered by some evalua-
tion criterion, features are added one by one to the subset of selected features
only if such inclusion improves the classifier accuracy. Then, the learning al-
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gorithm of the wrapper approach is always run N (number of features) times,
usually with a few features. A feature ranking algorithm makes use of a scor-
ing function computed from the values of each feature and the class label. By
convention, we assume that a high score is indicative of a valuable feature and
that we sort features in decreasing order of this score. We consider ranking
criteria defined for individual features, independently of the context of others.

When a ranking of features is provided from a high dimensional data set,
a large number of features with similar scores is generated, and a common
criticism is that it leads to the selection of redundant subsets. However, ac-
cording to [8], noise reduction and consequently better class separation may
be obtained by adding variables that are presumably redundant. Moreover,
a very high attribute correlation (in absolute value) does not mean the ab-
sence of attribute complementarity. Therefore, our idea of redundancy is not
based only on correlation measures, but also on the learning algorithm target
(wrapper or filter approach), in the sense that a feature is chosen if additional
information is gained by adding it to the selected subset of features.

8.4.1 Incremental Ranked Usefulness

In feature subset selection, it is a fact that two types of features are generally
perceived as being unnecessary: features that are irrelevant to the target
concept, and features that are redundant given other features. Our approach
is based on the concept of a Markov blanket, which is described in [14]. This
idea was formalized using the notion of conditionally independent attributes,
which can be defined by several approaches [20, 21]. We set this concept by a
wrapper model, defining incremental ranked usefulness in order to devise an
approach to explicitly identify relevant features and do not take into account
redundant features.

Let XL be a sample of labeled data, S be a subset of features of XL, and L
be a learning algorithm; the correct rate (or accuracy) Γ(XL/S, L) is named
to the ratio between the number of instances correctly classified by L and
the total number of evaluated instances considering only the subset S. In the
training process, this accuracy will be an estimate of error by cross-validation.

Let R = {Fi}, i = 1 . . .N be a ranking of all the features in XL sorted in
descending order, and S be named the subset of the i first features of R.

DEFINITION 8.3 Incremental ranked usefulness The feature Fi+1

in R is incrementally useful to L if it is not conditionally independent of the
class Y given S; therefore, the correct rate of the hypothesis that L produces
using the group of features {Fi+1} ∪ S is significantly better (denoted by �)
than the correct rate achieved using just the subset of features S.

Therefore, if Γ(XL/S∪{Fi+1}, L) � �Γ(XL/S, L), then Fi+1 is conditionally
independent of class Y given the subset S, and then we should be able to omit
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Input: XL training U-measure, L-subset evaluator
Output: BestSubset
1 list R = {}
2 for each feature Fi ∈ XL

3 Score = compute(Fi, U, XL)
4 append Fi to R according to Score
5 BestEvaluation = 0
6 BestSubset = ∅
7 for i = 1 to N
8 TempSubset = BestSubset ∪ {Fi} (Fi ∈ R)
9 TempEvaluation = WrapperOrFilter(TempSubset, L)
10 if (TempEvaluation m BestEvaluation)
11 BestSubset = TempSubset
12 BestEvaluation = TempEvaluation

FIGURE 8.1: BIRS algorithm.

Fi+1 without compromising the accuracy of class prediction.

A fundamental question in the previous definition is how the significant im-
provement is analyzed in this wrapper model. A five-fold cross-validation is
used to estimate if the accuracy of the learning scheme for a set of features is
significantly better (�) than the accuracy obtained for another set. We con-
ducted a Student’s paired two-tailed t-test in order to evaluate the statistical
significance (at 0.1 level) of the difference between the previous best subset
and the candidate subset. This last definition allows us to select features from
the ranking, but only those that increase the classification rate significantly.
Although the size of the sample is small (five folds), our search method uses
a t-test. We want to obtain a heuristic, not to do an accurate population
study. However, on the one hand, it must be noticed that it is a heuristic
based on an objective criterion, to determine the statistical significance de-
gree of difference between the accuracies of each subset. On the other hand,
the confidence level has been relaxed from 0.05 to 0.1 due to the small size
of the sample. Statistically significant differences at the p < 0.05 significance
level would not allow us to add more features, because it would be difficult for
the test to obtain significant differences between the accuracy of each subset.
Obviously, if the confidence level is increased, more features can be selected,
and vice versa.

Following a filter model in the subset evaluation, we need a different way to
find out if the value of measurement of a set is significantly better (�) than
another one when adding an attribute. Simply, it is verified if the improvement
surpasses a threshold (for example, 0.005), one resulted from the best previous
subset and the other resulted from the joint candidate.
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TABLE 8.1: Example of feature selection
process by BIRS.

Rank F5 F7 F4 F3 F1 F8 F6 F2 F9

Subset Eval. Acc P-Val Acc Best Sub
1 F5 80 80 F5

2 F5,F7 82
3 F5,F4 81
4 F5,F3 83
5 F5,F1 84 < 0.1 84 F5,F1

6 F5,F1,F8 84
7 F5,F1,F6 86
8 F5,F1,F2 89 < 0.1 89 F5,F1,F2

9 F5,F1,F2,F9 87

8.4.2 Algorithm

There are two phases in the algorithm, named BIRS (Best Incremental
Ranked Subset), shown in Figure 8.1: Firstly, the features are ranked accord-
ing to some evaluation measure (lines 1–4). In the second phase, we deal with
the list of features once, crossing the ranking from the beginning to the last
ranked feature (lines 5-12). We obtain the classification accuracy with the
first feature in the list (line 9) and it is marked as selected (lines 10-12). We
obtain the classification rate again with the first and second features. The
second will be marked as selected depending on whether the accuracy ob-
tained is significantly better (line 10). We repeat the process until the last
feature on the ranked list is reached. Finally, the algorithm returns the best
subset found, and we can state that it will not contain irrelevant or redundant
features.

The first part of the above algorithm is efficient since it requires only the
computation of N scores and to sort them, while in the second part, time com-
plexity depends on the learning algorithm chosen. It is worth noting that the
learning algorithm is run N (number of features) times with a small number
of features, only the selected ones. Therefore, the running time of the rank-
ing procedure can be considered to be negligible regarding the global process
of selection. In fact, the results obtained from a random order of features
(without previous ranking) showed the following drawbacks: 1) The solution
was not deterministic; 2) a greater number of features were selected; 3) the
computational cost was higher because the classifier used in the evaluation
contained more features since the first iterations.

Consider the situation depicted in Table 8.1: an example of the feature
selection process done by BIRS. The first line shows the features ranked ac-
cording to some evaluation measure. We obtain the classification accuracy
with the first feature in the list (F5:80%). In the second step, we run the
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classifier with the first two features of the ranking (F5,F7:82%), and a paired
t-test is performed to determine the statistical significance degree of the differ-
ences. Since it is greater than 0.1, F7 is not selected. The same happens with
the next two subsets (F5,F4:81%, F5,F3:83%). Later, the feature F1 is added,
because the accuracy obtained is significantly better than that with only F5

(F5,F1:84%), and so on. In short, the classifier is run nine times to select,
or not, the ranked features (F5,F1,F2:89%): once with only one feature, four
times with two features, three with three features, once with four, and once
with four, features. Most of the time, the learning algorithm is run with few
features. In short, this wrapper-based approach needs much less time than
others with a broad search engine.

As we can see in the algorithm, the first feature is always selected. This
does not mean a great shortcoming in high-dimensional databases, because
usually several different sets of features share similar information. The main
disadvantage of sequential forward generation is that it is not possible to con-
sider certain basic interactions among features, i.e., features that are useless
by themselves can be useful together. Backward generation remedies some
problems, although there still will be many hidden interactions (in the sense
of being unobtainable), but it demands more computational resources than
the forward approach. The computer-load necessities of the forward search
might become very inefficient in high-dimensional domains, as it starts with
the original set of attributes and removes features increasingly.

8.5 Experimental Results

The aim of this section is to evaluate our approach in terms of classification
accuracy, degree of dimensionality, and speed in selecting features, in order to
see how good BIRS is in situations where there is a large number of features
and instances.

The comparison was performed with two representative groups of datasets:
Twelve datasets were selected from the UCI Repository (Table 8.2) and five
from the NIPS 2003 feature selection benchmark [9]. In this group (Table 8.3),
the datasets were chosen to span a variety of domains (cancer prediction
from mass-spectrometry data, handwritten digit recognition, text classifica-
tion, and prediction of molecular activity). One dataset is artificial. The
input variables are continuous or binary, sparse or dense. All problems are
two-class classification problems. The full characteristics of all the datasets
are summarized in Tables 8.2 and 8.3. We chose three different learning al-
gorithms: C4.5, IB1, and Näıve Bayes, to evaluate the accuracy on selected
features for each feature selection algorithm.

Figure 8.2 can be considered to illustrate both blocks that always com-
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TABLE 8.2: UCI Repository of Machine Learning
Databases. For each dataset we show the acronym
used in this text, the number of features, the number
of examples, and the number of possible classes.

Data Acron. #Feat. #Inst. #Classes

ads ADS 1558 3279 2
arrhythmia ARR 279 452 16

hypothyroid HYP 29 3772 4
isolet ISO 617 1559 26

kr vs kp KRV 36 3196 2
letter LET 16 20000 26

multi feat. MUL 649 2000 10
mushroom MUS 22 8124 2

musk MUK 166 6598 2
sick SIC 29 3772 2

splice SPL 60 3190 3
waveform WAV 40 5000 3

TABLE 8.3: NIPS 2003 challenge data sets. For each dataset we
show the acronym used in this text, the domain it was taken from, its type
(dense, sparse, or sparse binary), the number of features, the number of
examples, and the percentage of random features. All problems are
two-class classification problems.

Data Acron. Domain Type #Feat. #Inst. %Ran.

Arcene ARC Mass Spectro. Dense 10000 100 30
Dexter DEX Text classif. Sparse 20000 300 50

Dorothea DOR Drug discove. S. bin 100000 800 50
Gisette GIS Digit recogn. Dense 5000 6000 30

Madelon MAD Artificial Dense 500 2000 96

pose algorithm BIRS (originally introduced in [21]). Therefore, this feature
selection algorithm needs measures to evaluate individual and subsets of at-
tributes. Numerous versions of selection algorithms BIRS could be formed
combining the criteria of each group of measures (individual and subset). In
order to simplify, we will use the same evaluation measure in the two phases
(individual and subset). In the experiments, we used two criteria: one belongs
to the wrapper model, and one to the filter model. 1) In the wrapper approach
(denoted by BINB , BIC4, or BIIB) we order features according to their in-
dividual predictive power, using as criterion the performance of the target
classifier built with a single feature. The same classifier is used in the second
phase to evaluate subsets. 2) In the filter approach, a ranking is provided
using a non-linear correlation measure. We chose symmetrical uncertainty
(denoted by BICF ), based on entropy and information gain concepts [11] in
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Ranking
{SOAP, SU-CFS,

wrapper }

Subset
evaluation
{CFS, wrapper }

Original set
Ordered
features

Selected
subset

FIGURE 8.2: Type of feature evaluation in BIRS.

both phases. Note the similarity among the results obtained in previous works
with several ranking measure approaches [18]. Accuracy differences are not
statistically significant, although wrapper ranking is a little bit better.

Also in these experiments, to find out if the value of measurement of a set
is significantly better (�) than another one when adding an attribute, it is
distinguished between filter and wrapper models in the subset evaluation. In
the first case, it is simply verified if the improvement surpasses a threshold
established in 0.005; nevertheless, in the second case, we conduct Student’s
paired two-tailed t-test in order to evaluate the statistical significance (at level
0,1) of the difference between two averaged accuracy values: one resulted from
the joint candidate and the other resulted from the best previous subset.

Due to the high dimensionality of data, we limited our comparison to se-
quential forward (SF) techniques and a fast correlation-based filter (FCBF)
algorithm [21] applied to the first group of datasets, and only FCBF with
the NIPS datasets. We chose two representative subset evaluation measures
in combination with the SF search engine. One, denoted by SFWR, uses a
target learning algorithm to estimate the worth of feature subsets; the other,
denoted by SFCF , is a subset search algorithm that exploits sequential forward
search and uses the correlation measures (variation of the CFS correlation-
based feature selection algorithm [11]) to guide the search.

The experiments were conducted using the WEKA’s implementation of
all these existing algorithms, and our algorithm is also implemented in the
WEKA environment [19]. We must take into account that the proper way to
conduct a cross-validation for feature selection is to avoid using a fixed set of
features selected with the whole training dataset, because this induces a bias
in the results. Instead, one should withhold a pattern, select features, and
assess the performance of the classifier with the selected features using the
leftout examples. The results reported in this section were obtained with a
5×2-fold cross-validation over each dataset, i.e., a feature subset was selected
using the 50% of the instances; then, the accuracy of this subset was esti-
mated over the unseen 50% of the data. In this way, estimated accuracies,
selected attribute numbers, and time needed were the result of a mean over
five executions of two cross-validation samples. We use two instead of ten
cross-validations because of the time cost consuming with massive datasets.
Standard methods have been used for the experimental section (sequential
forward; Näıve Bayes, IB1, and C4.5 classifiers; and the t-Student statistical
test). There exist other methods following the wrapper approach to extract
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TABLE 8.4: Accuracy of NB on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BINB.

Wrapper Filter Original
Data BINB SFNB BICF SFCF FCBF
ADS 95.42 95.83 95.38 95.81 95.64 96.38
ARR 66.99 67.70 66.50 68.05 63.98 60.13
HYP 95.10 95.32 94.15− 94.15− 94.90 95.32
ISO 83.30 82.28 77.61 80.79 74.62− 80.42
KRV 94.27 94.32 90.43− 90.43− 92.50 87.50
LET 65.67 65.67 64.28− 64.28− 65.06 63.97
MUL 97.21 96.87 97.04 96.72 96.19 94.37
MUS 98.78 99.01 98.52 98.52 98.52 95.10
MUK 84.59 84.59 79.94 69.78− 72.29 83.56
SIC 94.55 93.88 93.89 93.89 96.25 92.41
SPL 94.85 94.91 93.63− 93.60− 95.49 95.26
WAV 81.01 81.55 81.01 80.12 78.42− 80.02

time(s) 6111 49620 49 133 68

relevant features, which involve the selection process into the learning process
(neural networks, Bayesian networks, support vector machines), although the
source code of these methods is not freely available and therefore the experi-
ments cannot be reproduced. In fact, some of them are designed for specific
tasks, so the parameter settings are quite different for the learning algorithm.

Tables 8.4, 8.5, and 8.6 report accuracy by Näıve Bayes, IB1, and C4.5,
respectively, by each feature selection algorithm and the original set. From
the last row of each table, we can observe for each algorithm the running
time. We conducted a Student’s paired two-tailed t-test in order to evaluate
the statistical significance of the difference between two averaged accuracy
values: one resulted from the wrapper approach of BIRS (BINB , BIC4 or
BIIB) and the other resulted from one of the wrapper version of SF (SFNB ,
SFC4 or SFIB), BICF , SFCF , FCBF , and the original set. The symbols +
and − respectively identify statistic significance, at 0.05 level, wins or losses
over BIWR.

We studied the behavior of BIWR in three ways in Tables 8.4, 8.5, and 8.6:
with respect to a whole set of features (last row, original); with respect to an-
other wrapper approach (SFWR); and with respect to three filter approaches
(BICF , SFCF , and FCBF ).

As it is possible to be observed in the last column of Tables 8.4, 8.5,
and 8.6, classification accuracies obtained with the wrapper approach of BIRS
(BIWR) with respect to results obtained with the total set of attributes are
statistically better in 4 and 3 occasions for classifiers NB and IB, respectively,
and worse in 2 applying C4. Note that the number of selected attributes
is drastically less than the original set, retaining on average 15% (NB, Ta-
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TABLE 8.5: Accuracy of C4 on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BIC4.

Wrapper Filter Original
Data BIC4 SFC4 BICF SFCF FCBF
ADS 96.55 96.85 96.43 96.39 95.85 96.46
ARR 68.01 67.39 66.42 67.04 64.87 64.29
HYP 99.07 99.30 96.56− 96.56− 98.03 99.36
ISO 69.43 N/D 72.68 71.94 66.63 73.38
KRV 95.11 94.26 90.43− 90.43− 94.07 99.07+

LET 84.99 85.17 84.21− 84.21− 84.84 84.45
MUL 92.42 93.11 93.17 93.12 92.29 92.74
MUS 99.91 100.00+ 98.52− 98.52− 98.84− 100.00+

MUK 95.43 N/D 94.06 94.60 91.19− 95.12
SIC 98.28 98.19 96.33− 96.33− 97.50 98.42
SPL 93.05 93.04 92.54 92.61 93.17 92.92
WAV 76.20 75.44 76.46 76.56 74.52 74.75

time(s) 17914 40098 49 133 68

ble 8.4), 16.3% (C4, Table 8.5), and 13.1% (IB, Table 8.6) of the attributes.
As we can see, BIWR chooses less than 10% of the attributes in more than
half of all the cases studied in these tables.

BIWR versus SFWR: No significant statistical differences are shown be-
tween the accuracy of our wrapper approach and the accuracy of the sequen-
tial forward wrapper procedure (SFWR), except for the MUS dataset and C4
classifier (Table 8.5).

Notice that in two cases with C4 classifiers (ISO and MUK) and two with
IBs (ADS and MUL), SFWR did not report any results after three weeks
running; therefore, there are no selected attributes or success rates. Without
considering this lack of results with SFWR, the chosen subset by BIRS is con-
siderably smaller with the IB classifiers, 13.1% versus 20%, and less difference
with NB and C4, although it is supposed that the lack of results would favor
BIRS, since SF has not finished because of the inclusion of many attributes.

On the other hand, the advantage of BIRS with respect to the SF for
NB, IB1, and C4.5 is clear having to take into account the running time
needed. BIRS takes 6,112, 5,384, and 21,863 seconds applying NB, C4, and
IB, respectively, whereas SF takes 49,620, 40,098, and 210,642 seconds. We
can observe that BIRS is consistently faster than SFW , because the wrapper
subset evaluation is run less times. For example, for the ADS dataset and C4.5
classifier, BIRS and SF retain 8.5 and 12.4 features, respectively, on average.
To obtain these subsets, the first one evaluated 1,558 features individually
(to generate the ranking) and 1,558 subsets, while the second one evaluated
18,630 subsets (1,558 features + 1557 pairs of features + . . . + 1,547 sets of
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TABLE 8.6: Accuracy of IB on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BIIB.

Wrapper Filter Original
Data BIIB SFIB BICF SFCF FCBF
ADS 95.28 N/D 95.93 96.07 95.75 95.95
ARR 62.74 57.12 61.37 61.06 58.67 54.12
HYP 83.66 83.57 85.75 85.75 94.88 90.85
ISO 80.64 78.61 79.37 80.28 72.57− 77.58
KRV 92.27 94.24 90.43 90.43 93.85 89.21
LET 95.52 95.58 93.62− 93.62− 94.81 94.23−
MUL 96.72 N/D 97.54 97.70 97.53 97.52
MUS 98.36 99.99 98.52 98.52 98.88 100.00
MUK 93.34 94.72 92.59 93.17 89.04− 95.14
SIC 96.55 97.05 94.73 94.73 95.82 95.58
SPL 86.35 85.62 86.40 86.34 79.21− 73.74−
WAV 76.39 77.18 78.89+ 78.72 71.76− 73.42−

time(s) 40253 210642 49 133 68

TABLE 8.7: Number of features selected by each feature selection
algorithm on UCI data. Last row shows number of features retained on
average. N - number of features of the original set, N ′ - number of features
selected.

Wrapper Filter
Data BINB SFNB BIC4 SFC4 BIIB SFIB BICF SFCF FCBF

ADS 10.5 16.4 8.5 12.4 5.2 N/A 6.7 9.2 83.1
ARR 5.8 8.4 6.7 8.6 14.1 12.7 11.4 17.2 8.0
HYP 4.6 8.5 4.2 5.9 1.0 1.0 1.0 1.0 5.3
ISO 68.5 29.0 22.5 N/A 35.5 29.4 68.8 95.2 22.9

KRV 5.0 5.2 6.2 4.9 6.5 10.0 3.0 3.0 6.5
LET 11.0 11.6 11.0 10.1 10.9 11.0 9.0 9.0 10.3
MUL 22.2 15.3 20.6 13.6 11.3 N/A 28.0 90.3 121.3
MUS 2.1 3.0 4.1 4.9 1.6 4.7 1.0 1.0 3.6
MUK 1.0 1.0 9.7 N/A 4.7 12.0 6.5 16.3 2.9

SIC 2.4 1.0 5.9 5.5 2.8 6.7 1.0 1.0 4.8
SPL 13.1 14.8 9.8 11.0 5.9 6.6 6.0 6.1 21.8

WAV 9.4 12.9 9.6 7.9 10.0 12.4 12.4 14.8 6.1
N′
N

∗ 100 15.0 16.8 16.3 18.2 13.1 20.3 11.7 14.1 18.1
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twelve features). The time savings of BIRS became more obvious when the
computer-load necessities of the mining algorithm increased. In many cases,
the time savings were 10 times less, and we must take into account that SF
did not report any results on several datasets.

These results verify the computational efficiency of incremental searches
applied by BIRS over greedy sequential searches used by SF , with a lower
number of features selected and without significant statistical differences on
accuracy.

BIRS wrappers versus filters: We noticed that the computer-load ne-
cessities of filter procedures can be considered as negligible regarding wrapper
models. Nevertheless, wrapper approaches of BIRS (BIWR) obtained bet-
ter accuracies: They showed significant gains to the filter version of BIRS,
CF BICF , in 4, 5, and 1 cases for NB, C4, and IB respectively, and they only
lost in one with IB; with respect to the sequential version SFCF , BIRS won
in 5, 5, and 1 occasions for NB, C4, and IB, respectively; and with respect to
FCBF, BIWR was better in 2, 2, and 4 cases with each respective classifier.

Table 8.7 reports the number of features selected by each feature selection
algorithm on UCI data, showing three different results for each wrapper ap-
proach, depending on the learning algorithm chosen. Obviously, there is one
value for filter approaches because filters do not depend on the classifier used.
From the last row, we can observe for each algorithm the number of features
retained on average. The filter approach of BIRS retains less attributes than
the rest of the algorithms. BICF retains 11.7% of the attributes on average
for the 12 databases, SFCF retains 14.1% of the attributes on average for all
datasets, whereas FCBF retains 18.1%.

We used the WEKA implementation of the FCBF algorithm with default
values. However, if the threshold by which features can be discarded is modi-
fied, the results obtained might vary. Note that if this threshold is set to the
upper value, the number of selected features diminishes considerably, together
with a notable reduction of prediction.

Another comparison can be between the versions filters, that is to say, as
the approach behaves filter of BIRS (BICF ) with respect to the sequential
search SFCF and to the FCBF algorithm. About accuracies, results obtained
with both (BIRS and SF ) first are similar and a little less than those obtained
with FCBF. Nevertheless, the most reduced datasets are obtained with the
filter model of BIRS. In addition, the time needed to reduce each dataset
with BICF was faster than the others.

NIPS datasets: Table 8.8 shows the results obtained by the three classi-
fiers, Näıve Bayes (NB), C4.5 (C4), and IB1 (IB), from the NIPS 2003-Neural
Information Processing Systems (Table 8.3) feature selection benchmark data.
The table gives the accuracy and number of features selected by each feature
selection algorithm and the original set. We conducted a Student’s paired
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TABLE 8.8: BIRS accuracy of Näıve Bayes (NB), C4.5 (C4), and
IB1 (IB) on selected features for NIPS data: Acc records 5×2CV
classification rate (%) and #Att records the number of features
selected by each algorithm. The symbols + and − respectively identify
statistically significant (at 0.05 level) wins or losses over BIWR.

Data BIWR BICF FCBF Original
Acc #Att Acc #Att Acc #Att

ARC 64.60 15.3 63.20 39.2 61.20 35.2 65.40
DEX 81.33 30.2 82.47 11.3 85.07 25.1 86.47

NB DOR 93.23 10.5 93.80 11.9 92.38 75.3 90.68−
GIS 92.66 35.3 90.83 11.6 87.58− 31.2 91.88

MAD 59.00 11.8 60.56 5.8 58.20 4.7 58.24
ARC 65.80 7.9 59.00 39.2 58.80 35.2 57.00
DEX 80.27 18.9 81.47 11.3 79.00 25.1 73.80

C4 DOR 92.13 7.2 91.63 11.9 90.33 75.3 88.73
GIS 93.29 26.9 90.92 11.6 90.99− 31.2 92.68

MAD 73.02 17.0 69.77 5.8 61.11− 4.7 57.73−

ARC 69.00 15.1 68.60 39.2 62.00 35.2 78.00
DEX 81.00 34.1 81.73 11.3 79.20 25.1 56.67−

IB DOR 92.18 3.5 90.98 11.9 90.35 75.3 90.25
GIS 82.25 2.3 90.07 11.6 90.06 31.2 95.21

MAD 74.92 14.4 71.59 5.8 56.90 4.7 54.39

two-tailed t-test in order to evaluate the statistical significance of the differ-
ence between two averaged accuracy values: one resulted from BIWR (BINB ,
BIC4, or BIIB) and the other resulted from one of BICF , FCBF , and the
original set. The symbols + and − respectively identify statistic significance,
at 0.05 level, wins or losses over BIWR. Results obtained with SF algorithms
are not shown. The wrapper approach is too expensive in time, and its filter
approach selects so many attributes that the program ran out of memory af-
ter a long period of time due to its quadratic space complexity. On the other
hand, the CFS algorithm has been modified to be able to obtain results with
BIRS for the DEX and DOR databases. From Table 8.8 we can conclude the
following:

• BIRS is a good method to select attributes, because with a very reduced
set of attributes one can obtain similar results, even better, than with the
whole set of features in a massive database. About accuracies obtained
by the wrapper model of BIRS, it excels specially when the C4 classifier
is applied, winning in four of the five datasets; with the NB classifier,
BIRS obtains good results on the DEX dataset; and applying IB, it loses
in ARC and GIS, but nevertheless wins by approximately 20 points in
the DEX and MAD datasets. In all the cases, the reduction obtained
with respect to the original data is drastic, emphasizing that obtained
with the DOR dataset, where approximately 0.01% of the attributes (10
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of 100,000) is always retained.

• The behavior of the filter approach of BIRS is excellent. It produces
rates of successes similar to the wrapper approach, with the number of
attributes equal or even lower. Note that the number of attributes in
filter approaches does not depend on the classifier applied.

• If we study the comparison between BIRS approaches and the FCBF
algorithm, it can be verified that, except for the DEX dataset with an
NB classifier, the accuracies obtained applying FCBF are normally be-
low those obtained applying BIRS, emphasizing the existing differences
for MAD dataset with a C4 classifier, and for ARC and MAD datasets
with IB. The subsets selected by FCBF are greater than those chosen
by BIRS on average, however, the time cost is approximately six times
less.

8.6 Conclusions

The success of many learning schemes, in their attempts to construct data
models, hinges on the reliable identification of a small set of highly predictive
attributes. Traditional feature selection methods often select the top-ranked
features according to their individual discriminative powers. However, the
inclusion of irrelevant, redundant, and noisy features in the model building
process phase can result in poor predictive performance and increased com-
putation. The most popular search methods in machine learning cannot be
applied to massive datasets, especially when a wrapper approach is used as
an evaluation function. We use the incremental ranked usefulness definition
to decide at the same time whether or not a feature is relevant and non-
redundant. The technique extracts the best non-consecutive features from
the ranking, trying to avoid the influence of unnecessary features in further
classifications.

Our approach, named BIRS, uses a very fast search through the attribute
space, and any subset evaluation measure, the classifier approach included,
can be embedded into it as an evaluator. Massive datasets take a lot of compu-
tational resources when wrappers are chosen. BIRS reduces the search space
complexity as it works directly on the ranking, transforming the combinato-
rial search of a sequential forward search into a quadratic search. However,
the evaluation is much less expensive as only a few features are selected, and
therefore the subset evaluation is computationally inexpensive in comparison
to other approaches involving wrapper methodologies.

In short, our technique BIRS chooses a small subset of features from
the original set with similar predictive performance to others. For massive

© 2008 by Taylor & Francis Group, LLC



Efficient Incremental Feature Selection in Massive Data 165

datasets, wrapper-based methods might be computationally unfeasible, so
BIRS turns out to be a fast technique that provides good performance in
predicting accuracy.
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