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Abstract. A new transfer learning strategy is proposed for image clas-
sification in this work, based on an 8-layer convolutional neural network.
The transfer learning process consists in a training phase of the neural
network on a source dataset of images. Then, the last two layers are re-
trained using a different small target dataset of images. A preliminary
study was conducted to train and test the transfer learning proposal on
Malaria cell images for a binary classification problem. The methodol-
ogy proposed has provided a 6.76% of improvement with respect to other
three different strategies of training non-transfer learning models. The
results achieved are quite promising and encourage to conduct further
research in this field.

Keywords: Transfer learning · deep learning · classification · pattern
recognition.

1 Introduction

Deep learning has become quite popular in the field of big data and, in particu-
lar, in some applications such as remote sensing [1] or time series [2,3]. Transfer
learning is a discipline suitable in situations in which there is a small amount of
data to be mined (target data). The adequate training of deep neural network
typically requires many data and much time. Nonetheless, a vast majority of
real-world problems are not characterized by such amount of data and, there-
fore, models are not as accurate as expected. The integration of deep learning
with transfer learning is called deep transfer learning and it makes the most of
both paradigms. Thus, deep learning is used to model problems within big data
contexts and, afterwards, re-purposed to transfer the knowledge to models with
insufficient data [4]. There is a major flaw in transfer learning, which is the lack
of interpretability of its models because pretrained models are applied to the
new data without any prior information or understanding of the model [5].

A new transfer learning strategy is proposed in this work, based on the
application of a convolutional neural network (CNN). In particular, a 8-layer
CNN is trained with the source dataset. Then, the last two layers are retrained



with a training set from the target dataset. Different training sets, as explained
in Section 3, are created in order to validate the robustness of the method. In
short, New methodologies have been used, such as the differential study in four
experiments and the analysis of similarities between source and target subsets
through dendrograms.

To assess the performance of the proposal, the malaria cell images dataset
[6], available along with the work in [7], is tested. This dataset is formulated as
a binary classification problem, in which cells are either parasited or uninfected.
Three additional strategies are also evaluated to compare the performance in
terms of accuracy. The results achieved are quite promising.

The rest of the paper is structured as follows. Section 2 overviews recent
and relevant papers in the field of deep transfer learning and its application
to image classification. Section 3 describes the proposed methodology and how
deep transfer learning can be applied to improve classification performance in
datasets with few samples. Section 4 reports the results achieved and discusses
their goodness. Finally, Section 5 summarizes the conclusions drawn from this
work.

2 Related works

Deep transfer learning is becoming one of the research fields in which much effort
is being put into [8]. In fact, many applications can be found in the literature
currently. Thus, Talo et al. [9] proposed a novel approach based on deep transfer
learning to automatically classify normal and abnormal brain magnetic reso-
nance images. Data augmentation, optimal learning rate finder or fine-tuning
were the strategies used to infer the model.

A wide variety of applications in remote sensing problems are also available.
In 2017, Zhao et al. [10] proposed a transfer learning model with fully pretrained
deep convolution networks for land-use classification of high spatial resolution
images. The authors claimed that the method accelerated the training process
convergence with no loss of accuracy, as shown in the comparative analysis they
report. The classification of Synthetic Aperture Radar (SAR) images through
deep transfer learning was proposed in [11]. Given that labelling SAR images
is quite challenging, the authors proposed to transfer learning from the electro-
optical domain and used a deep neural network as classifier.

Another approach to range underwater source was recently introduced in [12].
In this case, the source domain was a set of large synthetic historical environmen-
tal data, which was transferred to the source domain (a deep-sea area). which
migrates the predictive ability obtained from synthetic environment (source do-
main) into an experimental sea area (target domain). Reported results outper-
formed those of CNNs.

Another deep neural network model was proposed in [13] for plant classifica-
tion. In particular, four different deep transfer learning models were applied to
four public datasets, improving the performance of other methods.
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Li et al. [14] linked emotions during conversations, by means of acoustic sig-
nals to behaviors through deep transfer learning as well, in an effort of explicitly
quantifying the existing relationship. Hybrid architectures of both convolutional
and recurrent neural networks to achieve the goal were explored.

3 Methodology

3.1 Image preprocessing

The first step in the image preprocessing is to rescale all the images to the
same dimensions, because it is necessary to have the same number of input
pixels passed to the neural network. For the image rescaling process, the function
resize() of the OpenCV library [15] was applied using a bilinear interpolation
algorithm. The second step of the preprocessing is to encode the image labels,
in order to have as many outputs of the neural network as image labels. Thus,
a predicted probability is returned for each label.

3.2 Creation of source and target subsets

Disjoint source and target subsets of images were extracted from the original
set of images. The source subset is the dataset from which the initial model
was trained. The target subset is the dataset used both to update such model
(transfer process) and to test the updated model.

To extract the source and target subsets, it has been tried that such datasets
were as different as possible. Additionally, the source subset is larger than the
target one. The idea underlying this strategy is to check if the transfer learning
is effective when the source and target subsets contain dissimilar images and the
target set is a smaller one.

For this purpose, each image was firstly encoded using the Google Inception
V3 deep neural network trained on ImageNet [16], which is available online.
As a result of this process, for each image a vector of 2,048 real values were
obtained from the weights of the last layer of such network. This process has
been conducted using the Orange’s Image Embedding node from the Orange-
ImageAnalytics package (version 0.4.1) [17].

A table formed by the 2,048 real values of the image along with its label were
generated for all the original images. Next, a hierarchical clustering was applied
to each different label using such table as input. A dendrogram was generated
for each label (U and P ) after applying the hierarchical clustering.

Finally, the first two nodes of the first level of each dendrogram were selected.
As example, for binary classification, two dendrograms were generated and four
nodes were selected from them (UA,UB ,PA,PB ,). The node which contains the
largest number of images for each label was added to the source subset. Similarly,
the node which contains the smallest number of images for each label was added
to the target subset.

It can be concluded that source and target subsets of images were generated
in such a way that they contain dissimilar images and the source subset is larger
than the target subset.
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Fig. 1: Dendrogram scheme for each label U and P

3.3 Deep neural network architecture

The next step consists in training a convolutional neural network and testing it
using the subsets described in the previous section. The way these subsets are
divided to validate the methodology will be explained in the next subsection.

The deep convolutional neural network is composed of three layers of 2D-
based convolution using a kernel of size 3x3 and performing 32, 32 and 64 fil-
ters, respectively. Moreover, two layers of MaxPooling were added to the network,
with a 2x2 size for the two of them. Finally, two dense flatten and fully-connected
layers were added as the last layers of the network. The neural network proposed
has 848, 226 parameters to be adjusted. The detailed network used is shown in
Table 1. To implement the neural network architecture, Keras 2.2.4 over Ten-
sorFlow 1.14 was used [18].

Table 1: Deep neural network architecture used for transfer learning.
Layer (type) Output Shape Params Updateable

Conv2D (None, 48, 48, 32) 896 No
Conv2D (None, 46, 46, 32) 9,248 No
MaxPooling2D (None, 23, 23, 32) 0 No
Conv2D (None, 21, 21, 64) 18,496 No
MaxPooling2D (None, 10, 10, 64) 0 No
Flatten (None, 6400) 0 No
Dense (None, 128) 819,328 Yes
Dense (None, 2) 258 Yes

3.4 Four validation schemes

The target subset is randomly divided into two parts: training (70%) and test
(30%). Freezing the same test part (30%) of the target subset, for a fair com-
parison, four different validation schemes have been proposed:
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1. The model is generated using the training part (70%) of the target subset,
and it is tested by evaluating its predictions over the test part (30%) of the
target subset.

2. The model is generated using the whole source subset, and it is tested by
evaluating its predictions over the test part (30%) of the target subset.

3. The model is generated using the whole source subset along with the training
part (70%) of the target subset, and it is tested by evaluating its predictions
over the test part (30%) of the target subset.

4. In this scheme the transfer learning procedure is carried out. The steps are
the following:
– The model is trained using the whole source subset.
– Then, such model is updated using the training part (70%) of the tar-

get subset. This updating process only optimizes the weights within the
two last layers of the neural network, maintaining the rest of its layers
without changes.

– The updated model is tested by evaluating its predictions over the test
part (30%) of the target subset.

For each scheme, the methodology has been tested up to 10 times, having
each execution a different random distribution of samples.

3.5 Source-Target similarity analysis

In order to check how the similarity between source and target subset images
affects to the transfer learning effectiveness, the creation of these subsets was
extended including the first two levels (instead of only the first level) of the den-
drograms extracted from the hierarchical clustering process described in Section
3.2.

Extracting the images from each node of the second level of dendrograms,
more combinations are available. Specifically, since dendrograms used are bi-
nary trees, there were 4 nodes taken from the second level of each dendro-
gram (U1,U2,U3,U4,P1,P2,P3,P4). As example, for the image binary classification,
4 + 4 = 8 nodes were extracted, as it can be seen in Figure 1.

To carry out the source-target similarity analysis, all combinations among
extracted nodes are proved and the effectiveness achieved by transfer learning
was analyzed in Section 4.

3.6 Class imbalance analysis

Finally, an analysis has been conducted to prove how the effectiveness of the
proposed transfer learning methodology varies depending on the ratio between
image classes (labels) in source and target subsets.

For such purpose, both source and target subsets derived from dendrograms
were ranked according to the ratio between the minority and majority classes.
Such ratio was expressed by a percentage and it was ranged from 50% (the
number of images labeled with the minority class is half of the number of images
labeled with the majority class) to 100% (same number of images for each class).
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4 Experimentation and results

4.1 Image dataset

The set of images used to perform the methodology explained in previous section
have been taken from Kaggle. Exactly, the chosen dataset is a set of images of
cells which can be infected by the Malaria parasite or not. The challenge of these
mages is to provide a complete data set of images in order to reduce the bur-
den from microscopists in resource-constrained regions and improve diagnostic
accuracy. The original source of images can be consulted in [6].

A set of 5000 images were randomly selected from the 13780 of the Kaggle
challenge for each label; in total 10000 images were used to train and test our
methodology. In order to work with similar type of images, all of them have been
rescaled. This rescaling was to 50x50 pixeles.

4.2 Evaluation metrics

In order to quantify the effectiveness of the methodology proposed, Binary Cross
Entropy and Accuracy were computed.

The Binary Cross Entropy is a loss function that is applicable for binary
classification. This is the most common loss function when working with this type
of data sets. In this case, the output layer has one node. The typical activation
function is a sigmoid and the formula is the following: CE = −(yi · log ŷi) + (1−
yi)log(1− ŷi)

The metric used for Accuracy is the Binary Accuracy, which calculates the
mean accuracy rate across all predictions for binary classification problems. The
formula is: Acc = 1

n

∑n
i=1 yi = ŷi

4.3 Experimental settings

The experimental settings established to execute the experiments were:
Batch size: with a value of 128, it defines the number of samples that will be

propagated through the network.
Epochs: one epoch is when an entire data set is passed forward and backward

through the neural network only once. The number of epochs used was 5.
Optimizer: The optimizer used is the RMSprop. This optimizer recommends

to leave the parameters at their default values, except the learning rate, which,
in this case, has been set to er = 1 · 10−4.

4.4 Results and discussion

The results obtained applying the methodology through the four validation
schemes described in the previous section are shown in Table 2.

In Table 2, the four proposal schemes can be observed. In each sub table,
SelectedImages explains how the training and test subsets are built. Executios
indicated the number of executions of each scheme. Loss and Accuracy are
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the metrics used to evaluate the results of each scheme and which have been
defined previously. Average and SD are the average and standard deviation of
the accuracy of the ten executions

Table 2: Effectiveness achieved for each validation scheme with no transfer learn-
ing (Schemes 1, 2 and 3) and with our transfer learning proposal (Scheme 4).

Scheme 1

Selected images Execution Loss Accuracy Average SD

1 0.5650 71.34%
2 0.5826 73.04%

Train set: 3 0.5617 75.21%
70% Target Domain 4 0.5782 71.73%

5 0.6076 65.92% 69.06% 0.04
6 0.6135 64.45%

Test set: 7 0.6046 66.46%
30% Target Domain 8 0.5722 73.66%

9 0.6311 63.21%
10 0.6083 65.61%

Scheme 2

Selected images Execution Loss Accuracy Average SD

1 0.5994 65.61%
2 0.5997 69.48%

Train set: 3 0.6132 61.74%
Source Domain 4 0.6322 60.73%

5 0.6378 60.81% 60.58% 0.04
6 0.6733 56.24%

Test set: 7 0.6379 59.49%
30% Target Domain 8 0.6316 59.18%

9 0.6963 55.92%
10 0.6702 56.55%

Scheme 3

Selected images Execution Loss Accuracy Average SD

1 0.6736 58.33%
2 0.5622 72.19%

Train set: 3 0.5371 72.73%
Source Domain and 4 0.7207 53.29%
70% Target Domain 5 0.8145 53.29% 63.83% 0.10

6 0.5489 74.13%
Test set: 7 0.5259 73.04%

30% Target Domain 8 0.8140 53.29%
9 0.6597 53.29%
10 0.4900 74.75%

Scheme 4

Selected images Execution Loss Accuracy Average SD

1 0.5065 76.92%
Train set: 2 0.5153 75.45%

Source Domain and 3 0.4701 78.23%
4 0.5157 76.14%

Retrain with the 5 0.5065 78.23% 75.82% 0.02
70% Target Domain 6 0.5184 77.38%

7 0.5818 69.95%
Test set: 8 0.5290 75.76%

30% Target Domain 9 0.5345 71.88%
10 0.4908 78.23%

As it can be seen in Table 2, the fourth scheme, which is the transfer learn-
ing one, is the scheme with the best results of all of them obtaining a better
average accuracy, with an improvement of 6.76%, which is a very remarkable
performance.

Another important feature is the robustness that the transfer learning tech-
nique brings to the results. The standard deviation of the transfer learning
(Scheme 4) is smaller than the other schemes. Such result demonstrates that,
with this technique, the learning is more robust and the dependence of the ran-
dom train and test subsets is lower.

For the Source-Target similarity analysis, the four clusters obtained by the
second level of the dendrogram for each class (image label) are used in order to
make different combinations for constructing the source and the target subsets.
The number of images of the second level for the class Uninfected are U1: 1883,
U2: 2213, U3: 408 and U4: 496 images (total = (U1 + U2) + (U3 + U4) =
(1883+2213)+(408+496) = 4096+904 = 5000 images). The number of images
of the second level for the class Parasitized are P1: 377, P2: 2041, P3: 936 and
P4: 1646 images (total = (P1+P2)+(P3+P4) = (377+2041)+(936+1646) =
2418 + 2582 = 5000 images).

With these clusters, the schemes 1 and 4 have been carried out again. The
improvement for each group is shown in Table 3, where, the clusters obtained
for the uninfected cells of Malaria set have been named as Target U and those
obtained for the parasitized ones as Target P. The number of images obtained
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from the sum of them from the two previous clusters is the Target Dim. The
sum of the rest of clusters is the Source Dim. Scheme1 Acc and Scheme4 Acc
show the accuracy obtained from each scheme. The column named Improvement
shows the percentage of improvement using transfer learning techniques. Finally,
Cosine Distance indicates the cosine distance between the source and target
subsets, where values close to 0 indicate very similar data sets. The formula has
the following expression:

Cosθ =
a · b
‖a|| ‖b||

=

∑n
1 aibi√∑n

1 a
2
i

√∑n
1 b

2
i

To facilitate the understanding of the graphs, the values indicated in the table
will be 1-Cosine Distance.

Figures 2 and 3 show the improvements caused by the transfer learning tech-
nique depending on the distance between source and target subsets (Figure 2)
and the ratio between classes in source and target subset (Figure 3). In Figure
2, the relationship between the distance of the two subsets against the improve-
ment using transfer learning can be observed. The distances obtained from the
different combinations give a narrow range of values due to the own characteris-
tics of the set of images. This causes that the improvements produced by transfer
learning techniques are not noticeable. However, if the linear regression line of
the curve obtained is drawn, a worsening of the results is observed as the dis-
tance between the two subsets is greater. In Figure 3, the X axis shows the ratio
of the minority class in each subset, and the Y axis the improvement between
scheme 1 and scheme 4. As the ratio of the minority class grows, an effective-
ness improvement of the scheme 4 is observed (particularly with higher ratios of
minority class in the source subset). Only in the two last cases this effect is not
appreciable. These two cases are, precisely, those related with the two subsets
with bigger distances between them. Other aspects to be studied in future works
are the influences of the number of samples in each cluster in order to get more
information to learn general behaviour. It is possible that some limitations in
the results can be associated with these aspects besides the architecture of the
neural network. Also, the linear regression line is drawn to show the trend of the
transfer learning improvement.

5 Conclusions

In this paper the benefits of transfer learning have been empirically demonstrated
using a dataset of images of cells parasitized, or uninfected, by the Malaria
disease. First, comparing the fourth validation schemes proposed, the use of
transfer learning techniques has provided a 6.76% of improvement with respect
to different ways to train non-transfer learning models. Also, transfer learning has
provided more robustness, reflected in the smaller standard deviations obtained,
bringing more general knowledge of the treated data sets. According to the
analysis of improvements, similarities of images and class imbalance ratios, no
clear improvements have been observed. However, some relationship has been

8



Fig. 2: Relationship between source-
target subset distances and the trans-
fer learning accuracy improvement.

Fig. 3: Relationship between class im-
balance ratio and the transfer learning
accuracy improvement.

Table 3: Image classification accuracy achieved by transfer learning (Scheme 4).
Target U Target P Target Dim. Source Dim. 1-Cosine distance Scheme1 Acc. Scheme4 Acc. Improvement

U2 P2 4254 5746 0.1742 58.21% 68.96% 10.75%
U1 P4 3529 6471 0.1774 69.45% 78.13% 8.68%
U4 P3 1432 8568 0.2017 67.93% 74.30% 6.37%
U3 P3 1344 8656 0.2034 67.33% 72.60% 5.27%
U2 P4 3859 6141 0.1809 60.89% 65.98% 5.09%
U1 P2 3924 6076 0.1885 69.42% 73.33% 3.91%
U4 P1 873 9127 0.2118 88.24% 91.41% 3.17%
U1 P1 2260 7740 0.1980 86.99% 89.40% 2.41%
U2 P3 3149 6851 0.1774 80.31% 81.29% 0.98%
U2 P1 2590 7410 0.1749 92.68% 93.26% 0.58%
U4 P4 2142 7858 0.1909 74.66% 74.90% 0.24%
U1 P3 2819 7181 0.1853 89.34% 89.04% -0.30%
U4 P2 2537 7463 0.1739 83.03% 82.64% -0.39%
U3 P4 2054 7946 0.1859 80.75% 80.20% -0.55%
U3 P2 2449 7551 0.1740 87.62% 86.57% -1.05%
U3 P1 785 9215 0.2132 91.99% 87.12% -4.87%

found between the class ratio and the improvement of transfer learning, in such
a way that more balanced datasets produce higher improvement using transfer
learning. These works are a starting point to continue exploring the benefits and
limitations of transfer learning, like the number of samples, distances and neural
network structure. In future works, the results will be tested previously applied
strategies with those being proposed here.
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