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Collaborative learning model predictive control for repetitive tasks

Chanfreut, P., Maestre, J. M., Camacho, E. F., and Borrelli, F.

Abstract— This paper presents a cloud-based learning model
predictive controller that integrates three interacting compo-
nents: a set of agents, which must learn to perform a finite set of
tasks with the minimum possible local cost; a coordinator, which
assigns the tasks to the agents; and the cloud, which stores data
to facilitate the agents’ learning. The tasks consist in traveling
repeatedly between a set of target states while satisfying input
and state constraints. In turn, the state constraints may change
in time for each of the possible tasks. To deal with it, different
modes of operation, which establish different restrictions, are
defined. The agents’ inputs are found by solving local model
predictive control (MPC) problems where the terminal set and
cost are defined from previous trajectories. The data collected
by each agent is uploaded to the cloud and made accessible to
all their peers. Likewise, similarity between tasks is exploited
to accelerate the learning process. The applicability of the
proposed approach is illustrated by simulation results.

I. INTRODUCTION

In the last decades, model predictive control (MPC) has
gained increasing acceptance in both industrial and academic
fields, and is now established as a major methodology for
dealing with multivariate and constrained systems [1], [2].
MPC policies are based on reiterative computations of the
sequence of inputs that optimizes the system performance
during a future time horizon, thus providing a unique antic-
ipation capacity.

The increased capability of sensing, computing, and stor-
ing data, together with the powerful advances in machine
learning techniques, have boosted the application of data-
driven methods within the field of MPC [3]. In this paper,
we use the learning model predictive control (LMPC) for-
mulation presented in [4]. This strategy focuses on systems
with a strong repetitive behaviour, such as autonomous racing
cars [5], and counteracts the inherent finite-horizon nature of
MPC controllers. The learning process is based on the sys-
tematic design of the terminal set and terminal cost function
of the MPC problem by using data. Note that the idea of
learning the objective function is also present in other control
approaches such as inverse optimal control [6]. Under the
assumption that the model is perfectly known, LMPC con-
trollers [4] are proved to progressively improve the cost of
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executing a given task, and closely approximate the solution
providing the optimal performance. Recent efforts have been
made to extend the results in [4] to decentralized systems and
to a more flexible paradigm where the repeated tasks are
more varied. For example, [7] presents a task decomposition
method where they are defined as aggregations of subtasks
in different orders, and [8] considers the case of periodically
time-varying systems. See also [9], where a decentralized
LMPC for nonlinear multi-agent systems with coupled state
constraints is introduced.

This article presents a cloud-based LMPC for multi-agent
systems that repeatedly execute a finite set of tasks, which
consist in driving admissibly the agents’ state to a certain
target point. The tasks conditions can change with time
and thus modify the state restrictions to accomplish them,
for instance, consider a mobile robot driving iteratively a
road segment with and without the presence of obstacles.
To deal with static obstacles, we define different modes of
operation, which accordingly impose different constraints
in the MPC problems. In addition, a reactive strategy is
included to avoid collisions with moving obstacles, which
can model for example humans walking. The main novelty
of the paper is the use of a data cloud in multi-agent LMPC-
based systems as a means to enable collaboration while
keeping the computation of the inputs decentralized. In this
regard, all agents upload their collected data to a common
cloud, so that it can also be used by their peers. Moreover,
the data collected when executing a certain task are analyzed
to check if they can also be exploited for learning similar
ones. The proposed approach guarantees recursive feasibility,
asymptotic stability of the target states, and a non-increasing
evolution of the cost of executing the same task without
moving obstacles. In this respect, under mild assumptions,
moving obstacles are proven not to jeopardize persistent
feasibility or convergence to the targets with the proposed
controller.

The rest of the paper is organized as follows. Section II de-
scribes the system dynamics and the control goal. Section III
introduces the proposed collaborative learning approach for
iterative tasks. Section IV presents its theoretical guarantees.
Section V provides the simulation results, and, finally, Sec-
tion VI presents our conclusions and future work prospects.

II. PROBLEM FORMULATION

Consider a set N' = {1,2,..., N,,} of identical agents
with linear time-invariant dynamics. Without loss of gen-
erality, they will represent mobile agents navigating in a
two-dimensional space. In particular, the continuous-time



dynamics of all 4 € N are given byﬂ
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where sy ;, vxi, and ax; are respectively the position, ve-
locity and acceleration of agent ¢ in the horizontal direction,
and sy ;, vy 4, and ay ; in the vertical direction.

Hereafter, consider a discrete-time version of (1)) and let us
use time index k, hence, x;(k) and w;(k) denote respectively
the state and input of agent ¢ at time instant k. Also, define
si(k) = [sxi(k), sy, i((B)]" and vi(k) = [vy,i(k), vyi(K)]T,
and consider set X = {z!,...,&",...,29,...,2N*}, which
contains a finite number Nt of target states. Finally, assume
that the initial state of every agent ¢ € N is such that z;(0) €
X, and z;(0) # x;(0), for all j € N\ {i}.

A. Tasks and constraints

The goal of the agents is to travel iteratively between the
points in X while optimizing a given performance criterion
and satisfying state and input constraints.

Definition 1. Task p — q denotes the intent of traveling from
ZP to target state 29 in an admissible way, with P, 39 € X.

In this regard, all agents 7 € A/ must satisfy

Ui(k) S V:{[Ux,i7vyi T | H [Uxi7 Uy z] H2 S vmax} (23)
ui(k) € U={laxi, aya]" |||[axis ay]|l, < amax}, (@)

for all £k > 0, where vyax and amax are the maximum
velocity and acceleration. On the other hand, the constraints
on their position depend on the task that is performed. In
particular, to perform p — ¢, the agents should travel along a
path represented by set R,,,, (see Fig.[I). Moreover, certain
zones of R,,_,, may become non-transitable for a number of
time steps, e.g., due to the presence of static obstacles. The
latter shrinks the set of admissible positions, thus modifying
the state constraints. It is assumed that these changes can
be classified into a finite number of modes of operation for
each task. In this regard, consider the following:

Definition 2. The set of admissible states of any agent i
when performing task p — q in mode m is defined as:

={z; | 8i € Rpsq \ O}, vi €V},

P—”I

m
where O,

p—=q’

C Rp—q is the set of forbidden positions.

In addition, the agents may encounter moving obstacles
while executing their tasks, e.g., pedestrians crossing if
they represent self-driving cars. Finally, let us introduce the
following assumptions:

Assumption 1. The mode m is known at time 0 of each
task by the agents and does not change during its execution,

IThe approach proposed in this article may be similarly applied to
other linear time-invariant systems. However, for the sake of convenience
and clarity, we will consider dynamics () throughout the entire manuscript.

whereas the moving obstacles are discovered while the
agents perform the tasks.

Assumption 2. The agents know an initial feasible state
trajectory Xx,",, and its corresponding input sequence v,",
to complete any task p — q in any of its possible modes m

without considering moving obstacles.

Assumption 3. The moving obstacles move along an as-
signed path, e.g., a crosswalk in the case of pedestrians.

B. Control goal

The control goal is to design the agents’ MPC problems
such that they perform optimally any task p — ¢ in any of its
modes of operation m, and can avoid collisions with moving
obstacles. In this regard, the stage performance cost for any
task with target 7 is assumed to be defined as

h(wi(k), ui(k), &) = ||l (k) = 2[G + [lui (k)7 (3)

where () and R are positive definite matrices. Therefore, h(-)
satisfies 1 (27,0, 27) = 0 and h(z;(k), u;(k),£9) > 0 for any

III. COLLABORATIVE TRAJECTORY OPTIMIZATION
BASED ON LMPC

In this paper, the inputs optimization is based on the
LMPC presented in [4]. This controller learns its optimal
terminal constraints and cost to admissibly perform a task.
The formulation is characterized by the following:

(i) The terminal set is a sample safe set that is built up
from previous successful trajectories.

(i) The terminal cost weights the cost-to-go from the ter-
minal state to the desired target according to the data
collected in previous repetitions of the tasks.

Let us define the sequences of visited states and imple-
mented inputs in the j-th task performed by agent i as

/= (a6, oIl = [, (@) @)

where tg and Tij represent respectively the instants in which ¢
started and finished its task number j. Likewise, let mf be
the mode in which ¢ executed its j-th task, and consider set

M —{j | xi(t'g):fc”, xi(Tg)::%q, m{:m}, 5

i,p—q
which contains the indexes of the tasks in which agent i
performed p — ¢ in mode m.
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Fig. 1. Sketch of the system. The tasks consist in traveling admissibly
between the target points (green marks). The forbidden areas (dark grey
zones) depend on the mode m of each task and modify the state constraints.
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A. Cloud storage

As shown in Fig. [} the proposed approach integrates the
set of local agents, a coordinator, and a cloud database. The
cloud stores the data that allows the agents to build up the
terminal safe set and terminal cost as described in [4]. In
this regard, consider the following assumption:

Assumption 4. All agents i € N collect and upload to the
cloud their sequences of visited states and incurred costs
when performing their tasks.

Regarding the terminal set, any agent ¢ can derive a sample

safe set SS;",_,, for task p — ¢ in mode m by collecting

all its visited states when executing it, i.eE],

7

i

U U=®, 6)

JEMT, g t=t]

SST

i,p—q

Note that for every z;(t) € S8}, ,,, with t € [t], 17,
there exists a sequence of inputs that drives the sub-

system state to target ¢ satisfying the constraints of

mode m, i.e., [u;(t),... ,ui(T7)]. Accordingly, all states in
sequences x;, for all j € M’ . . belong to the maximal

control invariant set associated with task p — ¢ and mode m.
Also, to define the terminal cost function, we store for

all z;(t) € SS,_,, the corresponding cost-to-go to com-

plete the task, i.e., [;(t) = Zflt h(z;(k),u;(k), £2), where
te[t!, T/] and j € M

i,p—q
Remark 1. Since all the agents are dynamically identical,
set SSZ; _,q also contains safe states for any other agent j €
N\ {i}. Therefore, one can define a common sample safe
set for all agents as:

ssr,, = { U ss;j;ﬁq}. (7)
ieN

For the same reasons, the costs-to-go F;(-) also provide

useful information for all j € N\ {i}.

Remark 2. By exploiting the similarity between tasks, it is
possible to use data collected in a certain task to learn a
different one. For example, consider the system in Fig.
and assume that the j-th task performed by agent i was
p — q. Additionally, consider a different task r — n, and
assume that roads Rp_,q and R,_,,, are parallel and satisfy
Reosn = {(5x,8y) + A 1 (5x,8y) € Rpsq}, where A is the
shift vector. Then, trajectories . and

Xl N = [z () + A, a2t 1)+ A, 2(T)) + A

provide a new candidate solution for task r — n. One
should simply check if it satisfies the constraints of some
of the modes of r — n, and add the new solution to the
corresponding safe set if admissible. Note also that if the
problems associated with tasks p — q and r — n are convex,

2For the sake of simplicity, we have omitted the time index in SS ;”p S
but note that it represents the safe set according to the trajectories realized
up to current instant k.

then a convex combination of the trajectories obtained for
p — q shifted by X\ also provides safe points for task r — n.

B. Local controllers

Consider any agent i € N, let p — ¢ be its assigned task
at time instant k, and m be the currently active mode for this
task. Then, the input implemented by agent 7 is computed
by solving the following problem:

k+N—1

min > A (UR), ui(1R), 29) + B ik + NIK)

Y=k

S.t. xl(k\k) = JJ,‘(]{J), (8a)
x;(t + 1|k) = Az(t|k) + Bu;(t|k), (8b)
zi(t+1|k) € A, ui(t|k) €U, (8¢)
Vvt ek, k+ N —1], (8d)
zi(k + Nk) € SS;°,,, (8e)

where N is the prediction horizon, u; is the sequence of
inputs from instant k£ to kK + N —1, and (t|k) denotes a
prediction for time instant ¢ made at k. Additionally, function

() assigns to every point in SS*,  the minimum cost
to complete the task according to the data collected up to
instant k. Note that this value can be computed from the
costs realized in previous executions of the tasks.

1) Moving obstacles: As mentioned in Section [[I-Al in
addition to the modes, the agents may encounter moving
obstacles while executing the tasks. In this regard, consider
that agent ¢ is performing task p — ¢ in mode m by
solving (8], and that it detects a moving obstacle at instant k.
Then, it switches to the following modified problem:

m

k+N-1
min > h(wiltlk), uit|k), )
t=k

S.t. xl(k\k) = xl(k), (92)
x;(t + 1|k) = Az, (t|k) + Bu;(tlk), (9b)
zi(t+ 1|k) € X250, uy(tk) €U, (9¢c)
si(k + N|k) € Proy,(SSI,,), (9d)
vte k... k+N—1], (%e)

where Proy,(-) denotes the projection onto the components
associated with the position. Also, X %™ represents the

p—4q
subset of X, such that Proy (X°7") is the area of the

=
road before the path along which thheq obstacle moves (see
Assumption [3)). Note that the speed is not constrained in (9d)
since agent ¢ may need to slow down to remain in this area.
Once the moving obstacle is no longer detected, it starts

solving again to continue traveling to target 9.

C. Algorithm

Algorithm [I] provides the pseudo-code of the procedure
followed by each agent ¢ € A in the case without moving
obstacles. This procedure can be run in parallel by all
agents in the system. Note that the sharing of information is
involved in the download/upload of data from/to the cloud,
which only occurs at the beginning and end of the tasks. That



is, there is no agent-to-agent communication, and they may
also access the cloud at different time instants. In addition,
note that the goal of the coordinator is only to assign the tasks
to the agents and inform them of the mode of operation

Algorithm 1

Initialize SS",, for all tasks and modes using initial solu-
tion X;“ Y g and define NV as the set of agents that are ready
to be assigned a task. Also, consider some agent i € Npce,
let its state be 27 € X, and j its tasks’ counter. Then, at each

step k, consider the following:

1: if i € Npeo then

2:  The coordinator assigns a new target state 29 € X
to 4, with ¢ # p, and informs it about the mode m.

3:  Agent i accesses the cloud to get safe set SS*, , and
saves the starting instant of the task, i.e., tg =k.

4:  The coordinator updates Nieo = Niree \ {1}

5: end if

6: Agent ¢ finds its input by solving (8) for its assigned

task, and updates its state.

7. if the task is completed then
Agent i uploads to the cloud its realized states x;(t),
for ¢t € [t], k], and they are added to SS;", .

9:  The costs-to-go Fj(t), for t € [t], k], are also com-
puted and uploaded to the cloud.

10: It is checked whether the new data can be exploited
for other tasks.

1:  Setj=j+1, Niee = Niee U{i}, and p = q.

12: end if

Remark 3. Detecting a moving obstacle only implies a
change in Steps 6, 8 and 9 of Algorithm (I| In particular,
instead of solving problem (8), the agents would use ()
until it stops being detected. Likewise, the data altered by
the presence of moving obstacles should not be uploaded to
the cloud for its use to define the terminal cost and set of (B).
Finally, note that there is no change of constraints during the
prediction horizon, that is, the agents either solve (8) or (9).

IV. THEORETICAL PROPERTIES

This section describes the theoretical properties of the
proposed controller. Let [x}(k|k),z}(k + 1|k),...,zf(k +
N|k)] be the optimal state sequence computed by agent 4 at
time instant k, and [s}(k|k), s} (k + 1|k),...,sf(k + N|k)]
the associated sequence of positions. Similarly, for state
sequence [z;(k),z;(k +1),...,x;(k + )] with ¢ > 1, vector
[si(k),si(k+1),...,s;(k +t)] is the corresponding position
sequence. Finally, let us introduce the following assumptions:

Assumption 5. Any agent i € N is able to detect moving
obstacles before the Euclidean distance between i and the
obstacle is lower than or equal to A, with A being the
maximum distance the agents can travel in N steps.

3The analysis and optimization of the tasks’ assignments have been left
out of the scope of this paper.

Assumption 6. Consider a sequence |[z;(k),z;(k +
1),...,zi(k + t)] such that z;(k +n) € X>%m c A,
for all n = 0,...,t. Then, it is possible to travel from
position s;(k) to s;(k +t) in T > t time steps following

a state sequence that also remains in X;}j”qn.

be such that s;(k) €

). Then, there exists an admissible sequence
for some t > 0.

Assumption 7. Let xz;(k)
Proy (SS,",,
of inputs such that x;(k +1t) € SS',,

Then, the following theorems hold.

Theorem 1 (Recursive feasibility). All agents i € N can
find a feasible solution of their optimization problems at all
instants k > 0.

Proof. This proof is divided in two parts. First, we focus
on the case in which there are no moving obstacles.

Consider that at time instant & agent i € N is assigned
task p — ¢ in mode m. Also, assume that the latter was
also the z—th task previously completed by agent [. Then,
the first N states of trajectory xj and its associated input
sequence (see (@) provide a feasible solution of problem (8]
for agent ¢ at k. Also, if no agent has performed task p — ¢
in mode m before, the similar result can be derived by using
the initial solution (X, ,v;%,,) (see Assumption [2).

Now let us move to instant &+ 1. Given (8¢}, =7 (k+ N|k)
belongs in an admissible state trajectory to complete the task.
Let 2} (k+ N|k) correspond to the state at instant ¢ of some
agent [, and take the following candidate solution:

[wr(k+1]k)  a}(k+2[k)
[up(k+1]k)  uf(k+2[k)

xf(k + N|k) ;L'l(t+1)]
uwi(k+ N —1lk) w(t)]

Given that z;(k+1) = x (k+1|k), that sequences computed
at k are admissible, and that z;(t + 1) € §S,",,, we have
that provides a feasible solution of problem at time
instant k+1. By induction, recursive feasibility is guaranteed.

The recursive feasibility proof when moving obstacles
come into play is based on Assumptions [5} [6|and [7] Consider
that agent ¢ solves at instant £ + 7, with = > 0.
If at K + 7 + 1 it detects a moving obstacle, it switches
to problem (). From the solution of (8) at k¥ + 7, and

considering Assumption [5] we have

- (10)

vik+74+1)=al(k+7+1k+7), (11a)
af(k+7+tk+7)€ X%, Vi=1,..,N, (llb)
ri(k+7+ Nlk+7) €SS, (11c)

Given (ITa), (ITb), and Assumption [6] it is possible to
find a sequence of inputs to go from s;(k + 7 + 1) to
sf(k+ 74+ N|k + 7) in N steps while remaining in the
area of the road before the path along which the obstacle
moves. Also, from (1), we have that s} (k+7+N|k+7) €
Proy (SS,",,), hence the latter would provide a feasible
solution of problem (9). Finally, assume that the moving
obstacle stops being detected at kK + 1"+ 1, with I > 7, and,
therefore, agent ¢ switches back to problem (8). The only
constraint that may compromise feasibility is (8€). Under
Assumption [/ agent ¢ can find an admissible trajectory to



go from terminal state z7(k + T + N|k + I') to the safe
set, e.g., by traveling to positions in Proy (SS;",,) while
progressively adjusting its speed. Likewise, the solution at
k + I' provides an admissible input sequence to get from
z;(k+T +1) to 2f(k+T + N|k + I'). By aggregating
both input sequences, a feasible solution of problem (8] at
k+ T + 1 is defined for a certain horizon. Note that one

could recalculate using a larger N if it is necessary. W

Theorem 2 (Stability for each task). For any task p — q and
mode m, the equilibrium point 29 is asymptotically stable.

In the no moving obstacles case, asymptotic convergence to
the target is proven by showing that the optimal cost is a
Lyapunov function for equilibrium point 29, with the cost
function being the objective in (B). The latter is proven by
following the same steps as in [4, Thm. 1]. On the other hand,
if agent ¢ detects a moving obstacle, the value of the cost
function in (8) may increase while its inputs are computed
by solving (9). Nonetheless, assuming that the detection
of the latter is sufficiently spaced out in time, asymptotic
stability of the target points can also be proven. In particular,
consider that the last moving obstacle stops being detected
at instant £ + I" + 1, then, from that instant until the end of
the task, agent ¢ will always use (8). During this period, the
decreasing evolution of the cost function will be guaranteed,
and we can use the same reasoning as in [4, Thm. 1] to
conclude that ¢ will converge to target z9.

Theorem 3 (Non-increasing costs). The costs of performing
any task p — q in mode m without moving obstacles
decrease with the number of repetitions, regardless of the
agents that perform it.

The proof of Theorem [3| can be easily derived from [4,
Thm. 2]. In particular, using [4, Thm. 2], it is straightforward
to prove that the cost of executing a given task decreases
as some agent repeats it. Since in the proposed scheme all
agents are identical and share their collected data, this non-
increasing property holds equally.

Considering the theorems above and assuming that the
agents converge to a steady-state trajectory for each p — ¢
and mode m, it is possible to find a link with the associ-
ated infinite-horizon problem [4, Thm. 3]. In particular, the
steady-state trajectory is proven to match the optimal solution
of a finite-time approximation of the latter if it is convex.

V. SIMULATION RESULTS

Consider a system where 3 agents travel between a set
of predefined locations by using the cloud-based LMPC
described above. Also, assume that the plant layout is as
shown in Fig. 2| where the intersections correspond to the
target locations. The conditions for performing the tasks vary
between two modes of operation, i.e., m = {0,1}. These
modes change independently for each of the tasks since the
conditions in each road can change at different time steps. In
addition, we consider that at the middle of each road there
is a crosswalk where the agents find pedestrians, which are
handled as moving obstacles, with a probability of 10%.

80 r

e S 6 =91
40 Agent 1
20

g 0 2m ng a8
-20 :
-40 Agent 20 |
-60 | 1m nd u7
-80

-80 -60 -40 -20 0 20 40 60 80

m

Fig. 2. Layout of the plant. The dark grey areas indicate the forbidden
zones, which vary in time and determine the modes of operation.
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Fig. 3. Agents’ position trajectories in each repetition of different tasks.

As the agents get and share more data, their trajectories are progressively
shifted from the initial feasible solution towards the optimal one.

The parameters of the simulation are: vy.x = 3m/s,
Umax = 1.5m/s2, N = 4, Q = 0.0114, and R = 0.515,
where I, and I represent respectively the identity matrices
of dimensions 4 x 4 and 2 x 2. The discrete model of the
agents was obtained by discretizing (1) with a sample time of
1.5s. Also, the condition to terminate any task with target 29
is defined as ||s; — §9)|cc < 0.01 and ||v; — v?||sc < 0.001
for all 4. Finally, the safe sets were computed as in (7), and
we exploited the parallelism between tasks (see Remark [2).
The results obtained are summarized belowﬁﬂ

Fig. [3] illustrates the evolution of the agents’ position for
different tasks. The significant difference between consec-
utive repetitions that can particularly be seen in the case
of 2 — 3 and 6 — 9 reflects the effect of using data
from parallel tasks to accelerate the learning process. That
is, between two executions of the same task, the agents
may perform others providing useful data for the one at
issue. Notice that given footnote 5, the constraints consider a
circular area surrounding the dark grey zones as forbidden.
Also, note that for each p — ¢ and mode m, the optimal
trajectory is considered to be the one obtained by optimizing
the sum of stage cost (3) for a very long prediction horizon
subject to the corresponding constraints.

Fig. @] compares the cost of executing two different tasks
with the results obtained using the original LMPC in [4],

4To reduce the computational complexity, we have used the convex
approximation of the safe sets when solving (8) (see [10]).

3To implement the state constraints in (8c) we have imposed ||z; (k) —
gl > Dy, forall t=k+1, ..., k+N, where ¢, . is the Chebyshev

center of the forbidden area and D",/ a properly defined distance.



Task 1 — 2 Task 2 — 3
2()8“
v
3? P 207 ‘\‘
g = )
B = 206
7 2
Q Q
o O 205
|
- 0-6 904 |
1 3 5 7 9 11 1 3 5 7 9 11

# of repetitions # of repetitions
—e— CB-LMPC (m = 0) - ©--CB-LMPC (m = 1)
LMPC (m = 0) LMPC (m = 1)

Fig. 4. Evolution of the costs of performing different tasks with the
proposed cloud-based approach and when using the original LMPC for-
mulation [4]. The number of repetitions of each task varies because the
coordinator assigned them randomly.

i.e., the same formulation but without considering the storage
cloud and the exploitation of the similarity between tasks. For
the sake of convenience, we use CB-LMPC to refer to the
proposed cloud-based approach, and simply LMPC to refer
to [4]. As can be seen, the costs follow a decreasing trend
and tend to stabilize at the same value for a given p, g,
and m. Nevertheless, the CB-LMPC allows us to obtain
lower costs during the learning process, and to converge to
a solution in a reduced number of repetitions. In addition,
Fig. B|illustrates the loss of optimality incurred by the agents
in their tasks with the CB-LMPC. Note that there are 48
possible tasks (12 roads, two ways, and two modes), and
that each agent performed about 130. Therefore, on average,
they repeated less than 3 times each possible task. It should
also be remarked that Fig. ] and [3] focus on tasks not affected
by pedestrians, since they are the ones that should lead to
non-increasing costs.

Finally, Fig. [f] (left) illustrates the effect of detecting
pedestrians on the agents’ position. As can be seen, it re-
mains approximately constant between instants 10s and 18s,
which corresponds to the waiting period while the pedestrian
crosses. Also, Fig. [f (right) illustrates the excess of costs
over the optimal one in tasks affected by pedestrians more
than once. It can be seen how the data collected to optimize
performance without pedestrians helps indirectly to reduce
the costs in this case.

VI. CONCLUSIONS

In this paper, a LMPC for multi-agent systems that per-
form repetitive tasks is presented. The agents collect their
state trajectories and incurred costs, and upload them to a
common cloud to help their own and their peers’ perfor-
mance. Moreover, we have distinguished different modes of
execution of these tasks, which modify the state constraints to
deal with static obstacles. Also, we have included a strategy
for reacting to moving obstacles, which is guaranteed not
to compromise recursive feasibility under the introduced
assumptions. The data in the cloud are in turn analyzed
to check if some trajectories can be concurrently exploited
for more than one task. Our results show that the presented
LMPC can notably improve the learning rate in a context
where a significant number of tasks are alike.
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Fig. 5. Losses of optimality obtained by agents 1 (left), 2 (middle), and 3
(right) in their tasks. The lines show the corresponding moving averages
considering a sliding window of 5 tasks.
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Fig. 6. Deviation of the position evolution (left) and extra costs (right)

caused by the presence of pedestrians. The left plot shows the position of
agent 2 when it encounters a pedestrian while performing task 2 — 1, and
the result at convergence for the case without pedestrians.

Future work will extend the proposed architecture to
systems where the agents’ dynamics and constraints are not
identical. Additionally, we will integrate the possible pres-
ence of moving obstacles directly in the LMPC formulation
to guarantee non-increasing costs also in this case.
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