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Abstract
Soft materials are of major interest for biomechanics applications due to their high deformability and susceptibility to
experience damage events under different loading scenarios. The present study is concerned with modelling damage evolution
processes in these nonlinear materials whose structural responses are prone to locking when low-order kinematic interpolation
is employed in the context of nonlinear Finite Element schemes. For this reason, a pair of gradient-enhanced continuumdamage
schemes are proposed with the aim of tackling mechanical failure problems in applications that exhibit shear and volumetric
locking. In particular,we present the consistent formulation and the assessment of the corresponding performance of (i) amixed
displacement-enhanced assumed strain Q1Q1E24 employing a total Lagrangian formulation, and (ii) a three-field mixed
displacement-pressure-Jacobian Q1Q1P0 formulation. The novel Q1Q1E24 and Q1Q1P0 formulations are consistently
derived and numerically implemented, providing a satisfactory agreement with respect to ABAQUS built-in elements handling
the treatment of shear and volumetric locking, respectively, in conjunction to themodelling damage phenomena via the use of a
penalty-based gradient-enhanced formulation. This performance is examined via several numerical applications. Furthermore,
the final example justifies the need for a formulation combining bothmixed FE approaches to simulate problems encompassing
both locking issues (shear and volumetric locking),which can be performedusing a combination of theQ1Q1E24 and Q1Q1P0
herein proposed.
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1 Introduction

Soft materials, characterized by a highly nonlinear behav-
ior at large deformations, encompass a wide range of both
industrial and biomechanical applications like adhesives [1–
3], soft tissues [4–8] and composite structures [9–12]. Several
academic efforts using numerical approaches have been pur-
sued in order to test their mechanical performance, followed
by their subsequent failure. In fact, these developed models,
which require a profound knowledge of fracture mechanics,
are comprised of the advent of solid experimental meth-
ods based upon them, which encompasses a still relevant
challenge in Computational Mechanics. Within this frame,
several numerical techniques have been employed so far in
order to address nonlinear fracture modelling of soft mate-
rials, which include the eXtended Finite Element Method
(XFEM) [13–15], cohesive zone models (CZM) [16–18],
phase-field fracture methods (PF) [19–24], the combination
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of these last two techniques [25–29], and gradient-enhanced
Continuum Damage approaches (CDM), which will be the
technique under investigation in this article.

Non-local approaches such as PF or gradient-enhanced
CDM have emerged as continuum formulations that ensure
the well-posedness of equations, avoiding strongmesh sensi-
tivity and thus leading to vanishing localized failure regions.
This is fulfilled through internal length scales accompanying
an Euler–Lagrange equation [30,31]. These kinds of con-
tributions have been discussed in detail; see [32–34]. In
particular, gradient-enhanced CDM has been successfully
exploited for a countless variety of both geometrically linear
[35–37] and nonlinear models [38–42], including the exten-
sion to gradient-enhanced damage plasticity [43–46].

Among the yet-to-fully-tackle damage applications for
gradient-enhanced CDM, deformable nearly incompressible
hyperelastic materials constitute a recurrent topic due to their
increasing range of applications, from rubber-like polymers
to biomedical materials [47,48]. Being amply reported in the
related literature, numerical modelling of nearly incompress-
ible hyperelastic materials using displacement-based (single
field) FE schemes suffer from the well-known volumetric
locking, which overestimates the stiffness of materials when
the Poisson ratio is high (ν ∼ 0.5) [49]. In engineering
practice, the problem can be solved by the use of meshless
techniques [50–53], smothered FE approaches (sFEM) [54–
56], discontinuous Galerkin methods [57–60] or by lower
integration algorithms of the divergence terms, among other
alternatives. In particular, a mixed three-field displacement-
pressure-Jacobianmixed FE formulationwhich uses a lower-
order approximation for the Lagrange multipliers associated
with the volumetric pressure [61–65] has been employed,
being named Q1P0 or Simo-Taylor-Pister elements.

This formulation, pioneeredby the aforementioned authors
[66] and enhanced by Simo and Taylor [67], and Miehe [68],
is based on a local multiplicative split of the deformation gra-
dient into deviatoric and volumetric parts, considering both
the pressure and the Jacobian, which appear in the volumetric
contribution, as primary unknowns, besides the displace-
ment field. A disadvantage of the Q1P0 formulation is that
it might provide unphysical solutions for compressible prob-
lems [69]. Being recently applied to model ductile damage
[70] and fracture bymeans of a PF approach [71–73], we aim
for the development of a Q1Q1P0 formulation with its com-
binationwith the gradient-enhancedCDMtechniquewith the
target of modelling damage in nearly incompressible hypere-
lastic materials avoiding volumetric locking issues. It should
be mentioned that the proposed formulation for Q1Q1P0
element differs from the one utilized by ABAQUS hybrid
elements, as the latter only employs a two-field displacement-
pressure formulation, being it employed to model CDM by
Ostwald et al. [74].

Importantly, shear locking can also alter the compliance
of the specimen with bending effects in large deforma-
tion analysis [75]. In order to overcome this shear locking
pathology, several techniques have been proposed in the
last decades: use of higher order Finite Element (FE) for-
mulations [76–78], isogeometric analysis [79–82], reduced
integration [83,84] and the application of mixed methods
and formulations, such as the approach for incompatible
modes [85] or the enhanced assumed strain technique [86–
88], among others. The latter will be the one implemented
within this approach.

The enhanced assumed strain (EAS), also named Q1E[•],
being • the number of incompatible modes considered, is
a method developed by Simo and Armero [87] for nonlin-
ear continuum elements which, relying on the Hu-Washizu
variational principle, enrich the deformation modes stem-
ming from the single field displacement solution by means
of several incompatible deformation modes at the element
level. This method relies crucially on an additive decompo-
sition of the deformation gradient into a conforming and an
enhanced part which accounts for these incompatible modes.
The resulting formulation corrects the over-stiffening of the
structure by avoiding the phenomenon of shear locking. This
technique has been widely applied to solid shells in order to
suppress shear locking associated with bending modes [89–
94]. This technique’s major drawback lies in the instability
associated with rank deficiency in the stiffness matrix which
appears under compressive states [95], which remains an
open question in the Computational Mechanics field. Having
also been applied to non-local damage approaches such as PF
frameworks [96–98] and very recently to CDMwith reduced
integration schemes [99], in this research, we aim at develop-
ing a full integration formulation combining the EASmethod
considering 24 incompatible deformation modes, Q1E24,
with a gradient-enhanced CDM approach to analyze damage
in samples under bending loads which are prone to display
shear locking phenomena, i.e., Q1Q1E24.

In light of the previous discussion and after addressing
potential locking events in CDM using non-local formu-
lations, we present two non-local gradient-enhanced CDM
approaches to solve locking issues. They are tailored within
the geometrically nonlinear setting based on the work of
Dimitrijević and Hackl [40], but by introducing an internal
damage variable based on the model of Liebe et al. [100],
in the line of the work by Waffenschmidt et al. [42]. Within
the cited approach, the concept of enhancing the energy func-
tion via a gradient term of the independent damage variable is
combined with a penalty parameter that simulates the equiv-
alence between the local and non-local damage parameter,
being this approach in line with the micromorphic gradient-
type dissipative framework proposed by Forest [101]. This
coupled two-equation (linearmomentum and non-local dam-
age balance) framework for large deformations is formulated
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in a weak form. The hyperelastic constitutive response is
affected by the non-local damage scalar, which is approxi-
mated via an exponential law that triggers the deterioration
of the structure when it overpasses a threshold.

Two displacement-continuum damage approaches will
be built over this primary framework capturing damage in
hyperelastic materials prone to shear and volumetric locking.
For the former application, the EAS technique is included
to encompass 24 incompatible deformation modes, imple-
menting a formulation Q1Q1E24 that is suitable to model
compressible samples subjected to bending. Then, sepa-
rately, the mixed three-field Q1Q1P0 approach is formulated
to tackle volumetric locking in nearly incompressible sam-
ples. The resulting coupled, highly nonlinear system of
equations is solved via two Newton–Raphson type solution
schemes: one local and one global employing a user-element
subroutine UEL in the FE commercial software ABAQUS.
In summary, we are presenting in this manuscript the first
full-integration enhanced assumed strain (Q1Q1E24) and
a novel mixed displacement-pressure-Jacobian (Q1Q1P0)
schemes for gradient-enhancedCDMmodelling andwe have
tested their performanceby comparing themwith the already-
formulated standard CDM damage approach, i.e., Q1Q1.

This paper is structured as follows. The basic theory,
which includes the constitutive behavior, the non-local
gradient-enhanced damage formulation, and the thermo-
dynamical postulates for the standard Q1Q1 element, is
developed in Sect. 2. Section 3 displays the variational theo-
rems for this Q1Q1 formulation and the two proposed ones,
i.e., Q1Q1E24 and Q1Q1P0, providing a further insight on
the numerical implementation in Sect. 4. To validate and
test the potential of the proposed frameworks, a wide variety
of numerical examples which consists of compressible and
nearly incompressible large deformation problems prone to
exhibit volumetric and shear locking have been addressed in
Sect. 5. Some final remarks and conclusions are provided in
Sect. 6.

2 Theoretical formulation

This section outlines the fundamental concepts and defini-
tions of the current numerical framework addressing the use
of gradient-enhanced for a standardCDMscheme, being spe-
cialized later for EAS and mixed u-p-J formulations. The
proposed numerical methodology is specialized for hypere-
lastic material models.

2.1 Basic definitions and constitutive formulation at
local level

Complying with standard nonlinear Continuum Mechan-
ics, let an arbitrary spatial point defined in the current

configuration be defined as x := ϕ(X, t), being ϕ(X, t)
the nonlinear deformation map which projects the material
points X from the initial configuration �0 ⊂ R

n to the cur-
rent one � ⊂ R

n . The transformation of the differential line
elements throughout the deformation process is character-
ized by the deformation gradient F whose definition renders

F := ∇Xϕ(X, t) = 1 + H(X, t) (1)

being 1 the second-order identity tensor and H(X, t), the
material displacement gradient tensor. The Jacobian, i.e., the
ratio of the deformed to the undeformed volume, being the
determinant of F, shall fulfill the condition of J = det[F] >

0. In order to track the motion of the body from the material
to the spatial configuration at time t , the displacement vector
is defined as:

u(X, t) := x(X, t) − X (2)

Accordingly, the right and left Cauchy–Green tensors are
obtained as, respectively:

C := FT · F; b := F · FT (3)

We postulate the existence of local free energy function
�. Without loss of generality, we consider a nonlinear com-
pressible neo-Hookean constitutive law. This expression is
plotted in Eq. (4)

� loc(C) = μ

2
(I1 − 3) − μ ln(J ) + λ

2
ln2(J ) (4)

where μ and λ are the shear constant and λ = K − 2
3μ,

respectively, with K as the volumetric constant; and I1 is the
first invariant of the rightCauchy–Green tensor that is defined
as I1 := tr[C]. The particular form given in Eq. (4) also
holds for the spatial configuration taking the left Cauchy–
Green strain tensor as the main argument, i.e, � loc(b) and
therefore, I1 = tr[b].

From Eq. (4), the second Piola–Kirchhoff tensor S can be
computed as follows

S := 2
∂� loc(C)

∂C
= μ

(
1 − C−1)+ λ ln JC−1 (5)

For the spatial configuration, a push-forward operation is
performed to obtain the Cauchy stress tensor σ

σ = J−1F · S · FT = μ

J
(b − 1) + λ ln J

J
1 (6)

In order to compute an ABAQUSUEL subroutine, the local
tangent operators, which are required in order to compute the
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Jacobians, can be computed directly from the derivation from
the material description:

E := 2
∂S
∂C

= λC−1 ⊗ C−1 + 2(μ − λlnJ )IsymC (7)

where IsymC is a fourth-order tensor that has the follow-
ing expression: IsymC := −∂C−1/∂C = [C−1⊗C−1 +
C−1⊗C−1]/2 = [C−1

ik C−1
jl + C−1

il C−1
jk ]/2, which employs

the non-standard dyadic products. To obtain the spatial coun-
terpart e, we perform the push-forward operation on Eq. (7)

e = λ

J
(1 ⊗ 1) + 2

J
(μ − λlnJ )Isym (8)

where Isym = [1⊗1+1⊗1]/2 denotes the fourth-order sym-
metric identity tensor.

Based on Liebe et al. [100], we define a scalar damage
function fd(κ), which recalling [42], fd(κ) should be at
least twice differentiable, and tracks the material degrada-
tion relying on the evolution of a local variable κ ∈ [0,∞],
and whose evolution is ruled by the achievement of a thresh-
old value κ > κ0 in order to cause a loss in the stiffness of
the structure. Therefore, we can state:

fd(κ) : R
+ −→ (0, 1] |

{
fd(0) = 1, lim

κ→∞ fd(κ) = 0
}

(9)

These conditions guarantee two clearly differentiated
states: fd = 1 identifies an intact stiffness at the spatial point
level, whereas fd = 0 denotes a fully deteriorated stiffness
state. This belongs to the formulation of the local damage
model, whose linking procedure with the non-local damage
framework will be envisaged in the subsequent sections.

2.2 Gradient-enhanced non-local formulation

In linewith the approach proposed byDimitrijević andHackl
[40], a regularized damage material response is achieved by
the definition of a gradient-enhanced non-local function term
�nloc(φ,∇Xφ, κ) in the reference configuration:

�nloc(φ,∇Xφ, κ) = �nloc
grd (∇Xφ) + �nloc

plty (φ, κ) (10)

This non-local contribution can be split into two separate
terms: �nloc

grd (∇Xφ) containing the material gradient of the
non-local damage field variable φ, which stands for the first
term of a Taylor series expansion of φ at the material point;
and �nloc

plty (φ, κ) is a penalty term which correlates the local
damage variable κ with the non-local damage variableφ. The
energy terms are specified as follows:

�nloc
grd (∇Xφ) = cd

2
∇Xφ · ∇Xφ (11)

�nloc
plty (φ, κ) = βd

2
(φ − γdκ)2 (12)

where cd consists in a parameter that characterises the non-
local character of the formulation; βd , a penalty parameter
that enforces the local damage κ and non-local damage φ

variables to be equivalent; and γd , a switch parameter that is
introduced to range between a local and non-local gradient-
enhanced model, respectively and the corresponding value is
ranged like γd ∈ {0, 1}.

Consequently, the expression for the internal free energy
function considering the previous non-local terms is given
by

�(C, φ,∇Xφ, κ) = � loc(C, κ) + �nloc(φ,∇Xφ, κ)

= fd(κ)� loc(C) + �nloc
grd (∇Xφ)

+ �nloc
plty (φ, κ)

(13)

With these expressions at hand, we define the material
expressions for the damage-like vector fieldY and the scalar
damage-like variable Y :

Y = ∂�nloc

∂∇Xφ
= cd∇Xφ (14)

Y = −∂�nloc

∂φ
= −βd(φ − γdκ) (15)

whose spatial values y and y are obtained via push-
forwarding Eqs. (14)–(15)

y = cd J
−1∇xφ · b (16)

y = −βd(φ − γdκ)J−1 (17)

2.3 Thermodynamic consistency

The thermodynamic consistency of the constitutive frame-
work outlined above is examined through the exploitation
of the Clausius-Plank inequality (local internal dissipation
(Dint ) inequality) [40], which under isothermal conditions is
given by

Dint = [S − ∂C�] : Ċ − ∂κ�κ̇ ≥ 0 (18)

Following [42], we focus our attention on the corre-
sponding damage-related terms leading to the definition of a
reduced local dissipation Dred:

Dred = gκ̇ ≥ 0 (19)

where we have introduced the thermodynamic force g as the
derivative with respect to the local damage variable κ:

g = −∂κ� (20)
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We now define a thermodynamic force q ≥ 0, which is
conjugated to the classical scalar damage variable d, as fol-
lows:

q = −∂d� = −∂κ�∂dκ = g∂dκ (21)

Accordingly, the Clausius-Plank inequality holds when
the reduced dissipation condition satisfiesDred ≥ 0, if ∂dκ >

0. In fact, q takes the interpretation of the energy release
rate, consisting of the addition of a local and a non-local
contribution that reads as

qloc = � loc; qnloc = βdγd [φ − γdκ]∂dκ (22)

Complying with these equations, we can now define the
damage condition:

�d = q − κ ≤ 0 (23)

where �d < 0 stands for the purely elastic behavior and
�d = 0 notes a damaged state. According to Simo and
Hughes [102], an optimization problem regarding aLagrange
multiplier λ can be proposed to represent the evolution of the
damage variable

κ̇ = λ
∂�d

∂q
= λ for κ|t=0 = κd (24)

where κd concerns the initial damage threshold. This last
equation gives rise to theKarush-Kuhn-Tucker (KKT) condi-
tions to model both the initiation and termination of damage.

λ ≥ 0; �d ≤ 0; λ�d = 0 (25)

which, can be expressed in a more detailed way as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�d < 0, elastic case

�d = 0 and

⎧
⎪⎨

⎪⎩

λ < 0, elastic unloading

λ = 0, neutral loading

λ > 0, damage loading

(26)

The continuous formulation for damage is completedwith
the definition of the damage function itself fd(κ), which fol-
lows an exponential-type law.

fd(κ) = 1 − d = exp[ηd(κd − κ)] (27)

with ηd > 0 standing for the exponential saturation param-
eter. It is worth mentioning that we have introduced a
damage threshold parameter κd that differs from the pro-
posed approach by Dimitrijević and Hackl [40] and that was
introduced in Waffenschmidt et al. [42], in order to avoid

over-compensation of the damage curve due to the logarith-
mic expression in� loc [Eq. (4)] that may lead to enhance the
stress-strain curve, rather than weakening it.

3 Variational formulation

3.1 Variational formulation of standard
gradient-enhanced damagemodels: material
and spatial formulations

The total potential energy of a system,
, is obtained from the
combination of an internal contribution
int, which considers
the action of internal forces, and an external contribution

ext due to the addition of volume and surface forces, i.e.,

 = 
int − 
ext.

Restricting the analysis of conservative loading cases, we
can express the total potential of the system in the reference
position of the arbitrary body under consideration as follows


(u, φ,∇Xφ, κ) =
∫

�0

�(C(u), φ,∇Xφ, κ) d�

−
∫

�0

FV · u d� −
∫

∂�0

T · u d∂�

(28)

Since the problem is governed by the principle of min-
imum potential energy, the expression for the equation
concerning the mechanical problem in the material configu-
ration is obtained as

δ
 = ∂


∂u
·δu++∂


∂φ
δφ+ ∂


∂∇Xφ
·∇Xδφ−δ
ext = 0 (29)

that, can be particularized for each independent field as:

δ
u(u, φ,∇Xφ, κ)

=
∫

�0

(S · FT) : ∇Xδu d�
︸ ︷︷ ︸

δ
u
int

−
∫

�0

FV · δu d� −
∫

∂�0

T · δu d∂�

︸ ︷︷ ︸
δ
u

ext

= 0 (30)

δ
φ(u, φ,∇Xφ, κ)

=
∫

�0

Y · ∇Xδφd�

︸ ︷︷ ︸
δ


φ
int

−
∫

�0

Y δφd�

︸ ︷︷ ︸
δ


φ
ext

= 0 (31)

Let Vu = {
δu ∈ [H1(�0)] : δu = 0 on ∂�0,u

}
be the

space of admissible displacement variations, and Vφ ={
δφ ∈ [H1(�0)] : ∇Xδφ · N = 0 on ∂�0

}
, the spaceof admis-

sible test functions for non-local damage function. Further-
more, in the previous expression, the second Piola–Kirchhoff
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stress tensor renders S := 2 fd(κ)∂C� loc, and FV and T
denote the body force and the traction vectors in the refer-
ence volume �0 and surface ∂�0, respectively.

The previous system of equations can be expressed in the
spatial configuration by applying a standard push-forward
operation:

δ
u(u, φ, ∇xφ, κ)

=
∫

�
σ : ∇xδu d�

︸ ︷︷ ︸
δ
u

int

−
∫

�
fV · δu d� −

∫

∂�
t · δu d∂�

︸ ︷︷ ︸
δ
u

ext

= 0

(32)

δ
φ(u, φ,∇xφ, κ)

=
∫

�
y · ∇xδφ d�

︸ ︷︷ ︸
δ


φ
int

−
∫

�
yδφ d�

︸ ︷︷ ︸
δ


φ
ext

= 0 (33)

expressed in the current volume � and surface ∂� and with
σ identifying the Cauchy stress tensor that is accordingly
affected by the degradation function fd(κ).

Upon the use of the product rule and the divergence theory
on Eqs. (30)–(31), the governing equations for the balance
of linear momentum [Eqs. (34)–(35)] and evolution of the
non-local damage field φ [Eqs. (36)–(37)] are expressed in
the reference configuration �0

∇X · (F · S) + FV = 0 in �0 (34)

(F · S) · N = T on ∂�0 (35)

∇X · Y + Y = 0 in �0 (36)

Y · N = 0 on ∂�0 (37)

Replicating the previous procedure for Eqs. (32)–(33) in
the case of the current configuration, the Euler–Lagrange
equations in the spatial form are given by

∇x · σ + fV = 0 in � (38)

σ · n = t on ∂� (39)

∇x · y + y = 0 in � (40)

y · n = 0 on ∂� (41)

being N and n both the normal vectors in the material and
spatial configuration, respectively.

3.2 Variational formulation of gradient-enhanced
damagemodels for enhanced assumed strain
formulations

This section tailors the already established standard CDM
model by combining it with the EASmethod. Regarding this
novel application, it is performed to alleviate shear locking

pathologies in damageusing low-order displacement interpo-
lation in the subsequent finite element discretization scheme.

We focus our development on the additive decomposi-
tion of the Green-Lagrange strain tensor into a displacement
derived (Eu) and an enhancing counterpart Ẽ as follows
[103]: E = Eu + Ẽ. This differs from the alternative EAS
scheme proposed by Simo and Armero [87] that accounts
for the additive decomposition of the deformation gradient
F = Fu + F̃. Moreover, note that in the following derivation,
the free-energy function is expressed in terms of the Green-
Lagrange strain tensor. However, there exists a direct relation
concerning the right Cauchy–Green tensor.

The point of departure of the formulation is based on the
construction of themulti-fieldHu-Washizu functional, where
the displacement, the enhancing strain, the stress, and the
non-local damage variable are the independent fields. This
functional is given by


(S, Ẽ,u, φ,∇Xφ, κ)

=
∫

�0

[
fd(κ)�loc(E(u))

+ cd
2

∇Xφ · ∇Xφ−βd

2
[φ − γdκ]2

]
d�

−
∫

�0

S : Ẽ d� − 
ext(u) (42)

where 
ext(u) identifies the external contribution due to the
prescribed domain and boundary actions.

Let Vu = {
δu ∈ [H1(�0)] : δu = 0 on ∂�0,u

}
be the

spaceof admissible displacement variations;VẼ = [L2(�0)],
the space of the admissible enhancing strain; and Vφ ={
δφ ∈ [H1(�0)] : ∇Xδφ · N = 0 on ∂�0

}
, the spaceof admis-

sible test functions for non-local damage function. The first
variation of the total potential energy with respect to inde-
pendent fields gives the following general expression:

δ
 = ∂


∂u
· δu + ∂


∂Ẽ
: δẼ

+ ∂


∂S
: δS + ∂


∂φ
δφ + ∂


∂∇xφ
· ∇xδφ − δ
ext = 0

(43)

The previous expression can be particularized as follows
from Eq. (42):

δ
(S, Ẽ, u, φ, ∇Xφ, κ)

=
∫

�0

fd (κ)
∂�loc(E(u))

∂E
: δEu d�

+
∫

�0

(
fd (κ)

∂�loc(E(u))

∂E
− S

)
: δẼ d� −

∫

�0

δS : Ẽ d�

+
∫

�0

cd∇Xφ · ∇Xδφ d�−
∫

�0

βd [φ − γdκ]δφ d�

−δ
ext(u) = 0, ∀δu, ∀δẼ, ∀δS, ∀δφ (44)
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Exploiting the orthogonality condition between the stress
field S and the enhancing strain field Ẽ [87], the weak form
of the coupled IBVP (Initial Boundary Value Problem) can
be reduced to three independent fields, namely the displace-
ment, the enhancing strain, and the non-local damage fields.

The weak form given in Eq. (44) (recalling S :=
2 fd(κ)∂C� loc = fd(κ)∂E� loc) is given by

δ
u = δ
u
int − δ
u

ext =
∫

�0

S : δEu d� − δ
ext(u) = 0

(45)

δ
Ẽ = δ
Ẽ
int − δ
Ẽ

ext = −
∫

�0

S : δẼ d� = 0 (46)

δ
φ = δ

φ
int − δ


φ
ext =

∫

�0

cd∇Xφ · ∇Xδφ d�

−
∫

�0

βd [φ − γdκ]δφ d� = 0. (47)

In Eqs. (45)–(47), δ
∗
int and δ
∗

ext stand for the internal
and external contributions of the generic field (∗). In what
follows, we turn our interest to the internal contribution of
each independent field.

3.3 Variational formulation of gradient-enhanced
damagemodels for penalty-basedmixed
formulations for nearly incompressiblematerials

The second presentedmethodology concerned in this investi-
gation is the mixed Jacobian-pressure formulation originally
proposed by Simo et al. [66]. In line with this work, we first
perform amodification in the local strain energy density�loc

to a nearly incompressible neo-Hookean approach:

� loc(b̄) = μ

2
( Ī1 − 3)

︸ ︷︷ ︸
� loc
iso

+ K

4
(J 2 − 1 − 2 ln J )

︸ ︷︷ ︸
� loc
vol

(48)

where Ī1 is the first invariant of the isochoric left Cauchy–
Green tensor b̄ and reads as Ī1 = J−2/3 I1 = J−2/3tr[b].

For the current three-field variational problem, we con-
sider three fields as primary unknowns of the system
{u, p̃, J̃ }, where:

• p̃ is the Lagrangemultiplier that accounts for the pressure

response p = ∂� loc
vol

∂ J .

• J̃ is the dilatation, a constraint variable for the Jacobian
of the material J (u).

For convenience, we express the total potential of the sys-
tem in the current configuration:


(u, p̃, J̃ , φ,∇xφ, κ)

=
∫

�

[
fd(κ)

[
�iso(b(u))

]+ �vol( J̃ ) + p̃

J
[J (u) − J̃ ]

+ cd
2J

∇xφ · ∇xφ · b− βd

2J
[φ − γdκ]2

]
d� − 
ext

(49)

Again we denote: (i) Vu = {
δu ∈ [H1(�)] : δu = 0 on

∂�0,u
}
is the space of admissible displacement variations,

(ii) δ p̃ ∈ L2(�) stands for the space of virtual pressure, (iii)
δ J̃ ∈ L2(�) regards the space of virtual dilatation and (iv)
Vφ = {

δφ ∈ [H1(�)] : ∇xδφ · n = 0 on ∂�
}
the space of

admissible test functions for non-local damage function.
The first variation of the functional with respect to inde-

pendent fields renders

δ
 = ∂


∂u
· δu + ∂


∂ J̃
δ J̃ + ∂


∂ p̃
δ p̃ + ∂


∂φ
δφ

+ ∂


∂∇xφ
· ∇xδφ − δ
ext = 0 (50)

The previous expression can be expanded as follows.

δ
(u, p̃, J̃ , φ,∇xφ, κ)

=
∫

�

[
( fd (κ)σ iso + p̃1

︸︷︷︸
σ vol

) · ∇xδu + (J (u) − J̃ )

J
δ p̃

]
d�

+
∫

�

[
(

∂� loc
vol

∂ J̃
− p̃

)

J
δ J̃

]
d� +

∫

�

cd
J

∇xφ · b · ∇xδφ d�

−
∫

�

βd

J
[φ − γdκ]δφ d� − δ
ext = 0 ∀δu, ∀δ J̃ ,∀δ p̃, ∀δφ

(51)

The weak form of the coupled IBVP (Initial Boundary
Value Problem) can be reduced to four independent fields,
namely the displacement, the pressure, the dilatation and the
non-local damage fields. It is given by

δ
u = δ
u
int − δ
u

ext

=
∫

�

[
( fd(κ)σ iso + p̃1) · ∇xδu d� − δ
ext(u) = 0

(52)

δ
 p̃ = δ

p̃
int =

∫

�

(J (u) − J̃ )δ p̃

J
d� = 0 (53)

δ
 J̃ = δ
 J̃
int =

∫

�

(
∂� loc

vol

∂ J̃
− p̃

)

J
δ J̃ d� = 0 (54)

δ
φ = δ

φ
int − δ


φ
ext
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=
∫

�

cd
J

∇xφ · b · ∇xδφ d�

−
∫

�

βd

J
[φ − γdκ]δφ d� = 0. (55)

with the isochoric contribution of the Cauchy stress σ iso

being easily obtained from the derivation of the local strain
energy density as

σ iso = 2J−1b
∂� loc

iso

∂b
= μb̄ − Ī1

3
1 (56)

In addition to this, it is worth highlighting the expressions
for the Jacobians obtained by the volumetric and isochoric
contributions:

evol = p̃(1 ⊗ 1 − 2Isym) (57)

eiso = 2

3J

[
Ī1[Isym − (1 ⊗ 1)/3] − σ iso ⊗ 1 − 1 ⊗ σiso

]

(58)

It is observed how the damage function term fd only mul-
tiplies the isochoric term. Therefore, for the forthcoming
expressions in Sect. 4.1, when we refer to damaged stress
and stiffness, they refer to the isochoric terms. The volumet-
ric contribution is left unchanged.

4 Algorithmic treatment and finite element
implementation details

This section outlines the description of the algorithmic
description for the general gradient-enhanced damage for-
mulation (Sect. 4.1), and subsequently, in Sect. 4.2, we
describe the finite element implementation details describ-
ing the resulting operators and the interpolation schemes for
each of the formulations given in Sects. 3.1–3.3.

4.1 Gradient-enhanced damage
framework—algorithmic setting

This sectiondetails the algorithmic schemewithin the context
of an iterative and sequential solution scheme using nonlin-
ear FE. In the sequel, we provide condensed information
concerning the material and spatial formulations given in
Sect. 3.1 in line with the salient results of Waffenschmidt et
al. [42].

Recalling Eq. (24), this expression represents a nonlinear
differential equation that should be numerically integrated
within the time step interval �t = tn+1 − tn ≥ 0 where tn+1

is the current time step and tn is the previous equilibrium
solution of the system relying on a Newton-Rahpson-based
solution of the corresponding nonlinear FE formulation. The

backward Euler integration scheme of the damage variable
κ at the current time step n + 1 renders

κn+1 = κn + γn+1 with κ|t0 = κd (59)

where γn+1 = �tλn+1 is the Lagrange multiplier at time
tn+1. Therefore, the incremental Karush-Kuhn-Tucker con-
ditions take the form:

γn+1 ≥ 0; �d,n+1 ≤ 0; γn+1�d,n+1 = 0 (60)

The flux and source equations can be updated for a mate-
rial description:

Sn+1 = fd(κn+1)Sundn+1 (61)

Yn+1 =cd∇Xφn+1 (62)

Yn+1 = − βd [φn+1 − κn+1γd ] (63)

where the superscript [•]und refers to undamaged variables.
The spatial approach is obtained by just push-forwarding

the magnitudes:

σ n+1 = fd(κn+1)σ
und
n+1 (64)

yn+1 =cd∇xφn+1/Jn+1bn+1 (65)

yn+1 = − βd [φn+1 − κn+1γd ]/Jn+1 (66)

where κn+1 = κn for an elastic incremental step. Complying
with Eq. (23), for our incremental scheme, the incremental
Lagrange multiplier γn+1 is obtained by fulfilling the consis-
tency equation:

�d,n+1 = qn+1 − κn+1 = � loc
n+1

+ βdγd

ηd fd(κn+1)
[φn+1 − γdκn+1] − κn+1 = 0 (67)

This nonlinear equation is solved by means of a Newton–
Raphson (N-R) iterative scheme at the material point level:
expanding Eq. (67) in a first-order Taylor series at γ k

n+1 for
a k-th N-R iteration, we obtain

γ k+1
n+1 = γ k

n+1 − [dγ r
k
n+1]−1rkn+1 (68)

where rkn+1 = �d,n+1(κ
k
n+1) is the residual in the k-th iter-

ation step and dγ rkn+1 is the Jacobian of this residual, which
reads

dγ r
k
n+1 = βdγd

ηd fd(κn+1)
[ηd [φn+1 − γdκn+1] − γd ] − 1 (69)

Now that we can calculate γn+1, the N-R scheme checks
if the residual is below a pre-defined tolerance, and accord-
ingly, the internal damage variable (Eq. (59)) and the flux
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and source terms for stresses and non-local damage mag-
nitudes (Eqs. (61)–(66)) are updated. We now have all the
ingredients for the global algorithm setting that is thor-
oughly summarised in Algorithm 1. For this, we compute
the derivatives for all the source values required to complete
the Jacobian formulation. For the sake of brevity, we con-
sider fd(κn+1) = fd in this series of equations. Complying
with a material configuration approach:

2
∂Sn+1

∂Cn+1
= fdEn+1+ηd fdβdSn+1 ⊗ Sn+1 (70)

∂Sn+1

∂φn+1
= 2

∂Yn+1

∂Cn+1
= βdγdθdSn+1 (71)

∂Yn+1

∂φn+1
= −[βd + (βdγd)

2(ηd fd)
−1θd

]
(72)

∂Yn+1

∂∇Xφn+1
= cd1 (73)

and applying a push-forward for the spatial approach:

2
∂σ n+1

∂(Fn+1Cn+1FT
n+1)

= fden+1+Jn+1ηd fdβdσ n+1 ⊗ σ n+1

(74)

∂σ n+1

∂φn+1
= 2

∂ yn+1

∂(Fn+1Cn+1FT
n+1)

= βdγdθdσ n+1 (75)

∂ yn+1

∂φn+1
= −[βd + (βdγd)

2(ηd fd)
−1θd ]/Jn+1 (76)

∂ yn+1

∂∇xφn+1
= cdbn+1/Jn+1 (77)

with

θd = −1 − ηd fd
βdγd [γd(1 + ηdκn+1) − ηdφn+1] (78)

4.2 Finite element formulation and implementation
details

This section addresses the FE derivation and the main
implementation details of the proposed coupled system of
nonlinear equations for each of the variational formulations
proposed in Sect. 3.

The baseline kinematic description for the displacement
approximation complieswith standard first-order 3-D 8-node
hexahedral elements. The parametric space is defined as:
A := {ξ = (ξ, η, ζ ) ∈ R

3 | − 1 ≤ ξ, η, ζ ≤ +1; i =
1, 2, 3}. The related literature has deeply reported the poor
performance of this fundamental displacement formulation
for bending-dominated applications and nearly incompress-
ible elasticity, motivating the development of several mixed
FE formulations.

Algorithm 1 Algorithmic box for the local N-R scheme for
gradient-enhanced damage constitutive model. MS = mate-
rial scheme, SS = spatial scheme.
1: Input: Fn+1, φn+1, ∇Xφn+1(MS), ∇xφn+1 (SS), κn (κ|t0 = φ|t0 =

κd )
2: Compute � loc

n+1 (Eq. (4)), Sundn+1 (MS, Eq. (5)), σ und
n+1 (SS, Eq. (6)),

Eund
n+1 (MS, Eq. (7)) and eundn+1 (SS, Eq. (8))

3: Calculate driving force

qn+1 = � loc
n+1 + βdγd

ηd fd (κn)
[φn+1 − γdκn]; (79)

fd (κn) = exp[ηd (κd − κn)]
4: Comprobate damage function:

�d,n+1 = qn+1 − κn (80)

Set κn+1 = κn . If Eq. (80) ≤ 0, go to Step 6. Otherwise, go to Step
5.

5: Compute local N-R to obtain incremental Lagrange multiplier γn+1
iteratively
a: Compute residual rkn+1

rkn+1 = � loc
n+1 + βdγd

ηd fd (κk
n+1)

[φn+1 − γdκ
k
n+1] − κk

n+1;

fd (κ
k
n+1) = exp[ηd (κd − κk

n+1)]
(81)

b: Comprobate the tolerance: if |rkn+1| < TOL, go to Step 6, if not,
continue to Step 5c.
c: Calculate Jacobian of residual dγ rkn+1 (Eq. (69)).
d: Compute the variation for the incremental Lagrange multiplier

�γ k
n+1 = −[dγ r

k
n+1]−1rkn+1 (82)

e: Update internal damage variable

κk
n+1 = κk

n + �γ k
n+1 (83)

and go back to Step 5a.
6: Compute flux and source equations (Eqs. (61)–(63) for MS or

Eqs. (64)–(66) for SS).
7: Compute tangent moduli (Eqs. (70)–(73) for MS or Eqs. (74)–(77)

for SS).

For the sake of clarity, we specify the main differences
between the three approaches herewith proposed:

• A nonlinear CDM approach for the spatial configuration
using the formulation of Sect. 3.1.

• Anovel nonlinear CDMapproach for thematerial config-
uration considering the enhanced assumed strain (EAS)
technique (Sect. 3.2).

• A novel nonlinear CDM approach for the spatial config-
uration considering a mixed Finite Element formulation
that accounts for the influence of the hydrostatic pressure
p and the Jacobian J (Sect. 3.3).

In Sect. 4.2.1, we outline the interpolation of the displace-
ments and the non-local damage variable that holds for the
standard gradient-enhanced damagemodel and for themixed
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formulations herein proposed. Subsequently, Sects. 4.2.2–
4.2.4 detail for the discrete representations encompassing the
residuals and the Jacobian matrices given for each one of the
three different proposed approaches.

4.2.1 Discretisation scheme for the displacement and the
non-local damage variable

Complying with standard isoparametric FEM, the reference
and the current geometries can be interpolated using standard
trilinear shape functions N I (N(ξ) in matrix notation) as

X =
nn∑

I=1

N I (ξ)XI = N(ξ) · X̃

and x =
nn∑

I=1

N I (ξ)xI = N(ξ) · x̃, (84)

where XI and xI stands the nodal positions in the refer-
ence and the current configurations, respectively, and setting
nn = 8 is the number of nodes. These nodal locations can be
expressed in the corresponding vectors: X and x.

The interpolation of the displacements u and the non-local
damage variable φ renders

u ≈ N(ξ) · d, φ ≈ N(ξ) · φ (85)

where d represents the nodal displacement vector, and φ rep-
resents the nodal values of the non-local damage variable;
both defined at the element level.

The material and spatial gradients of the shape functions
N can be read as

∇XN = Je-T · ∇ξN(ξ), ∇xN = je-T · ∇ξN(ξ) (86)

with ξ referring to the parametric coordinate system with
coordinates ξ = {ξ, η, ζ }; and Je and je as the material and
spatial Jacobians of the isoparametric transformation, which
allow the computation of the deformation gradient F as fol-
lows:

F = je · Je−1 with Je = det[F] = det[je]
det[Je] (87)

With the previous definitions at hand, the corresponding
material gradient quantities can be discretized as, for a mate-
rial description,

∇Xδu ≈ δd ⊗ ∇XN, ∇Xδφ ≈ δφ ⊗ ∇XN (88)

whereas the spatial gradients render

∇xδu ≈ δd ⊗ ∇xN, ∇xδφ ≈ δφ ⊗ ∇xN (89)

4.2.2 FE formulation of the gradient-enhanced damage
model for spatial configuration—Q1Q1

The point of departure for the finite element formulation
of the displacement-based gradient-enhanced damage model
recalls the variational formalism defined in Eqs. (32)–(33),
defining a coupled problem.

The insertion of the interpolation scheme for u andφ leads
to a discrete version of the residual forms denoted byRd and
Rφ that are defined as:

Rd(d, δd, φ) =
∫

�

∇xNT · σ d� −
∫

�

NT · fv d�

−
∫

∂�

NT · t d∂� = 0 (90)

Rφ(d, φ, δφ)=
∫

�

∇xNT · y d� −
∫

∂�

NTy d∂� = 0 (91)

For the application of Newton-type solution algorithms
for the iterative solution of the boundary value problem, the
linearization of the weak form is computed as follows:

L̂[Rd ](d, δd,�d, φ,�φ)

= Rd(d, δd, φ) + �dRd · �d + �φR
d · �φ (92)

L̂[Rφ](d, φ, δφ,�φ)

= Rφ(d, φ, δφ) + �dRφ · �d + �φR
φ · �φ (93)

where �∗[•] denotes the directional derivative operator with
respect to the field ∗.

Computing the derivatives of the residuals, we reach the
Jacobian expressions that are required to solve the global
N-R scheme:

Kdd = ∂Rd

∂u
=
∫

�
∇xNT · e · ∇xN d�

+
∫

�

[∇xNT · σ · ∇xN
] · 1 d� (94)

Kdφ = ∂Rd

∂φ
=
∫

�
∇xNT · ∂σ

∂φ
· NT d� (95)

Kφd = ∂Rφ

∂u
=
∫

�
N · 2 ∂ y

∂(FCFT)
· ∇xN d� (96)

Kφφ = ∂Rφ

∂φ
=
∫

�

∂ y

∂φ
NT · N d� +

∫

�
∇xNT · ∂y

∂∇xφ
· ∇xN d�

(97)

which leads to the following linearised system of equations
that is solved by the global iterative N-R monolithic scheme

[
Kdd Kdφ

Kφd Kφφ

] [
�d
�φ

]
= −

[
Rd

Rφ

]
(98)
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4.2.3 FE formulation of the gradient-enhanced damage
model EAS-based elements—Q1Q1E24

For its numerical implementation and in line with the pre-
vious investigations for Enhanced Assumed Strain (EAS)
mixed FE formulations, we herewith recall a material formu-
lation defined in the reference configuration of the body. This
formulation has been exploited for its usage in the modelling
for solid shells [87,93,94,96–98,104–106], as it is proven to
block the appearance of shear locking in structures under
bending configurations.

Recalling from Sect. 3.2, the Cauchy–Green right tensor
is computed as follows:

C = Cu + C̃ = 2(Eu + Ẽ) + 1 (99)

The current definition of the enhancing part of the Green-
Lagrange tensor relies on the formulation proposed by
Andelfinger and Ramm [89] and Bischoff and Ramm [103],
whose specific details are omitted for brevity reasons.

The enhanced strain field is defined at the element level
via the matrix operator M(ξ)

Ẽ ≈ M(ξ) · ς , δẼ ≈ M(ξ) · δς , �Ẽ ≈ M(ξ) · �ς .(100)

where

M = detJe
detje

T-T
0 · M¸ (101)

where T-T
0 is the transpose of the inverse of a matrix that

accounts for the terms of the Jacobian from the initial con-
figuration Je that reads:

T0 =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

J 2e 11 J 2e 21 J 2e 31 2Je 11 Je 21 2Je 21 Je 31 2Je 11 Je 31
J 2e 12 J 2e 22 J 2e 32 2Je 12 Je 22 2Je 22 Je 32 2Je 12 Je 32
J 2e 13 J 2e 23 J 2e 33 2Je 13 Je 23 2Je 23 Je 33 2Je 13 Je 33

Je 11 Je 12 Je 21 Je 22 Je 31 Je 32 Je 11 Je 12 + Je 21 Je 12 Je 21 Je 32 + Je 31 Je 22 Je 11 Je 32 + Je 31 Je 12
Je 12 Je 13 Je 22 Je 23 Je 32 Je 33 Je 12 Je 23 + Je 22 Je 13 Je 22 Je 33 + Je 32 Je 23 Je 12 Je 33 + Je 33 Je 13
Je 11 Je 13 Je 21 Je 23 Je 31 Je 33 Je 11 Je 23 + Je 21 Je 13 Je 21 Je 33 + Je 31 Je 23 Je 11 Je 33 + Je 31 Je 13

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(102)

Without any loss of generality, we recall the incompatible
strain modes defined in [89] encompassing 24 incompatible
modes leading to the following particular form of the matrix
M¸:

Mξ =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

ξ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξη ξζ 0 0 0 0 0 0 0
0 η 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξη ηζ 0 0 0 0 0
0 0 ζ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξζ ηζ 0 0 0
0 0 0 ξ η 0 0 0 0 ξζ ηζ 0 0 0 0 0 0 0 0 0 0 ξη 0 0
0 0 0 0 0 0 0 ξ ζ 0 0 0 0 ξη ζη 0 0 0 0 0 0 0 0 ξζ

0 0 0 0 0 η ζ 0 0 0 0 ξη ξζ 0 0 0 0 0 0 0 0 0 ηζ 0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(103)

Therefore, the incompatible strains ς are added into the FE
implementation as an extra degree of freedom.The consistent
linearization of this system is obtained through the Gateaux
directional derivative concept, resulting in

L̂[Rd ](d, δd,�d, φ,�φ, ς ,�ς)

= Rd(d, δd, φ, ς) + �dRd · �d

+ �φR
d · �φ + �ςRd · �ς

(104)

L̂[Rς ](d,�d, φ,�φ, ς , δς ,�ς)

= Rς (d, φ, ς , δς) + �dRς · �d

+ �φR
ς · �φ + �ςRς · �ς

(105)

L̂[Rφ](d,�d, φ, δφ,�φ, ς ,�ς)

= Rφ(d, φ, δφ, ς) + �dRφ · �d

+ �φR
φ · �φ + �ςRφ · �ς ,

(106)

The linearised system of equations solved for the global
N-R monolithic scheme reads
⎡

⎣
Kdd Kdφ Kdς

Kφd Kφφ Kφς

Kςd Kςφ Kςς

⎤

⎦

⎡

⎣
�d
�φ

�ς

⎤

⎦ = −
⎡

⎣
Rd

Rφ

Rς

⎤

⎦ (107)

where the term for the residual of the incompatible strains
Rς is given by

Rς (d, φ̃, ς, δς) =
∫

�0

MT · S d� (108)

and the tangent terms that form part of the Jacobian matrix
read as
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Kςd =
∫

�0

MT · E · ∇XN d� (109)

Kςφ =
∫

�0

MT · E · N d� (110)

Kςς =
∫

�0

MT · E · M d� (111)

where ∇XN accounts for the nonlinear term that is added
to the expression defined in Eq. (86), specific for material
configuration schemes [75]. This is expressed for every node
by:

∇XNi =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ni,x F11 Ni,x F21 Ni,x F31
Ni,y F12 Ni,y F22 Ni,y F32
Ni,z F13 Ni,z F23 Ni,z F33

Ni,x F12 + Ni,y F11 Ni,x F22 + Ni,y F21 Ni,x F32 + Ni,y F31
Ni,y F13 + Ni,z F12 Ni,y F23 + Ni,z F22 Ni,y F33 + Ni,z F32
Ni,x F13 + Ni,z F11 Ni,x F23 + Ni,z F21 Ni,x F33 + Ni,z F31

⎤

⎥⎥⎥⎥⎥⎥
⎦

(112)

where Ni, j is the derivative of the nodal shape function Ni

with respect to the j-coordinate and Fi j accounts for the
terms of the deformation gradient F. This expression is also
included in his respective terms for the internal residuals and
their associated Jacobians for the reference configuration.

Following the approach proposed by [93], since inter-
element continuity is not required for the enhanced strains,
they can be removed as a DOF through a standard static
condensation process, thus reaching the system of equations
proposed in Eq. (98), having the element stiffness contribu-
tions like

K̃dd = Kdd − Kdς · (Kςς )−1 · Kςd (113)

K̃dφ = (K̃φd)T = Kdφ − Kdς · (Kςς )−1 · Kςφ (114)

K̃φφ = Kφφ − Kφς · (Kςς )−1 · Kςφ (115)

and the newly defined residuals as

R̃d = Rd − Kdς · (Kςς )−1 · Rς (116)

R̃φ = Rφ − Kφα · (Kαα)−1 · Rφ (117)

4.2.4 FE formulation of the gradient-enhanced damage
model for spatial configuration employing a mixed FE
formulation—Q1Q1P0

For the second novel approach that we have developed,
the present formulation relies on the fundamental deriva-
tions by Simo and Hughes [66] and subsequently exploited
by Miehe [68], whose effectiveness for modelling quasi-
incompressible materials (ν → 0.5) has been profusely
assessed in the last two decades. In this concern, we recall

a particular model where the primary unknowns are: (i) the
displacement field u, (ii) the Lagrangemultiplier for pressure
p̃, and (iii) the independent kinematic variable J̃ .

In line with the two previous approaches, we start by
getting the residuals for these three primary unknowns by
discretising from Eq. (51):

Rd(d, δd, φ, p̃) =
∫

�

∇xNT · (σ iso + σ vol) d�

−
∫

�

NT · fv d�−
∫

∂�

NT · t d∂� = 0

(118)

R p̃(d, δ p, J̃ ) =
∫

�

N p̃(J (d) − J̃ )

J
d� = 0 (119)

R J̃ ( p̃, J̃ , δ J̃ ) =
∫

�

N J̃
(

∂� loc
vol

∂ J̃
− p̃

)

J
d� = 0 (120)

The consistent linearization of this system is obtained
through the Gateaux directional derivative concept, result-
ing in

L̂[Rd ](d, δd,�d, φ,�φ, p̃,� p̃)

= Rd(d, δd, φ, p̃) + �dRd · �d

+ �φR
d · �φ + � p̃R

d · � p̃

(121)

L̂[R p̃](d,�d, δ p̃, J̃ ,� J̃ )

= R p̃(d, δ p, J̃ ) + �dR p̃ · �d

+ � J̃R
p̃ · � J̃

(122)

L̂[R J̃ ]( p̃,� p̃, J̃ , δ J̃ ,� J̃ )

= R J̃ ( p̃, J̃ , δ J̃ ) + � p̃R
J̃ · � p̃

+ � J̃R
J̃ · � J̃

(123)

L̂[Rφ](d,�d, φ, δφ,�φ)

= Rφ(d, φ, δφ) + �dRφ · �d

+ �φR
φ · �φ

(124)

By deriving the residuals, we reach the expression for the
Jacobian matrices:

Kdd =
∫

�

∇xNT · e · ∇xN d�

+
∫

�

[∇xNT · (σ iso + σ vol) · ∇xN
] · 1 d�

(125)

Kd p̃ = (K p̃d)T =
∫

�

(∇xNT) · 1N p̃ d� (126)

K p̃ J̃ = K J̃ p̃ = −
∫

�

N p̃N J̃

J
d� (127)
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K J̃ J̃ =
∫

�

N J̃ ∂2� loc
vol

∂ J̃ 2
N J̃

J
d� (128)

What is observed in this formulation is that in addition to the
normal formulation, we have to introduce shape functions
for the interpolations for the mixed variables related to the
pressure N p̃ and the dilatation N J̃ . However, since they do
not have to satisfy the continuity between the elements, we
can suppose that their values, N p̃ and N J̃ , have a constant
scalar value of 1.

As outlined above, this mixed finite element is herewith
reformulated in order to accommodate gradient-enhanced
damage models, taking Eq. (51) as the basis for its deriva-
tion. Therefore, we obtain that the baseline three-field mixed
formulation is coupled with the non-local gradient-enhanced
damagemodel, leading to a systemof four residual equations.

⎡

⎢⎢⎢
⎣

Kdd Kdφ Kd p̃ 0
Kφd Kφφ 0 0

K p̃d 0 0 K p̃ J̃

0 0 K J̃ p̃ K J̃ J̃

⎤

⎥⎥⎥
⎦

⎡

⎢⎢
⎣

�d
�φ

� p̃
� J̃

⎤

⎥⎥
⎦ = −

⎡

⎢⎢
⎣

Rd

Rφ

R p̃

R J̃

⎤

⎥⎥
⎦ (129)

As inter-element continuity is not required for both the
pressure and the dilatation DOFs, they can be removed from
the system of equations by employing a standard static con-
densation process, reaching the system proposed in Eq. (98),
obtaining both the residual and stiffness contributions like

R̃d = Rd + KKd p̃ R p̃ − Kd p̃(K p̃ J̃ )−1R J̃ (130)

˜Kdd = Kdd + KKd p̃ · K p̃d (131)

where K = (K p̃ J̃ )−1K J̃ J̃ (K J̃ p̃)−1.

5 Numerical examples

The forthcoming section is dedicated to the resolution of
several numerical simulations involving compressible and
incompressible hyperelastic materials in order to test the
capabilities in damage modelling of the Q1Q1 (Sect. 4.2.2),
Q1Q1E24 (Sect. 4.2.3) and Q1Q1P0 (Sect. 4.2.4) schemes.

The first of the experiments consists of a validation
example employing a nearly-incompressible block under a
compressive state, adopted from the work in Sect. 4.2 of
Reese et al. [107]. Furthermore, this instance does not con-
sider the gradient-enhanced CDM approach, and we aim to
validate the mixed u-p-J formulation.

The next numerical experiment consists of a series of para-
metric studies carried out on a plate with a hole to study the
influence of the regularisation properties of the model. We
adopt the example in Sect. 5.2 of the work byWaffenschmidt

et al. [42], replicating the dependence on the mechanical
behavior for the compressible samples and analyzing the per-
formance for nearly incompressible materials.

The last experiment aims to simulate a challenging exam-
ple for a large deformation problem vulnerable to both shear
and volumetric pathologies. For this, based on the proposed
example in Sect. 4.1 in the work by Reese et al. [107], we
propose a notched cylindrical shell subjected to an extreme
bending load.

5.1 Benchmark example—nearly incompressible
block under compression

Taken from Reese et al. [107], it is modelled the quarter of
a cubic brick (symmetry conditions are considered on the
planes X and Y) with 1,000 brick elements under a compres-
sive status, i.e., a displacement of uz = −0.5 mm is applied
on the area in bold of Fig. 1, where it is observed the bot-
tommost surface as fixed in the cubical structure. Mimicking
the properties of the reference example, we consider a Shear
Modulus μ = 80.194MPa and a Poisson ratio ν = 0.49999,
thus considering a nearly incompressible material. Since this
model aims to analyze the potentiality of the three proposed
approaches in modelling this highly deformed state, avoid-
ing locking pathologies, no damage interaction is proposed
within this example. This means that we model Q1, Q1E24
and Q1P0 FE formulations.

Fig. 1 Scheme for the block under compressive load modelled. The
area in bold corresponds with the region where the compressive uz is
applied on. The dimensions are given in mm. Dotted lines correspond
to the regions generated by symmetry
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Fig. 2 Isommetric view from
the deformed of the benchmark
problem run with (a) Q1 and (b)
Q1P0 algorithms, respectively

In order to quantify the differences in performance among
the three proposed frameworks, it is plotted the deformed
configuration (Fig. 2) and the reaction force–displacement
curves (Fig. 3) for every algorithm. Emphasizing the main
advantages and disadvantages of them, it is itemized for every
technique, in particular, the results obtained, also comparing
with one sample run with ABAQUS C3D8H hybrid elements:

• Q1 formulation: It can be envisaged that the perfor-
mance here is not satisfying overall. Starting from the
left image in Fig. 2, it is observed a high deformation on
the outer surfaces of the block due to the over-stiffening
of the structure caused by the large deformation pro-
cess. Confirming this aspect with the force–displacement
curve in Fig. 3, it is deduced that the main reason for this
behavior is the volumetric locking that exhibits the solid
by employing this algorithm, whose force–displacement
curve highly overestimates the mechanical answer of
the material, compared with the result obtained for the
ABAQUS hybrid element.

• Q1E24 Formulation: There were not found any results
for this scheme due to convergence issues since the cor-
rection that the EAS method does on the global N-R
scheme is considerably high in order to find an approx-
imate solution for the software under incompressibility.
To tackle this issue, it was tried to run the simulation
with different element sizes, but without any improve-
ment in the convergence of the scheme, displaying the
unsuitability of this formulation to model incompress-
ible specimens.

• Q1P0 Formulation: Without any doubt, the mixed u-p-
J FE formulation proves to comply as the most robust
performance in order to avoid the volumetric lock-
ing pathology. Its deformed configuration (right image,

Fig. 3 Reaction force–displacement curves for the benchmark problem
run with Q1 and Q1P0 algorithms compared with ABAQUS C3D8H
elements, respectively

Fig. 2) captures the performance of a material under a
compressive load in the center of the upper surface. Fur-
thermore, it shows a strong correlation in the mechanical
behavior (see Fig. 3), yet considerably better perfor-
mance in terms of convergence, with the hybrid two-field
ABAQUS elements, as this latter shows, through mid-
testing, premature failure (Fig. 4). These results exhibit
that the mixed u-p-J formulation has a worth-mentioning
potentiality in quantifying the response of the incom-
pressible sample and, at the same time, avoiding locking
pathologies, unlike Q1 discretization and the ABAQUS
C3D8H element, thus providing its solid capability in
modelling nearly incompressible hyperelastic materials
under large deformation states.
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Fig. 4 Top view from the
deformed of the benchmark
problem run with (a) ABAQUS
C3D8H and (b) Q1P0
algorithms, respectively. See in
(a) the unphysical behavior in
the ABAQUS element

5.2 Plate with a hole—compressible hyperelastic
material

5.2.1 Test details

As for the second numerical example, the deformation of a
plate with a hole under a traction load is considered. The
geometry and boundary conditions for the full model are
exhibited in Fig. 5. In line with the previous example, con-
sidering symmetry conditions on both X, Y, and Z planes,
specifically, only one eighth part of the sample is modelled
for the sake of reducing the computational cost. The bot-
tommost surface is considered to be clamped, whereas the
topmost one is subjected to a vertical displacement uz up until
the post-peak behavior of the sample. The material proper-
ties employed for this approach are plotted in Table 1 for a
Poisson ratio of ν = 0.25. Among the parameters for the
non-local damage:

• The βd parameter has been calibrated in order to ensure a
solid convergence for the local N-R monolithic scheme.

• γd has the value of the unity to guarantee a non-local
damage framework if cd > 0.

These compressible specimenswill be runwith algorithms
encompassing both Q1Q1 and Q1Q1E24 formulations, not
considering Q1Q1P0 as they are not suitable to model prob-
lems with ν < 0.45. The parameters related to the damage
law i.e., both the damage threshold κd and the saturation ηd
magnitudes along with the non-local regularisation parame-
ter cd will be modified throughout these series of tests where
the first aim will be the validation of the proposed CDM
models with the constitutive behavior of the elements from
ABAQUS, on one side, and the failure pattern, on the other

Fig. 5 Geometry and BCs for the plate with a hole. The dimensions are
in mm, and only an eighth of the sample is modelled, the region in red

(Sect. 5.2.2). Once they are verified, a quick study to test
the mesh objectivity is carried out. We study the mechani-
cal performance of the sample with different discretizations
(Sect. 5.2.3). Subsequently, with the most suitable algorithm
and in line with [42], we will run several numerical examples
changing cd in order to test the influence of this magnitude
in the compressible specimens (Sect. 5.2.4).
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Table 1 Material properties employed for the plate with a hole

μ (MPa) K (MPa) βd (MPa−1) γd

176.2 734.2 1000 1

5.2.2 Quantitative and qualitative validation

First, in order to validate the CDM approaches, it is required
to verify the mechanical performance of the proposed algo-
rithms with the theoretical ABAQUS elements. To establish
a quantitative standpoint with them, the damage parameters
of both κd and ηd have to be adjusted properly. According to
[42], higher values of ηd do accelerate the onset of the dam-
age process, being deviated from the purely neo-Hookean
response plotted by the ABAQUS elements at lower stages
of the corresponding loading process. On the contrary, really
small saturation parameters approximate the curve to the the-
ory but do delay the damage onset considerably after the
deformation range considered. In addition to this, by consid-
ering a damage threshold of κd = 0 MPa, i.e., the damage
onset happens upon loading, not augmenting the stiffness
of the mechanical curve. Thus, we have fixed a value of
ηd = 0.1 MPa−1 and κd = 0 MPa for these validation
tests with a discretization of 9,525 hexahedral elements and a
regularisation parameter of cd = 1000 MPa−1 mm2. Having
conducted all of them successfully, we display the reaction
force–displacement curves for the samples with standard
CDM (Q1Q1) and CDM + EAS (Q1Q1E24) formulations
in comparison with the purely neo-Hookean response run
with ABAQUS C3D8 elements and it is envisaged the same
performance for each scheme, see Fig. 6. Both formulations
display a solid equivalencewith theABAQUS elements’ curve
on the first stages of testing and, upon damage propagation,
they both manage to capture the post-peak softening of the
curve. Even though we get the same quantitative results, the
most advantageous model for these configurations without
shear locking is the Q1Q1 formulation, as the CDM + EAS
model (Q1Q1E24) considers incompatible strains, which
add up computational cost to the problem.

Having tested the verification quantitativelywithABAQUS
samples, for a qualitative address, we plot the evolution
of crack propagation for three different displacements, see
Figs. 7a–c. In order to get a clear damage pattern, we have
calibrated the non-local damage parameters for a final failure
around uz = 20 mm, employing for this: ηd = 1 MPa−1,
κd = 1 MPa and cd = 500 MPa−1 mm2. Following an
expected behavior, the first isocontour at Fig. 7a reveals its
nucleation near the notched region (a stress concentrator)
only to be continued by a mode I propagation, see Fig. 7b. In
the end, it is observed that upon reaching the end of the width
of the plate, the crack grows in the direction of the height
of the specimen, see Fig. 7c. Therefore, with these micro-

Fig. 6 Reaction force–displacement curves for the compressible plate
with a hole for the validation probes conducted with a standard
CDM (Q1Q1) and CDM + EAS (Q1Q1E24), respectively, com-
pared with ABAQUS C3D8 elements. Employed non-local damage
parameters encompass: ηd = 0.1MPa−1, κd = 0MPa and cd =
1000MPa−1 mm2

graphs of a foreseeable failure pattern, we can also verify
the proposed CDM approach qualitatively, obtaining similar
results for Q1Q1 and Q1Q1E24 formulations. It is important
to highlight that a tolerance in the function fd < 0.05 has
been established to avoid ill-conditioning in the equations;
the reader is referred to [42] for further information on this
aspect.

5.2.3 Mesh objectivity

Another required calibration for CDM approaches con-
cerns the verification formesh independence, as the condition
for mesh-objectivity is associated with the damage evolu-
tion being independent of the discretisation for high enough
regularisation parameters cd . Therefore, we run a test for
three different hexahedral meshes employing the non-local
damage properties exhibited in Table 2: one coarse (810
elements), one medium-sized (9,595 elements) and one
considerably refined (75,360 elements) mesh. The three
simulations are compared by plotting the damage function
isocontour fd for a displacement of uz = 8mm in Fig. 8, and
they turn out to be practically identical for both formulations
Q1Q1 and Q1Q1E24, thus providing that the dissipation
energy is independent of the size of the element.

5.2.4 Parametric study on the regularisation parameter cd

Having proven that the results reasonably adjust to the the-
oretical nonlinear elastic behavior and that the proposed
frameworks are mesh-objective, with the medium-sized dis-
cretisation (9,525 hexahedral elements), we have carried out
a parametric analysis by leaving the degree of regularisa-
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Fig. 7 Isocontour plots for the
damage function fd of a plate
with a hole plotting the crack
pattern for several
displacements: (a)
uz = 7.32mm, (b)
uz = 8.42mm and (c)
uz = 19.10mm. Employed
non-local damage parameters
encompass: ηd = 1MPa−1,
κd = 1MPa and
cd = 500MPa−1 mm2

Table 2 Non-local damage properties employed for the tests for veri-
fication of mesh objectivity

cd (MPa−1 mm2) κd (MPa) ηd (MPa−1)

500 1 1

tion parameter cd as a free variable. As in [42], in order to
quantify the dependence of the mechanical behavior to this
parameter, a parametric analysis is made with a range of
cd = {10, 100, 500, 1000} MPa−1 mm2 for the three differ-
ent proposed formulations with the mechanical properties in
Table 1. The employed parameters for the degradation law
are ηd = 1 MPa−1 and κd = 1 MPa.

Looking to prove the validity of both standard CDM
and CDM + EAS approach to model this specimen, we
exhibit the reaction-force displacement curves for values
of cd = 1000 MPa−1 mm2, cd = 500 MPa−1 mm2 and
cd = 100MPa−1 mm2 plotted in Figs. 9a–c, respectively. In
fact, we can establish that both the standard CDM approach
referred to as the current configuration, and the combined
CDM + EAS approach, referred to as the reference config-
uration, do manage to capture the full mechanical behavior
of the specimen until the failure of the sample, even though
this last one requires more computational cost due to the
calculation of the incompatible strains.

Staying with the most computationally efficient formula-
tion i.e.,Q1Q1, we realize a further comparison for the results
with different cd in Figs. 10 and 11. For the first series of
images (Fig. 10), we have plotted several contour plots of
the damage function fd for different cd and, nucleating from
the notched region, the major difference is observed in the
range of the affected region, being the gradient wider for
lower values of cd , and the minimum value of fd , decreasing
as the cd parameter is augmented. Furthermore, by plotting
the reaction force–displacement (Fig. 11a) and the minimum
fd value (Fig. 11b), we basically obtain that the failure of the
specimen gets delayed by just increasing this regularisation
parameter, increasing the maximum force and softening the
collapse of the graph, being this result in line with what is

exhibited in [42]. In addition to this, it is worth noting that
the result for cd = 10MPa−1 mm2 falls short of reaching the
peak behavior of the curve as it displays convergence issues,
being this due that the mesh is not discretised enough for
this low value of cd , meaning that for this mesh, the limit
value of cd for total convergence falls between this value and
cd = 100 MPa−1 mm2.

5.3 Plate with a hole—quasi-incompressible
hyperelastic material

5.3.1 Test details

The next numerical example that we have considered is an
incompressible version of the previous example, i.e., we
increase the value of the bulk modulus K up to a value
∼ 107 MPa, associated with a Poisson ratio of ν = 0.49999.
With only that subtle change, the same experiments that were
carried out for the Sect. 5.2 are repeated, keeping the same
geometry as Fig. 5 and the same material properties plotted
in Table 1, except the aforementioned K .

For these series of tests, the schemes employed consist
in both Q1Q1 and Q1Q1P0 formulations, as the EAS tech-
nique has been checked not to be appropriate to model nearly
incompressible specimens (seeSect. 5.1). In linewith the pre-
vious section for compressible samples (Sect. 5.2), we start
with the verification of the CDMmodels by comparing them
with the hybrid elements from ABAQUS (Sect. 5.3.2). Upon
verification, we repeat the parametric analysis of the previ-
ous sections where we study the dependence of cd on the
mechanical behavior of the now nearly incompressible spec-
imens (Sect. 5.3.3), where we end up elucidating which is the
better formulation to conduct these numerical experiments.

5.3.2 Quantitative and qualitative validation

For the comparison between the standard (Q1Q1) and the
three-field mixed CDM formulations (Q1Q1P0) with the
referential two-field ABAQUS C3D8H element, required
for computations with ν > 0.475, we plot the force–
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Fig. 8 Isocontour plots for the
damage function fd comparing
a (a) coarse, (b) medium-sized,
and (c) fine discretisation of a
plate with a hole with a fixed
displacement of uz = 8mm.
The obtained results are similar
for Q1Q1 and Q1Q1E24
formulations

Fig. 9 Reaction force–displacement curves for the compressible plate with a hole problem comparing standard CDM (Q1Q1) and CDM + EAS
(Q1Q1E24) formulations varying cd

Fig. 10 Isocontour plots for the
damage function fd for plates
with a hole with different
regularisation parameter cd at
uz = 6.5mm. In here: (a)
cd = 100MPa−1 mm2, (b)
cd = 500MPa−1 mm2 and (c)
cd = 1000MPa−1 mm2

displacement curves in Fig. 12 for the conducted experiments
run with damage properties: ηd = 0.5 MPa−1, κd = 0 MPa
and cd = 1000MPa−1 mm2. It is observed that although
the graphs manage to capture the post-peak behavior, it is
the Q1Q1P0 formulation the better performer for this prob-
lem, as at the early stages of the curve, it solidly matches
the ABAQUS referential graph, unlike the Q1Q1 which
slightly overestimates the trajectory due to volumetric lock-
ing pathologies caused by ν ∼ 0.5. The failure pattern for
both formulations resembles the one plotted in Fig. 7, which
are not shown here for the sake of brevity but do provide

the qualitative check for the testing of nearly incompressible
specimens.

5.3.3 Parametric analysis on the regularisation parameter
cd

Considering the parameters for the degradation law to
be ηd = 1 MPa−1 and κd = 1 MPa, we perform
the tests of extensive pulling for the nearly incompress-
ible plates, conducting a parametric analysis in a range of
cd = {10, 100, 500, 1000}MPa−1 mm2. The results for both
Q1Q1 and Q1Q1P0 formulations at
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Fig. 11 (a) Reaction force–displacement and (b) minimum value of fd curves for the plate with a hole problem run with a standard spatial CDM
approach for different cases of cd = {10, 100, 500, 1000}MPa−1 mm2

Fig. 12 Reaction force–displacement curves for the nearly incompress-
ible platewith a hole for the validation probes conductedwith a standard
(Q1Q1) and the mixed u-p-J CDM formulations (Q1Q1P0), respec-
tively, compared with ABAQUS C3D8H elements. Employed non-local
damage parameters encompass: ηd = 0.5MPa−1, κd = 0MPa and
cd = 1000MPa−1 mm2

(a) cd = 1000 MPa−1 mm2, (b) cd = 500 MPa−1 mm2

and (c) cd = 100 MPa−1 mm2 are represented in Fig. 13.
According to what was aforementioned in Sect. 5.3.2, stan-
dard CDM formulation provides an over-stiffened curve due
to the incompressibility of the model that leads to the phe-
nomenon of volumetric locking that does not address this
scheme. For that reason, the most robust scheme to model
this problem is deduced to be the Jacobian-pressure mixed
framework. Even though that Q1Q1 theory provides a more
prolonged softening of the curve during crack propagation, it
is deduced from these results that the Q1Q1P0 element cov-
ers the volumetric locking pathology by considering both
pressure and dilatation terms, see Eqs. (130)–(131), and that
is proven by the reduction in the stiffness of the constitutive
response of the sample shown in all the examples in Fig. 13.

Subsequently, it is exhibited the (a) reaction force–
displacement curves and (b) the evolution of the minimum
value of the damage function fd associated with every dis-
placement in Fig. 14,where is envisaged an overall analogous
pattern than the one plotted for the compressible cases con-
ducted with the standard CDM formulation, see Fig. 11, i.e.,
both peak force and displacement are augmented monoton-
ically with the increase of the regularisation parameter. In
addition to this, the slope for the decrease of the minimum
value of fd for changing displacements is also increased.
Although not so robust on convergence as the Q1Q1 for-
mulation for compressible specimens, with the quantitative
and qualitative results provided in this section, Q1Q1P0 has
provided to be a more solid formulation to model these
incompressible experiments.

5.4 Cylindrical shell under a bending
load—compressible materials

5.4.1 Test details

With the objective of addressing the further potential of the
present frameworks (so far, the Q1Q1 and the Q1Q1E24
formulations have been proven to model large deformation
problems for compressible specimens, while the Q1Q1P0
scheme have performed very robustly with volumetric lock-
ing pathologies in an incompressible problem), we aim to
model the challenging problem of a cylindrical shell under a
bending load. For this, a notched cylindrical specimen with
the geometry and BCs exhibited in Fig. 15 is analyzed under
extremebending conditions to capture the capabilities of both
EAS and three-fieldmixed FE formulations inmodelling this
large deformation problem prone to show locking patholo-
gies. In line with the previous example, we have modelled
both series of compressible and nearly incompressible mate-
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Fig. 13 Reaction force–displacement curves for the compressible plate with a hole problem comparing standard CDM (Q1Q1) and mixed u-p-J +
CDM (Q1Q1P0) formulations varying cd

Fig. 14 (a) Reaction force–displacement and (b) minimum value of fd–displacement curves for the nearly incompressible plate with a hole problem
run with a mixed u-p-J CDM (Q1Q1P0) approach for different cases of cd = {10, 100, 500, 1000}MPa−1 mm2

Fig. 15 Geometry with
boundary conditions and
dimensions in mm with (a)
profile and (b) frontal view

Table 3 Material and fixed
damage properties employed for
the cylindrical shells

μ (MPa) K (MPa) βd (MPa−1) γd κd (MPa) cd (MPa−1 mm−2)

40,000 66,667 1000 1 0 500
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Fig. 16 Cylindrical shell:
undeformed and deformed
configuration

rial specimens. The notch has been considered to induce the
onset of damage happening in the center.

Starting with the former cases, we have carried out several
experiments with the material and damage properties plotted
at Table 3 for specimens with a discretisation of 12,328 hex-
ahedral elements. In order to avoid boundary effects, for the
extremities of the cylindrical shell (where the fixed and the
displacement conditions are applied), the damage saturation
parameter ηd has been increased, so the damage pattern is not
affected by these phenomena. The final deformed configura-
tion with the mesh for the bending experiments is displayed
in Fig. 16, exhibiting the amount of deformation in the sam-
ple experiments.

In line with the plate tests, we have started this subsec-
tion by simulating this experiment to establish a comparison
between the formulations suitable for compressible speci-
mens modelling, i.e., Q1Q1 and Q1Q1E24, with the referen-
tial ABAQUS elements in Sect. 5.4.2, additionally presenting
the failure isocontour for this problem.

Subsequently, a parametric analysis on addressing the
damage saturation parameter ηd is carried out in Sect. 5.4.3,
where the main pursued aim is the comparison of both algo-
rithms in displaying their potentiality to model this large
deformation complex problem.

5.4.2 Quantitative and qualitative validation

To compare with a referential standpoint, we have con-
ducted several tests with a damage saturation parameter
ηd = 0.1 MPa−1 with Q1Q1 and Q1Q1E24 formulations,
along with the theoretical ABAQUS elements with (C3D8I)
and without (C3D8) incompatible deformation modes.

The displayed force–displacement curves, exhibited in
Fig. 17, do reveal that the standard CDM approach (Q1Q1)
follows the trajectory described by the ABAQUS C3D8 ele-
ment in the early stages. However, both elements are affected
by parasitic shear locking, showing an over-stiffening of the
curve caused by this pathology. Concerning the CDM+EAS
formulation (Q1Q1E24), it is observed a solid correlation

Fig. 17 Load–displacement curves for the cylindrical shell test con-
ducted for Q1Q1 and Q1Q1E24 formulations compared with the
ABAQUS theoretical curves with (C3D8I) and without considering
incompatible modes (C3D8). The employed saturation parameter has
been ηd = 0.1MPa−1

between the mechanical performance of this element with
the curve of the ABAQUS C3D8I element, which is the one
required to model this kind of problems prone to locking
i.e., under bending loads. It is worth highlighting that the
match of these two curves is not perfect due to the EAS
contribution being regularised via fd , affecting the terms
in Eqs. (108)–(111), as these are multiplied by the func-
tion damage, meaning that the correction gets reduced as
soon as the material gets damaged, being the EAS contri-
bution eliminated upon total damage. This regularisation is
done in order to avoid the convergence issues that arise by
using this formulation, as the correction in the stiffness curve
grows considerably throughout the experiment. However,
this aspect does not undermine the potentiality of the CDM+
EAS approach to model compressible materials under shear
locking, as the correlation is very robust with the referential
curve.

The damage evolution of the specimen during the test is
displayed in Fig. 18. The crack onset occurs in the center of
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Fig. 18 Isocontour plots for the
evolution of the damage
function fd for a compressible
cylindrical shell under bending
load. It has been employed a
saturation parameter for damage
of ηd = 0.5MPa−1 for the
Q1Q1E24 formulation

Fig. 19 Load–displacement curves for compressible cylindrical shells under bending load conducted with formulations for standard CDM (Q1Q1)
and the CDM + EAS (Q1Q1E24) approaches, respectively with different ηd

the width of the sample (Fig. 18a), being propagated after-
wards in Mode I in the Z-direction, first to the extremities of
the specimen (Fig. 18b) and then, in the direction towards the
notch (Fig. 18c). These isocontours have been obtained from
a test conducted by employing the for theQ1Q1E24 formula-
tion with a damage saturation parameter of ηd = 0.5MPa−1,
demonstrating to be consistent with analysis until failure of
a specimen under extreme bending conditions.

5.4.3 Parametric analysis on the saturation parameter �d

This section is focused on analyzing the role of the sat-
uration parameter in the mechanical performance of the
specimen. Varying this ηd parameter in a range of ηd =
{0.5, 1, 2} MPa−1 for both the Q1Q1 and the Q1Q1E24 for-
mulations. The differences among them forηd = 0.5MPa−1

(Fig. 19a), ηd = 1 MPa−1 (Fig. 19b) and ηd = 2 MPa−1

(Fig. 19c) are exhibited by means of the force–displacement
curves, where it can be deduced that the CDM + EAS for-
mulation (Q1Q1E24) is verified to be a very effective tool
to conduct the problem of extreme bending for compressible
notched cylindrical shells, as is the better performer to tackle
the shear locking phenomenon that causes an over-stiffening
in the curves.

Intending to plot the ηd dependence on one single image,
we put together the reaction force–displacement curves for

the Q1Q1E24 formulation, along with the evolution of the
minimum value of fd in Fig. 20. It is deduced that the role
of this parameter is similar to the one of cd , progressively
delaying the failure of the sample along with augmenting the
peak force when this saturation magnitude is increased.

5.5 Cylindrical shell under a bending
load—incompressible materials

5.5.1 Test details

The last series of experiments consists of the modelling of
the previous examples in Sect. 5.4, now for nearly incom-
pressible specimens, carried out in order to test the validity
of the mixed u-p-J CDM formulation (Q1Q1P0) to model
this tricky problem. Employing the same configuration as
in Fig. 15 and the same properties as in Table 3, but this
time, changing the bulk modulus K up to a value of ∼ 107

MPa, associated with an established Poisson ratio of ν =
0.49999 and in line with what has been realized in the pre-
vious sections, we start by comparing the results of Q1Q1
and Q1Q1P0 schemes with the same tests conducted with
ABAQUS elements in Sect. 5.5.2. Once this demonstration
has been fulfilled, a last parametric analysis addressing the
dependence on the saturation parameter ηd is conducted in
Sect. 5.5.3.
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Fig. 20 (a) Reaction force–displacement and (b) minimum value of fd–displacement curves for compressible cylindrical shells under bending
loads conducted with a CDM + EAS (Q1Q1E24) approach for different cases of ηd = {0.5, 1, 2}MPa−1

Fig. 21 Load–displacement curves for the incompressible cylindrical
shell test conducted for Q1Q1 and Q1Q1P0 formulations compared
with the ABAQUS hybrid theoretical curves with (C3D8IH) andwithout
considering incompatible modes (C3D8H). The employed saturation
parameter has been ηd = 0.1MPa−1

5.5.2 Quantitative and qualitative validation

Displaying the same failure pattern as the one exhibited for
compressible specimens (see Fig. 18, which is not included
here for the sake of brevity), we focus now on a quantitative
viewpoint with the two proposed formulations along with
the referential ABAQUS elements, see Fig. 21. First, we can
definitely conclude that Q1Q1 formulation is not suitable to
model this problem as both the volumetric and shear locking
cause a very abrupt rise of the load of the sample, justifying
the invalidation of this formulation.

Concerning the mixed u-p-J CDM (Q1Q1P0) formula-
tion, it can be observed that it covers the volumetric locking
solidly, as the curve is below the one related to the behavior of
the hybrid element ABAQUS C3D8H. However, it falls short

of covering the shear locking, as this graph is considerably
less compliant than the hybrid ABAQUS element that con-
siders incompatible deformation modes (C3D8IH), i.e., the
one required to run this simulation. Observing how robustly
did perform the Q1Q1E24 formulation in the compressible
cases analyzed in Sect. 5.4, the extension of the present for-
mulation of Q1Q1P0 to Q1Q1P0E24 is proposed to model
these specimens and will be addressed in future work.

5.5.3 Parametric analysis on the saturation parameter

Considering the same range for the damage saturation param-
eter ηd = {0.5, 1, 2} MPa−1, at last, we plot in a single
curve all the load-displacement curves for different ηd con-
ducted by Q1Q1P0 (see Fig. 22a), along with the minimum
value of the degradation law fd for every displacement (see
Fig. 22b). What is envisaged in this last representation is an
analogy of what was exhibited before for the compressible
specimens:with the reduction inηd , the softening in the quan-
titative response associatedwith themechanical performance
is delayed. Therefore, even though there is no solid correla-
tion with the theory, the Q1Q1P0 formulation has proven to
be the one among the three conducted schemes to propor-
tionate conclusive results for the large deformation bending
tests applied on cylindrical shells.

6 Conclusions

Within this article, a duo of gradient-enhanced continuum
damage formulations has been developed to model failure
in compressible and incompressible isotropic hyperelastic
specimens, with the main focus of addressing the volumetric
and shear locking pathologies.Among these experiments, the
samples have been tested to a wide range of different types of
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Fig. 22 (a) Reaction force–displacement and (b) minimum value of fd–displacement curves for incompressible cylindrical shells under bending
loads conducted with a mixed u-p-J CDM (Q1Q1P0) approach for different cases of ηd = {0.5, 1, 2}MPa−1

loading, including traction, compression, and bending, com-
paring the two novel schemes, Q1Q1E24 and Q1Q1P0, with
the Q1Q1 referential CDM formulation.

Making a one-by-one analysis of the performance of the
aforementioned schemes, first, the spatial standard CDM
framework (Q1Q1), based on the one proposed by [42], has
been validated in this work to be a remarkable instrument
in modelling damage in compressible structures subject to
extensive pulling. However, it has exhibited both volumetric
and shear locking in incompressible specimens under com-
pression and bending status, respectively.

Therefore, in order to overcome these locking patholo-
gies, the 24-incompatible modes EAS technique Q1Q1E24
and the mixed displacement-Jacobian-pressure FE formula-
tion Q1Q1P0 have been proposed for their use. Q1Q1E24
scheme is proven to solve the shear locking phenomenon in
compressible samples, while the employment of Q1Q1P0
formulation, by considering both the pressure and the dilata-
tion as separate DOFs, has been demonstrated to be a more
than a remarkable instrument in modelling complex incom-
pressible cases, correcting the volumetric locking pathology.

We also have demonstrated that Q1Q1E24 element per-
forms poorly in predicting damage in incompressible mate-
rials, while Q1Q1P0 overestimates the curve in structures
subject to bending loads, i.e., displaying shear locking.
Therefore, to tackle this, further approaches combining EAS
with the mixed Jacobian-pressure formulations will be pro-
posed in the future. In addition to this, an extension to
model anisotropic hyperelastic almost incompressible mate-
rials is proposed here for future work, being envisaged as a
compelling but challenging extension of the proposed frame-
works, considering the distortion that such kind of materials
exhibit during pure pressure loading [108].
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