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Abstract:

Unmanned Surface Vehicles (USVs) are used to collect data of physicochemical parameters used to
determine the degradation of freshwater resources. An optimal strategy based on a Nonlinear set-based
Model Predictive Control (NMPC) is designed to improve the control of the USVs. This work offers
a theoretical novel formulation of NMPC and explains the interest of set-based NMPC. The influence
of meshing the map of the area of interest is then studied and it is finally demonstrated that complex
trajectories, i.e. spiral or u-turn or even exploring in small areas can be made easy from the control point
of view by using hexagonal set-based instead of square NMPCs.
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1. INTRODUCTION

Water Quality (WQ) assessment requires real-time data anal-
ysis. Some of the parameters to be analyzed are Turbidity,
Dissolved Oxygen, PH, Conductivity, and Temperature, among
others. Also, these parameters can be measured at different
depth levels. To Monitor these parameters it is generally neces-
sary to exploit highly reliable instrumentation deployed in few
locations. Unfortunately, this strategy is inadequate to evaluate
the WQ of large water bodies like the experiments to deter-
mine the degradation of the Heron Lake in Villeneuve d’Ascq
(France) published on Anderson et al. (2022b). The experiment
required a vast collection of reliable data in real-time over a
remote area, which represents one of the main challenges to
overcome in environment missions Madeo et al. (2020). The
latest technological methods for real-time data acquisition is
based on Unmanned Vehicles (UV) which provide the appropri-
ate flexibility to explore sophisticated environments efficiently
(see Wang et al. (2021); Martin et al. (2021) and the references
therein).

Model Predictive Control (MPC) is one of the most success-
ful advanced control techniques in the process industries. Its
properties have been widely investigated over the last decades,
and currently, MPC is a control technique capable of provid-
ing stability, robustness, constraint satisfaction, and tractable
computation for linear and for nonlinear systems Mayne et al.
(2000). Formulating an MPC demands some formal analysis,
i.e. the modelling of the control dynamic system, the construc-
tion of a proper objective function, the characterization of a
feasible stabilizable region and constraints consideration on

states and inputs. All this implies a full analysis of the problem
to be solved. There are several MPC strategies for exploration
missions with application to nonholonomic robots, such as
the trajectory tracking and path-following Nascimento et al.
(2018) or multitarget tracking Sarunic and Evans (2014). The
review Matschek et al. (2019) provides a general discussion
on covering set-point, trajectory tracking, path-following and
their approaches within the Nonlinear Model Predictive Control
(NMPC) framework which enables efficient navigation with
UV. However, most of the literature on NMPC for exploration is
based on set-point stabilization rather than set-based stabiliza-
tion. Stabilization of target sets rather than individual points
is known to offer some advantages to the controller, such as
robustness, flexibility, or larger domain of attraction (Blanchini
and Miani, 2015), and it is the best strategy to be used if
it is enough to reach at least one state inside a given target
region (this is the case of the exploration mission carried out
in Anderson et al. (2022b)).

In Anderson et al. (2022a) we formulated a novel set-based
NMPC for exploration. The proposal was based on a meshing of
the surface to be explored given by a set of squares that covers
the whole region. The meshing intended to set up a simple and
general offline motion planning. Then, the squares serve as a
set of targets to be reached for the controller states, and the
value of Turbidity, Dissolved Oxygen, PH, Conductivity and
Temperature was measured in every square for later analysis.
In this work the strategy is assessed for the same exploration
mission but for different map meshing of the region of interest.
The idea is to prove that using hexagons instead of squares in
the meshing map will impact on the efficiency of the proposed
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controller. Several simulation results aimed at water quality
assessment show the properties of the proposed controller and
provide some insights into the consideration of different mesh
shapes.

1.1 Notation

We denote with N the sets of integers, Ng := NU{0} and I; :=
{0,1,...,i}. The ceiling function is defined by ceil(z) :=
min{n € N : x < n}. The close ball with center in x € R™ and
radius € > 0 is given by B(xz,¢) :=={y € R" : ||z — y|| < €}.
The point z is an interior point of U if the there exists ¢ > 0
such that the open ball B(z,e) C U. The interior of a set U is
the set of all its interior points and it is denoted by int /.

2. NONLINEAR SYSTEM AND SET-BASED CONTROL

Consider the following discrete-time nonlinear system

{x(i +1) = f(a(),u@),
x(0) = g,

where (i) € X C R™ is the measured state and u(i) € U C
R™ the control input at time 4. The constraint sets X and U
are compact and convex with the origin inside and the function
f: X x U — Xis continuous with f(0,0) = 0.

ey

The following definition presents the concept of invariance sets
of control.

Definition 1 (Control Invariant Set - CIS). The set Q2 C Xis a
control invariant set (CIS) for system (1) if for all x € <) there
exists u € U such that f(z,u) € L

A CIS has an associated corresponding input set given by
U(Q):={uecU: Iz e Qsuchthat f(r,u) € Q},

In addition, a CIS €2 is called a Contractive CIS if for every
x € Qthere is u € U such that f(z,u) € int Q.

Before formulating the general set-based MPC let us consider
the following definition.
Definition 2 (Generalized Distance Stage Cost Function). A
generalized distance function d(x,Y), from x to the CIS €, is a
function with the following properties: (1) d(x,)) is convex!
and continuous for all x € X, (2) d(x,Q) = 0 forall x € Q,
(3) d(x,Q) > 0 forall x € X\ Q.
The cost function can be defined as follow.
N—1
Vn(z, Q) = Y ad(z;, Q) + Bd(u;, T(Q), ()
Jj=0
and thus, the general set-based MPC is given by the following
optimization problem solved at each sample time 7 € N.

m&nVN(x, Q;u) (3)

s.t. zg=r,
zip1 = fxj,u5), J€lIn-,
Z; eX, Uy elU, jeln_,
ry € Q
where o and [ are positive real numbers, N is the prediction

horizon, the initial state = x¢, the predicted states z;4; =
f(xj,u;) and the input sequence u = {ug, -+ ,un—1}-

1 Note that function d(-, Q) : X — R0 so for its convexity it is necessary to
ask that the set 2 is a convex set.

Taking into account the receding horizon policy the control law
at time ¢ is given by the first element of the optimal sequence
u?. Consider the next Lemma for asymptotic stability result of
the closed-loop system.

Lemma 3. [Anderson et al. (2022a)] If Q@ C X is a CIS for
system (1) in the cost function (2), then 2 is asymptotic stable
for the closed-loop system (1) controlled by the set-based MPC
given by (3).

3. MULTI-TARGET SET TRACKING

The previous control is extended in this section. Let us suppose
that the closed-loop system has to reach every element on the
set Q@ = {Q,Q,-+ , Qg }withQ, C Xfori=1,--- K, in
the specified order.

It is clear that a condition must be established in order to switch
target every time the current target is reached. To this end
a state-dependent MPC will be used. Consider the following
condition that defines if a target set on €2 is considered a
reached set according the position of the current state.
Definition 4 (Reached set). The first set on 2, i.e., Q1 is
considered a reached set if x(i) € Qq for some i > 0. For
k > 1, the target set Qi € S is considered a reached set if
x(1) € Qy for some i > 0 and the previous sets Qy, ..., Qp_1
are reached sets.

Now, consider the current target set, €),.,, which depends on the
position of the current state z = x(i).
Definition 5 (Current target set). Consider the sate of the
closed-loop system z(i) € X fori =0, ..., k, where x := x(k)
is the current state at time k. The current target set, €2, is given
by

Q= {Qs11 : k = max{i : Q; is a reached set}}  (4)
In the case that there are not reached sets then €, := Q.

We are in a position to define a set-based MPC for tracking sets
on .

muinV(x, Q,,u) %)

st. xg9=r,
Tj41 = f(xjauj)a JE INfla
Z; X, Uj EU, jGINfl,
TN € Qx,

The control law at time ¢ is given by the first element of the
optimal sequence u® of problem 5. For an asymptotic stability
result consider the next Lemma.

Lemma 6. [Anderson et al. (2022a)] If Q; € 2 is a Contrac-
tive CIS forall j = 1,..., K, then every §); € § is a reached
set for the closed-loop system controlled by the MPC given on
(5).

Remark 7. The proposed multi-target tracking has stability
guarantee. However, in order to minimize the cost the velocity
of the USV tends to decrease near the current set (), and to
increase once it reaches it, leading to an unwanted behavior.
The next section presents an MPC for tracking that avoids this
behaviour and improves the performance of the trajectory.

4. PROPOSED MPC

The design of the control law presented in this section plans
the approach to set 2; considering that the next move is to
reach the set €2 . For this objective a dual-MPC formulation
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is used: the first mode aims at reaching the current target set
Q, = Q;, by means of (5), and second mode is activated when
the current state x is close enough of 2., this mode increases
the importance to reach next target set, i.e. {2;1.

To trigger the second mode let us define some concepts first.
Definition 8 (Fattening set). Ler 2, C R"™ be the current target
set of control, and let € > 0, we denote the e-fattening set of (),
by

(Qz)° == U{B(x,e) : x € Q. }.
Remark 9. The term ’'close enough’ of the current target set
is a parameter of the control design and can be selected by
choosing an appropriate ¢.

The second mode is activated when the current state is on
(€2)¢. At this time is necessary to define a second target set,
which follows the current €2,.. The following properly defines
the second target set, Q‘j:

Define €2, as in Eq. (4), and the set Q as follows:

Qf .— { Qj-i—la being Qj =Q, v € (Ql)g (6)

z Qg otherwise

Note that, if the current state = ¢ (2,)¢, then it is considered
that QF = Q. This small detail allow us to formulate the
problem in a consistent way.

The strategy of the second mode depends on a variable predic-
tion horizon which depends on the current state position. The
function N, : X — Iy defines the prediction horizon of the
proposal.

N = ceil(%’m)), x € (Qp)°
v N, otherwise

For the first mode (x ¢ (£2,,)°) the prediction horizon is N. For
the second mode (x € (€2)°) the prediction horizon decreases
with the distance of the current state x to the current target set
Q. The ceil(-) function is considered for N, to be an integer
number.

Remark 10. Function N, is a decreasing function with maxi-
mum value when x belongs to the complement of (Q)¢, given
by N, = N; and a minimum value when x € (), given by
N, =0.

Consider the cost function

N,—1 N-1
In(z3u) = Z pla, (zj,u;) + Z qEQ:(xj,uj) (7
j=0 j=N.,

where £o(z;,u;) = ad(z;, Q) + Bd(u;, T(Q)), and p,g > 0
are weight values.
The second mode computes N, predictions to minimize the

distance of the states to {2,, and N — N, predictions to minimize
the distance of the states to Q.

The proposal is given by the following optimization problem
solved at each sample time ¢ € V.

m&n Jn(x;u) 8)

s.t. xg =z,
wjpr = f(zg,u5), J€In-,
T eX, Uj elU, jeln_q,
TN, EQM
TN € Q:,

The solution of Problem (8) is the optimal control sequence
u® = {u,ul, - ,uQ_,}. The proposed control law at time i
is given by k = .

The control algorithm executed at any ¢ — ¢h time instant is the
following:

Algorithm 1: Proposed nonlinear MPC algorithm
Data: N e NNXCR*, UCR™ Q= {Qj}f(:1
Result: Closed-loop system z(i + 1) = f(x(4), k(7))
Read x = x(i);

Compute €2,, Q. with Eq. (4) and (6);

Solve Problem (8);

Inject /(i) = u into the system;

11+ 1;

Go back to 1

AN ANE

5. SIMULATIONS RESULTS

The kinematic model for the SPYBOAT® vessel used in the
experiments is given by the following equations.

= ucos(¢) — vsin(
= usin(y) + v cos(

),
),

9
Tu m22 gy | Xy u, 9
mi1 mi1 y mi1
T
— _Tr Mmoo —mi1 Ny
ms3s3 + ma33 uv + m337"

(4
(4

3 S 2R 8
Il
3

where (z,y) is the position vector on the surface, v is the
direction of the vessel, and u, v, r are velocity vectors (surge,
sway and yaw respectively). The inputs are given by 7, = F} +
Fs and 7. = b(Fy — Fy), where Fy and F5 are the port side and
starboard side thrust forces, and b represents 1/2 of the distance
between the thrusters. The parameter X, Y, and N, are the
linear drag coefficient in surge direction from surge, the linear
drag coefficient in sway direction from yaw rate and the linear
drag moment coefficient from yaw rate, respectively. The mass
parameters m,; include added mass contributions that represent
hydraulic pressure forces and torque due to the forced harmonic
motion of the vessel which are proportional to the acceleration:

m11 =m + 0.05m,
mas =m + 0.5(pn D?L),

m(L? + W?) +0.5(0.1mB? + pr D*L3)
ms3 = 12 .
where m is the actual mass, L is the effective length (hull’s
length in the water), W is the width, D is the mean submerged
depth, B is the distance between propellers and p is the water

density 2.

2 For more detail on the parameters of model (9) see Hervagault (2019).
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Controlled Trajectory
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Fig. 1. The initial point of the trajectory is given by the ring in
the center and the final point by the star. The controlled
trajectory follows an spiral sequence of target sets given
by hexagons.

Before presenting the exploration mission for water quality
assessment some simulation scenarios will be presented to ex-
plore a region which is meshed by squares and by hexagons. To
explore some of the main difference in the controlled trajecto-
ries two index will be used, the first index, /r, computes the
accumulative inputs for all the time of simulation, is define by
the following:

Ty
Ip =) Fi(i) + Fa(i) (10)
=0

Index Ir resumes the consumption of energy for the thrust
forces to complete the entire exploration.

The second index, Ig, penalize large changes on consecutive
inputs. Is define as follows

Ti—1
Is = Y 1P+ 1) = B + [ Fa(i +1) — B (0)]

i=0

(1)
The idea of index I is to measure the smoothness of the inputs
used to complete the exploration.

The parameters of the MPC is the same on all scenarios given
by a prediction horizon N = 15, weight values on cost (7) given
byp=g=1landa =5,5=0.1.
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Fig. 2. The initial point of the trajectory is given by the ring in
the center and the final point by the star. The controlled
trajectory follows an spiral sequence of target sets given
by squares.

Fig. 1 and Fig. 2 show a controlled trajectory for explore the
same region that is meshed by hexagons and squares, respec-
tively. The sequence of target sets (2; are ordered to follows a
spiral trajectory, which in the case of hexagon meshing provide
the best planning path (see Table 1). On the other hand, Fig.
3 and 4 show the same region and the same meshing but with
a different path planing, in this case - according Table 1 - the
square meshing is more appropriate.

INDEX HEXAGON MESH SQUARE MESH

Ir 73.6 (Fig. 1) 91.72 (Fig. 2)
Is 100.38 (Fig. 1) 110.84 (Fig. 2)
Ir 133.37 (Fig.3) 165 (Fig. 4)
Is 218.7 (Fig.3) 163 (Fig. 4)

Table 1: Index I and I for every path on Fig. 1-4.

6. WATER QUALITY ASSESSMENT BY USV
TECHNOLOGY

The proposed MPC is used to control the SPYBOAT® vessel
for explore a large area on the surface of Heron lake Villeneuve
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Fig. 3. Hexagon meshing.

d’Ascq (France). The real experiments were carried out by
hand-operated USV to collect measurements of pH, turbidity,
conductivity, temperature and dissolved oxygen in the entire
area. The main problem of the hand-operated USV mission was
the irregularity of the trajectory on the studied area, since the
USV was controlled manually the route of the vessel leaves
many places un-visited, and therefore and without data. To
solve this problem, Anderson et al. (2022b) proposed a method
for interpolation to approximate the missing data, but still
shows some limitations.

To improve data collecting the proposed MPC is used to sim-
ulate the real experiment in the same region. Fig. 5 shows the
application of the proposed nonlinear MPC with a prediction
horizon N = 10, a discretization of the dynamical model (9)
with discrete-time with T = lseg and initial state 2(0)
(z,y,¢,u,v,7) = (146,4,—%,0,0,0). To explore region (2
a regular mesh of hexagons. Every target set {2, shares an
edge with the next target set ', so once the system enters (),
only the second mode of the MPC (8) is used (the first mode
is only used at the beginning to reach ;). Fig. 6 shows a
limnological map for Dissolved Oxygen. This map represent
the measurement of the vessel in every target set Omega;.

7. CONCLUSION

A nonlinear MPC for exploration with USV was presented in
this paper to improve the data collecting for the construction
of a temporal water quality profile of a region of the surface

Controlled Trajectory

———

& IR RS

2 -15 -1 -0.5 0 0.5 1 1.5 2

(a) Trajectory on square meshing.

0 5 10 15 20 25 30 35
10 T
0 |

(b) Inputs and velocity.

Fig. 4. Square meshing.
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Fig. 5. Controlled trajectory for exploring region (2.

of lakes where there is a suspicion of a source of pollution.
This results are expected to outperformed the real exploration of
large areas targeting data collection for water quality analysis.
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