
Discovering Numeric Association Rules via

Evolutionary Algorithm

Jacinto Mata1, José-Luis Alvarez1, and José-Cristobal Riquelme2

1 Dpto. Ingenieŕia Electrónica, Sistemas Informáticos y Automática
Universidad de Huelva, Spain

{mata,alvarez}@uhu.es
2 Dpto. Lenguajes y Sistemas Informáticos

Universidad de Sevilla, Spain
riquelme@lsi.us.es

Abstract. Association rules are one of the most used tools to discover
relationships among attributes in a database. Nowadays, there are many
efficient techniques to obtain these rules, although most of them require
that the values of the attributes be discrete. To solve this problem, these
techniques discretize the numeric attributes, but this implies a loss of
information. In a general way, these techniques work in two phases: in
the first one they try to find the sets of attributes that are, with a
determined frequency, within the database (frequent itemsets), and in
the second one, they extract the association rules departing from these
sets. In this paper we present a technique to find the frequent itemsets
in numeric databases without needing to discretize the attributes. We
use an evolutionary algorithm to find the intervals of each attribute that
conforms a frequent itemset. The evaluation function itself will be the
one that decide the amplitude of these intervals. Finally, we evaluate
the tool with synthetic and real databases to check the efficiency of our
algorithm.

1 Introduction

Association rules were introduced in [1] as a method to find relationships among
the attributes of a database. By means of these techniques a very interesting
qualitative information with which we can take later decisions can be obtained.
In general terms, an association rule is a relationship between attributes in the
way C1 ⇒ C2, where C1 and C2 are pair conjunctions (attribute-value) in the
way A = v if it is a discrete attribute or A ε [v1, v2] if the attribute is continuous
or numeric. Generally, the antecedent is formed by a conjunction of pairs, while
the consequent usually is a unique attribute-value pair.

In most of databases can appear a rather high number of rules of this kind, so
it is essential to defi ne some measures that allow us to filter only the most
significant ones. The most used measures to define the interest of the rules were
described in [1]:

– support. It is a statistical measure that indicates the ratio of the population
that satisfies both the antecedent and the consequent of the rule. A rule
R : C1 ⇒ C2 has a support s, if a s% of the records of the database contain
C1 and C2.

– confidence. This measure indicates the relative frequency of the rule, that
is, the frequency with which the consequent is fulfilled when it is also fulfilled
the antecedent. A rule R : C1 ⇒ C2 has a confidence c, if the c% of the
records of the database that contain C1 also contain C2.

The goal of the techniques that search for association rules is to extract
only those that exceed some minimum values of support and confidence that are
defined by the user. The greater part of the algorithms that extract association
rules work in two phases: in the first one they try to find the sets of attributes
that exceed the minimum value of support and, in the second phase, departing
from the sets discovered formerly, they extract the association rules that exceed
the minimum value of confidence. Some of these algorithms can be seen on
[2, 9, 13, 14, 7, 8, 12].

The first works on association rules were focused on marketing. In them the
databases are transactions that represent the purchases made by the customers.
Hence, each transaction is formed by a set of elements of variable size. These
kind of rules use to be called classic association rules. and the nomenclature
proposed for them is still being used for the different variants of association
rules. The databases with which we will work, unlike these, will be relational
tables, that is, will consist of a set of records or tuples formed by a fixed number
of continuous attributes, as can be seen in figure 1.

Fig. 1. Basketball database

In this paper we will use the definitions proposed in [1], adapting them to
the databases with which we will work.

Definition 1. Itemset. It is a set of attributes belonging to the database. Each
itemset is formed by a variable number of attributes. An itemset formed by k
attributes will be called k-itemset. In our case, an itemset is formed by pair
(attribute-range of values)

Definition 2. Frequent itemset. It is that itemset that exceed the minimum
value of support.

Therefore, the problem of mining association rules consists, basically, in find-
ing all the frequent itemsets and obtaining the rules departing from these sets.
All the studies and researches are focused on the first phase, which is the most
expensive, since the second one can be considered a simple and direct process.
Most of the tools cited before work starting with the frequent itemsets of size 1
and joining them to conform frequent itemsets of a greater size in each step.

But in the real world there are numerous databases where the stored informa-
tion is numeric. In these databases, attributes have thousand of possibilities of
taking one value, by this reason the process described above is unthinkable from
a computational point of view. Association rules obtained on numeric databases
will be called quantitative association rules. The problem of mining quantitative
association rules was first introduced in [15]. These rules are a variant of classic
association rules where the value that the attribute takes in the rule is an in-
terval instead of a discrete value. An example of this kind of rules is: if height ε
[196, 201] and time ε [35.3, 37.8] then assist ε [0.025, 0.076].

The basic idea of the algorithm presented in their work consists in divid-
ing the range of each numeric attribute into intervals, treating them, from that
moment onwards, as discrete attributes. That strategy is the same that have
been followed by the diverse authors that have worked with numeric databases.
Each of them uses different methods: clustering techniques, partition of the do-
main into intervals of the same size, techniques to merge adjacent intervals until
reaching a maximum support, discretization by means of fuzzy sets, etc., but all
of them have in common the fact that they need information a priori from the
user. Some of these techniques can be consulted in [11, 16, 3].

The main problem of all of them lies in the fact that the data must be
prepared before applying the tool. This preparation, either by means of the user
or by means of an automatic process, conveys a loss of information because the
rules will be only generated departing from the partitions previously created.

Our goal is to find association rules in numeric databases without the neces-
sity of preparing previously the data. In order to get this objective we present a
tool based in an evolutionary algorithm [4] that discovers the frequent itemsets
in numeric databases. We have designed the evolutionary algorithm to find the
intervals in each of the attributes that conforms a frequent itemset, in such a
way that the fitness function itself is the one that decides the amplitude of the
intervals.

2 A Motivation Example

In figure 2 we can see the result obtained by our algorithm for the basketball
database. We have only represented two of the frequent itemsets found. The
most important of our results with regard to formerly tools is the possibility of
obtaining ranges with overlapping in different itemsets. For example, in the first
itemset, the best interval for height attribute is [179,198], while in the second
one, the best interval for this attribute is [175,196]. In the previously referenced
techniques, the attributes are discretized before searching the itemsets. So, if

the discretization process finds the interval [179,198] for height attribute, the
interval [175,196] can not appear in any itemset. This fact generates a loss of
information. For example, if the minimum support is 30% and the discretization
process has created the interval [179,198] for the height attribute, the second
itemset would never be discovered because, probably, it would not exceed the
minimum support or it would be smaller than 36.31%. Nevertheless, if their
limits are slightly dynamically modified (we make it by means of mutations),
the second itemset can also be discovered.

Fig. 2. 2 itemsets discovered in basketball database

3 Preliminaries

The tool presented in this paper is based on the evolutionary algorithm theory
(EA). In order to find the optimal itemsets, that is, those with the best sup-
port without being their intervals excessively wide, we depart from a population
where the individuals are potential itemsets. These individuals will be evolv-
ing by means of crossover and mutations, so that, at the end of the process, the
individual with the best fitness will correspond with the ”best” frequent itemset.

One of the problems we find when we work with EA theory is the convergence
of all the individuals towards the same solution. In our case, this means that all
the individuals evolve towards the same frequent itemset, that is, the individuals
that conform the last generation provide, in practice, the same information.
There are many techniques to solve this problem. Among them evolutionary
algorithm with niches and iterative rule learning [5], which is the one used in
our tool.

In this paper we develop only the first phase of a process of mining association
rules, that is, the one that undertakes to find the frequent itemsets, because we
use for the second phase some of the algorithm presented in the studies cited
before.

4 Practical Implementation

As it was above, the core of this tool is an EA where the individuals are the possi-
ble itemsets we want to discover. In the following sections we will see the general

structure of the algorithm, the same that the fitness function, representation of
the individuals and the meaning of the genetic operators.

4.1 GAR Algorithm

The GAR (Genetic Association Rules) algorithm is based in the theory of evo-
lutionary algorithms and it is an extension of the GENAR algorithm presented
in [10], that search directly for the association rules, so it is necessary to prepare
the data to indicate to the tool which attributes form part of the antecedent
and which one is the consequent. Nevertheless, this process is not necessary in
GAR, because the algorithm finds the frequent itemsets and the rules are built
departing from them.

algorithm GAR

1. nItemset = 0

2. while (nItemset < N) do

3. nGen = 0

4. generate first population P(nGen)

5. while (nGen < NGENERATIONS) do

6. process P(nGen)

7. P(nGen+1) = select individuals of P(nGen)

8. complete P(nGen+1) by crossover

9. make mutations in P(nGen+1)

10. nGen++

11. end_while

12. I[nItemset] = choose the best of P(nGen)

13. penalize records covered by I[nItemset]

14. nItemset++

15. end_while

end

Fig. 3. GAR algorithm

In figure 3 the structure of the algorithm is shown. The process is repeated
until we obtain the desired number of frequent itemsets N. The first step consists
in generating the initial population. The evolutionary algorithm takes charge
of calculating the fitness of each individual and carries out the processes of
selection, crossover and mutation to complete the following generation. At the
end of the process, in step 12, the individual with the best fitness is chosen and
it will correspond with one of the frequent itemsets that the algorithm returns.
The operation made in step 13 is very important. In it, records covered by the
obtained itemset in the previous step are penalized. Since this factor affects
negatively to the fitness function we achieve that in the following evolutionary
process the search space tends to not be repeated.

4.2 Structure of Individuals

Due to the nature itself of the problem to solve, that is, the fact that the value
of the attributes are taken from continuous domain, we use real codification to
represent the individuals. An individual in GAR is a k-itemset where each gene
represents the maximum and minimum values of the intervals of each attribute
that belongs to such k-itemset.

Fig. 4. Representation of an individual (n-itemset)

In general, the frequent itemsets are formed by a variable number of at-
tributes, that is, for a database with n attributes there can be frequent itemsets
from size 2 to size n, as can be seen in figure 4, where li and ui are the limits of
the intervals corresponding to the attribute ai.

4.3 Initial Population

The generation of the initial population consists in the random creation of the
intervals of each attribute that conforms the itemset. The number of attributes
of each itemset is also chosen in a random way between 2 and the maximum
number of attributes of the database. We condition the itemesets to cover at
least a record of the database and that their intervals have a reduced size.

4.4 Genetic Operators

The genetic operators used in GAR are the usual ones, that is, selection, crossover
and mutation. For the selection, we use an elitist strategy to replicate the indi-
vidual with the best fitness. By means of the crossover operator we complete the
rest of the population, choosing randomly, the individuals that will be combined
to form new ones. From each crossover between two individuals two new ones are
generated, and the best adapted will pass to the next generation. Given two indi-
viduals of the population I = ([l1, u1], [l3, u3]) and I ′ = ([l′1, u′1], [l′2, u′2], [l′3, u′3]),
that are going to be crossed, the crossover operator generates the following two
offspring:

O1 = ([[l1, u1] ∨ [l′1, u
′
1]], [[l3, u3] ∨ [l′3, u

′
3]])

O2 = ([[l′1, u′1] ∨ [l1, u1]], [l′2, u′2], [[l′3, u′3] ∨ [l3, u3]])

In figure 5 a possible result of the crossover operator for two itemsets of
different size can be seen.

Fig. 5. Example of a crossover operation

The mutation operator consists in altering one or more genes of the individ-
ual, that is, in modifying the values of some of the intervals of a itemset. For
each limit of the selected interval we have two possibilities, to increase or to
decrease its value. In this way we achieved four possible mutations: to shift the
whole interval to the left or to the right and to increase or to decrease its size.

Finally, a process of adjusting the chosen individual is carried out. This
consists in decreasing the size of its intervals until the number of covered records
be smaller than the records covered by the original itemset. Again, the goal of
this post processing is to obtain more quality rules.

4.5 Fitness Function

As any evolutionary algorithm, GAR has a function implemented in order to
evaluate the fitness of the individuals and to decide which are the best candidates
in the following generations.

In our scenery, we look for the frequent itemsets with a larger support, that
is, those that cover more records in the database. But, if we use this criterion as
the only one to decide the limits of the intervals the algorithm will try to span
the complete domain of each attribute. For this reason, it is necessary to include
in the fitness function some measure to limit the size of the intervals.

The fitness function f for each individual is:

f(i) = covered− (marked ∗ ω)− (amplitude ∗ ψ) + (nAtr ∗ µ) (1)

The meaning of the parameters of the fitness function is the following:

– covered. It indicates the number of records that belong to the itemset that
represent to the individual. It is a measure similar to support.

– marked. It indicates that a record has been covered previously by a itemset.
We achieve with this that the algorithm tend to discover different itemsets in
later searches. To penalize the records, we use a value that we call penaliza-
tion factor (ω) to give more or least weight to the marked record, that is, we
will permit more or least overlapping between the itemsets found depending
on this value. This factor will be defined by the user.

– amplitude. This parameter is very important in the fitness function. Its
mission is to penalize the amplitude of the intervals that conform the itemset.
In this way, between two individuals (itemsets) that cover the same number
of records and have the same number of attributes, the best information is
given by the one whose intervals are smaller, as we can see in figure 6. By
means of the factor ψ it is achieved that the algorithm be more or least

permissive with regard to the growth of the intervals. Within this concept,
we penalize both the mean and the maximum amplitude of the intervals.

Fig. 6. Amplitude effect

– number of attributes (nAtr). This parameter rewards the frequent item-
sets with a larger number of attributes. We will be able of increasing or
decreasing its effect by means of the factor µ.

All the parameters of the fitness function are normalized into the unit inter-
val. In this way all of them have the same weight when obtaining the fitness of
each individual.

5 Experimental Results

To test if the developed algorithm finds in a correct way the frequent itemsets, we
have generated several synthetic databases. We have used different functions to
distribute the values in the records of the database, in such a way that they group
on predetermined sets. The goal will be to find, in an accurate way, the intervals
of each one of the sets artificially created. Besides, we have tested our tool
with numeric databases from the Bilkent University Function Approximation
Repository [6].

To carry out the tests, the algorithm was executed with a population of 100
individuals and 200 generations. We have chosen the following parameters in the
GAR algorithm: 15% of selected individuals for the selection operator, 50% of
crossover probability and 80% of mutation probability.

5.1 Synthetic Databases

A first database formed by four numeric attributes and 1000 records was gener-
ated. The values were distributed, by means of a uniform distribution, into 5 sets
formed by predetermined intervals. Besides, 500 new records were added with
the idea of introducing noise in the data, distributing their values, by means of a
uniform distribution, between the minimum and maximum values of the domain
of the intervals. In table 1 the 5 sets synthetically created are shown and in table
2 we show the frequent itemsets found by GAR.

The exact support for each of the synthetically defined sets is 13.34%, since
each of them cover 200 records. As can be seen in table 2, the support of each of
the sets found is quite close to such value, with a suitable size for each interval.
The results show that the algorithm behaves in a correct way when the database

Table 1. Sets synthetically created by means of an uniform distribution

sets

A1 ε [1, 15], A2 ε [7, 35], A3 ε [60, 75], A4 ε [0, 25]
A1 ε [5, 30], A2 ε [25, 40], A3 ε [10, 30], A4 ε [25, 50]
A1 ε [45, 60], A2 ε [55, 85], A3 ε [20, 25], A4 ε [50, 75]
A1 ε [75, 77], A2 ε [0, 40], A3 ε [58, 60], A4 ε [75, 100]
A1 ε [10, 30], A2 ε [0, 30], A3 ε [65, 70], A4 ε [100, 125]

Table 2. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[1, 15], [6, 35], [60, 76], [0, 26] 13.40 201
[5, 30], [24, 40], [10, 30], [26, 51] 13.07 196
[44, 61], [55, 84], [20, 35], [50, 75] 13.34 200
[74, 77], [0, 40], [58, 60], [75, 101] 13.34 200
[9, 29], [0, 30], [62, 71], [102, 125] 12.80 192

contains a set of records that can not be grouped in any frequent itemsets. The
values used in the fitness function were: ω=0.7, ψ=0.6 and µ=0.7.

The first experiment was carried out creating sets independent among them,
that is, without overlapping. In order to test if the tool works properly when the
sets have records in common, a second database was created in the same way
that the first one but with overlapping among the sets. In this case 600 records
with the values distributed into 3 sets were generated and other 200 records were
added to generate noise. In table 3 the three sets synthetically created are shown
and in table 4 we show the frequent itemsets found by GAR.

Table 3. Sets synthetically created with overlapping

sets

A1 ε [18, 33], A2 ε [40, 57], A3 ε [35, 47]
A1 ε [1, 15], A2 ε [7, 30], A3 ε [0, 20]
A1 ε [10, 25], A2 ε [20, 40], A3 ε [15, 35]

The penalization factor was decreased to carry out this test in order to permit
overlapping among the itemsets. The values used in the fitness function were:
ω= 0.4, ψ = 0.6 and µ = 0.7. In both examples we can see that the sizes of
the intervals have been reduced to discover the smallest intervals that cover the
larger number of records.

The next test was carried out to test the behaviour of the tool when the
itemsets are of a variable size. For this test we used the first database but
distributing the values only among some of the attributes. In table 5 the five
sets synthetically created are shown and in table 6 we show the frequent itemsets
found by GAR.

Table 4. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[16, 32], [41, 57], [35, 46] 22.12 177
[1, 16], [7, 30], [1, 22] 27.38 219
[11, 25], [19, 41], [13, 35] 23.88 191
[1, 24], [7, 37], [0, 34] 49.50 396

Table 5. Sets variable size

sets

A1 ε [1, 15], A2 ε [7, 35], A4 ε [0, 25]
A2 ε [25, 40], A3 ε [10, 30], A4 ε [25, 50]
A2 ε [55, 85], A4 ε [50, 75]
A1 ε [75, 77], A2 ε [0, 40], A3 ε [58, 60], A4 ε [75, 100]
A1 ε [10, 30], A3 ε [65, 70]

The result of the test shows how the tool found the predefined frequent item-
sets. Besides, two new sets appeared as a consequence of the random distribution
of the rest of the values. In this test the penalization factor and the number of
attributes were loosen to find itemsets of variable size. The values used in the
fitness function were: ω = 0.5, ψ = 0.6 and µ = 0.45.

5.2 Real-Life Databases

With the idea of evaluating our tool with real databases, we carried out some
experiments using the Bilkent University Function Approximation Repository.

Due to the fact that the performance of the tool is based in a EA, we have
carried out five times the proofs in the examples and the results fit in with the
average values of such proofs. In 7 the results obtained are shown. The first
and second column indicate the number of records and the number of numeric
attributes of each database respectively. The third column (#itemsets) indicates
the mean number of frequent itemsets found. The value of the column support
indicates the mean of support of the found itemsets, while size shows the mean
number of attributes of the itemsets. The column %amplitude indicates the mean
size of the intervals that conform the set. This measure is significant to test that
the intervals of the sets are not too many ample. The last column (%records)
shows the percentage of records covered by the found itemsets on the total
records.

Due to the fact of not knowing a priori the distribution of the values of the
records, we use a minimum support of 20% and thresholds of ω = 0.4, ψ =
0.7 and µ = 0.5 to carry out this tests. The tool found frequent itemsets with
high values of support but without expanding the intervals in excess (amplitude
percentage below 30%).

Table 6. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[1, 15], [8, 34], [0, 24] 10.94 164
[25, 38], [12, 30], [24, 46] 10.20 153
[55, 77], [50, 73] 11.60 174
[75, 78], [1, 37], [58, 61], [75, 100] 12.40 186
[10, 30], [64, 70] 14.07 211
A2 ε [0, 40], A3 ε [13, 70] 42.74 641
A1 ε [0, 31], A3 ε [9, 73] 33.47 502

Table 7. Results for real-life databases

Database records #att #itemsets support size %ampl %records

baskball (BK) 96 5 5.6 36.69 3.38 25 100
bodyfat (FA) 252 18 4.2 65.26 7.45 29 86
bolts (BL) 40 8 5.6 25.97 5.29 34 77.5
pollution (PO) 60 16 4.8 46.55 7.32 15 95
quake (QU) 2178 4 6.9 38.65 2.33 25 87.5
sleep (SL) 62 8 5.2 35.91 4.21 5 79.03
stock price (SP) 950 10 6.8 45.25 5.8 26 99.26
vineyard (VY) 52 4 6.6 36.08 3 17 100

6 Conclusions

We have presented in this paper a tool to discover association rules in numeric
databases without the necessity of discretizing a priori, the domain of the at-
tributes. In this way the problem of finding rules only with the intervals created
before starting the process is avoided. We have used an evolutionary algorithm
to find the most suitable amplitude of the intervals that conform a k-itemset,
so that they have a high support value without being the intervals too wide.
We have carried out several test to check the tools behaviour in different data
distributions, obtaining satisfactory results if the frequent itemsets have no over-
lapping, if they have overlapping and if they are of a variable size. Nowadays, we
are studying new measures to include in the fitness function and to find, with
more accuracy, the size of the intervals in a k-itemset.

7 Acknowledgments

This work has been supported by Spanish Research Agency CICYT under grant
TIC2001-1143-C03-02

References

[1] Agrawal, R., Imielinski. T., Swami, A.: Mining association rules between sets of
items in large databases. Proc. ACM SIGMOD. (1993) 207–216, Washington, D.C.

[2] Agrawal, R., Srikant, R: Fast Algorithms for Mining Association Rules. Proc. of
the VLDB Conference (1994) 487–489, Santiago (Chile)

[3] Aumann, Y., Lindell, Y.: A Statistical Theory for Quantitative Association Rules.
Proceedings KDD99 (1999) 261–270, San Diego, CA

[4] Goldberg, D.E: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley. (1989)

[5] González, A., Herrera, F.: Multi-stage Genetic Fuzzy System Based on the Iterative
Rule Learning Approach. Mathware & Soft Computing, 4 (1997)

[6] Guvenir, H. A., Uysal, I.: Bilkent University Function Approximation Repository,
http://funapp.cs.bilkent.edu.tr (2000)

[7] Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation.
Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (2000)

[8] Lin, D-I., Kedem, Z.M.: Pincer Search: A New Algorithm for Discovering the Max-
imum Frequent Set. In Proc. of the 6th Int’l Conference on Extending Database
Technology (EDBT) (1998) 105–119 Valencia

[9] Manila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering as-
sociation rules. KDD-94: AAAI Workshop on Knowledge Discovery in Databases
(1994) 181–192 Seatle, Washington

[10] Mata, J., Alvarez, J.L., Riquelme, J.C.: Mining Numeric Association Rules with
Genetic Algorithms. 5th Internacional Conference on Artificial Neural Networks
and Genetic Algorithms, ICANNGA (2001) 264–267 Praga

[11] Miller, R. J., Yang, Y.: Association Rules over Interval Data. Proceedings of the
International ACM SIGMOD Conference (1997) Tucson, Arizona

[12] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules

[13] Park, J. S., Chen, M. S., Yu. P.S.: An Effective Hash Based Algorithm for Mining
Association Rules. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data
(1995) San José, CA

[14] Savarese, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining associ-
ation rules in large databases. Proc. of the VLDB Conference, Zurich, Switzerland
(1995)

[15] Srikant, R, Agrawal, R.: Mining Quantitative Association Rules in Large Rela-
tional Tables. Proc. of the ACM SIGMOD (1996) 1–12

[16] Wang, K., Tay. S.H., Liu, B.: Interestingness-Based Interval Merger for Numeric
Association Rules. Proc. 4th Int. Conf. KDD (1998) 121–128

	Introduction
	A Motivation Example
	Preliminaries
	Practical Implementation
	GAR Algorithm
	Structure of Individuals
	Initial Population
	Genetic Operators
	Fitness Function

	Experimental Results
	Synthetic Databases
	Real-Life Databases

	Conclusions
	Acknowledgments

